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ABSTRACT 

Non-alcoholic fatty liver disease (NAFLD) is a significant global public health issue, closely related to poor dietary 

habits and excessive energy intake. Type 2 diabetes（T2DM） is closely related to NAFLD. Due to the complex 

regulation of dietary factors on the interaction between insulin, glucose, and free fatty acids (FFA), existing metabolic 

models have limitations in characterizing the dynamic response of this system. This paper uses an improved mathematical 

model to simulate the dynamic effects of different dietary compositions on insulin, glucose, and FFA, the study adopts a 

delayed feedback mechanism to construct a system of differential equations, which describes the relationship between 

postprandial insulin secretion and the fluctuations of glucose and FFA. The results show that the model can effectively 

simulate the fluctuating behavior of metabolic parameters under postprandial conditions, verifying its predictive potential 

in the study of NAFLD and dietary interventions. 
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1. Introduction 

Non-alcoholic fatty liver disease (NAFLD) is a disease marked by 

the accumulation of fat within the liver. Its pathogenesis is complex, 

and free fatty acids (FFA) play a crucial role in it. The relationship 

between type 2 diabetes（T2DM） and NAFLD is complex and 

bidirectional[1, 2]. It is difficult to distinguish whether NAFLD plays a 

causal role in the development of T2DM or whether it is simply a result 

of T2DM[3]. High FFA levels can lead to metabolic disorders like 

insulin resistance and hepatocyte injury, which worsen the 

development of NAFLD[4, 5]. Studies have shown that NAFLD is 

closely related to insulin resistance, which may be the core mechanism 

leading to reduced insulin levels and increased FFA[6, 7]. Insulin 

resistance may raise FFA levels in the blood. This can lead to fat 

accumulation and inflammation in the liver, which may then develop 

into NAFLD. The lipid accumulation and inflammation in NAFLD can 

be aggravated, making patients with T2DM more susceptible to liver 

damage[6, 7].Consequently, an in-depth exploration of the association 

between insulin, FFA, NAFLD and T2DM is highly significant for 

formulating effective intervention strategies. 

Exist mathematical models have been developed to simulate 

metabolic interactions and provide insights into the regulation of 

glucose, insulin, and lipid levels in response to dietary inputs. Classical 

models, such as those by Sturis et al.[8]and Tolić et al.[9], have been 
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instrumental in establishing foundational knowledge about the glucose-insulin feedback system. These models 

describe core mechanisms, including insulin-stimulated glucose uptake and inhibition of hepatic glucose 

production. However, their design often limits the exploration of lipid metabolism and postprandial FFA 

responses, as they focus predominantly on glucose and insulin dynamics, thus excluding important dietary 

influences. More recent models, König et al.[10] and Dalla et al.[11] have made significant strides by 

incorporating multiple compartments to reflect organ-specific metabolic functions, enabling a more realistic 

simulation of postprandial states. These models, however, frequently overlook the broader systemic effects of 

diet and the detailed interaction between FFA and glucose metabolism. Mathematical modeling has emerged 

as a powerful tool to understand metabolic systems by integrating biochemical interactions and simulating 

metabolic changes under various conditions. Models focusing on insulin-glucose dynamics[8, 9] and hepatic 

lipid metabolism[12] provide insight into key regulatory processes. These models help explore how diet and 

energy balance influence insulin sensitivity, hepatic glucose uptake, and FFA levels in the bloodstream. 

However, many existing models either simplify these dynamics or overlook the comprehensive effects of 

dietary inputs on systemic responses. 

This study aims to develop a mathematical model that encapsulates the interactions between glucose, 

insulin, and FFA regulated by diet. Building on the glucose-insulin feedback model of Tolić et al.[9] and Pratt 

et al.[12] framework for hepatic lipid metabolism, this model simulates the metabolic response to mixed meals 

under fed and fasted states. We hypothesize that by incorporating dietary variables, this model will more 

accurately reflect postprandial oscillations in insulin and FFA levels and can thus serve as a predictive tool for 

metabolic studies, dietary intervention planning, and clinical applications. 

2. Materials and methods 

This model is founded on several hypotheses backed by the literature[8, 9, 12, 13]. Nevertheless, to prevent 

this stage of model development from becoming too onerous, some details of the process are omitted. Sturis 

and Tolić [8, 9] proposes a systematic insulin -glucose model which served as a basis for the glucose and insulin 

equations. Similarly, Pratt and Kosic [12, 13] described the (fasting) FFA kinetics are described by kinetic 

equations. The following insulin -glucose feedback loops are included in the model: glucose stimulates 

pancreatic insulin secretion, insulin stimulates glucose uptake and inhibits hepatic glucose production and 

glucose enhances its own uptake. The system contains two significant delays. One delay is related to the fact 

that the physiological action of insulin on the utilization of glucose is correlated with the concentration of 

insulin in a slowly equilibrating intercellular compartment rather than with the concentration of insulin in the 

plasma. The other delay is associated with the time lag between the appearance of insulin in the plasma and its 

inhibitory effect on the hepatic glucose production. The insulin-glucose model has three main variables: the 

amount of glucose in the plasma and intercellular space, G, the amount of insulin in the plasma, Ip , and the 

amount of insulin in the intercellular space, Ii . In addition, there are three variables, x1 , x2 , and x3 , that 

represent the above-mentioned delay between insulin in plasma and its effect on the hepatic glucose production. 

Vp is the distribution volume for insulin in plasma, and Vi the effective volume of the intercellular space. 

Insulin degradation is assumed to be exponential, with time constant tp for insulin in plasma and ti for insulin 

in the intercellular space. Assume that the delay is of third order and the total time is td . Gin with the glucose 

infusion rate of 216 mg min-1 . Hepatic glucose ,GL; Hepatic glycogen , YL; Hepatic-6-phospahte , PL; Free 

fatty acids in liver ,RL; Triacylglycerol storage pool in liver, AL; TAG storage pool TL;  TAG secretary pool in 

liver ,SL; Adipose glycerol, LA; Muscle pyruvate ,Rm; Plasma exogenous CM TAG ,TCB; Plasma endogenous 

LP TAG ,TLB. The overall scheme of reactions and transport is illustrated in Figure 1. 

The models were represented in SBML[14], which is a standard for biochemical networks, using the Python 

tool SBML shorthand[15]. Model diagrams were constructed in CellDesigner[16]in accordance with the Systems 

Biology Graphical Notation (SBGN)[17]. The SBML code was deposited in the Biomodels database and 
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assigned the identifier BIOMD0000000372[9] and BIOMD0000000382[8],but Pratt’s model[12] and Kosic’s 

model[13]not in BioModels, so we reconstruct this model through the details of the paper and omit the 

unnecessary parts, such as muscle, adipose tissue. 

In this paper, an analysis of the mathematical model of hepatic lipid metabolism was carried out. The 

model in the form of 18 differential kinetic equations (Supplementary Material Table 1) including 64 

parameters (Supplementary Material Table 2) describes the metabolic response of the organism to meals with 

different proportions of macronutrients with a special emphasis on FFA. Pratt et al.[12] propose the 

macronutrient metabolism pathway. The model includes three compartments: liver, blood plasma and pancreas. 

 

Figure 1. Dietary control of insulin, glucose, and fatty acid model[8, 9, 12] 

Model diagram: at the top we show dietary input of glucose, on the right and center are hepatic 

components, on the upper right are pancreas , on the left are plasma compartments, In addition to the variable 

names and descriptions, we include a parameter associated with each flux, plus and minus superscripts 

represent insulin stimulated and insulin inhibited pathways (A description of each species is in the supplement). 
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3. Results 

3.1. Simulation of insulin and hepatic glucose level in normal condition 

The oscillation amplitude of insulin secretion increased with the increase of glucose infusion rate, which 

was divided into two parts, one was intravenous injection, the other was oral glucose absorption, and the total 

absorbed glucose was 214.6 mg min-1. When the oral glucose is set at 115.28 mg min-1 and the intravenous 

infusion is set at 99.32 mg min-1, if the intravenous and oral glucose are continuously given, hepatic glucose 

and insulin show periodic oscillations. (Figure 2) 

  

Figure 2. The time evolution of the insulin (A)and blood glucose (B)concentration.  

3.2. Hepatic glycogen, insulin, plasma glucose and FFA at different diet intake  

   

   
 

A B 

C D 

A B 
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Figure 3. A predictive model of hepatic glycogen, insulin, glucose and FFA metabolism. 

Compared with Figure 3 (A,B) and Figure 2 (A,B), the amplitude of insulin and blood glucose did not 

change substantially, indicating that the fitting of the two models did not affect the original model. When the 

intake was 137.9 mg glucose(higher than the equilibrium value of the model alone), (Figure 3A)Liver plasma 

insulin feedback , (Figure 3B) glucose in blood and  (Figure 3C) the glucose in liver changed. Simultaneous 

contrast of hepatic glucose and blood glucose (Figure 3D); Changes in hepatic glycogen (Figure 3E). The 

changes of FFA when the intake was 105 mg (Figure 3F), 137.9 mg (Figure 3G), and 150mg (Figure 3H) 

respectively. (Figure 3I) Simultaneous comparison of fatty acid changes when meal intake was 105 mg(red 

line), 137.9 mg(blue dashes) and 150 mg (green dashes), respectively. (Figure 3J) Simultaneous comparison 

of liver plasma glucose changes when meal intake was 105 mg (black line), 137.9 mg (red line) and 150 mg 

(green dashes), respectively 

Figure 3B shows that when the food intake is 137.9 mg containing glucose, liver blood glucose fluctuates 

between 120-80 mg, which is consistent with the physiological phenomenon of mammals. Figure 3C shows 

that hepatic glucose also fluctuates between 120 mg-80 mg. In Figure 3D, glucose in the blood and glucose in 

the liver oscillate opposite, that is, glucose in the blood is at the highest amplitude, but glucose in the liver is 

at the trough; In contrast, while glucose in the blood troughs, glucose in the liver peaks and oscillates 

consistently with each other. In Figure 3E, the hepatic glycogen content remained constant at 100 g, neither 

increasing nor decreasing with the increase of food intake, which was consistent with mammalian 

E F 
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I 
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physiological phenomena. As shown in Figure 3F, when the food intake was 105mg and glucose content, the 

free fatty acids increased rapidly and maintained a fixed level of oscillation; When the food intake increased 

to 137.9 mg (Figure 3G), the FFA also increased, and finally fluctuated in a fixed range. When the meal intake 

was increased to 150 mg (Figure 3H) containing glucose, the free fatty acid shock gradually disappeared. 

Figure 3I shows the simultaneous comparison of FFA content changes when the meal intake was 105 mg (low 

level), 137.9 mg equilibrium) and 150 mg (high-level). Figure 3J shows the simultaneous comparison of 

glucose content changes when the meal intake was 105 mg (glucose decline), 137.9 mg (glucose equilibrium) 

and 150 mg (glucose rise). 

3.3. Simulation of insulin and FFA levels in diabetic condition 

  

Figure 4. Simulation of normal insulin secretion and reduce secretion by 50%. 

In the later stages of diabetes, insulin secretion usually decreases significantly and may be only about 50% 

of the level in normal healthy human[18]. In the model, we simulated 50% of normal insulin production (Figure 

4A) and explored the relationship between insulin and FFA (Figure 4B). The results showed that when insulin 

production decreased, FFA production also decreased. 

4. Discussion 

This study model provides a simplified framework for investigating the effects of diet on postprandial 

blood glucose metabolism and lipid metabolism in the liver, which is suitable for the study of metabolic 

disorders like T2DM mellitus and NAFLD. This section will discuss the advantages and disadvantages of this 

model, such as the benefit of delayed insulin secretion, the lack of β-cell mass, limitations, and directions for 

improvement.  

The design of this model offers significant application potential for metabolic studies focusing on the 

response of glucose and lipids to different dietary components after meals. Similar models have been applied 

to model the metabolic dynamics of T2DM and NAFLD, in which fluctuations in glucose and FFA play a 

crucial role in disease progression.[19-21]. The model is aligned with contemporary research trends by 

incorporating dietary responses, with an emphasis on dietary adjustments for controlling blood glucose and 

lipids. These applications also demonstrate the usefulness of the model in simulating the metabolic responses 

to different dietary components in the context of metabolic syndrome (e.g., T2DM, NAFLD, etc.), and offer 

insights into dietary intervention strategies for the management of metabolic syndrome. The combination of 

dietary input is the highlight of this model, which can simulate the postprandial response of blood glucose and 

hepatic glucose in both feeding and fasting states, overcoming the limitations of the model that focuses only 

on intravenous glucose infusion, and providing a more realistic description of glucose and lipid metabolism. 

However, it neglects glycogen intermediates such as glucose-1-phosphate, uridine diphosphate glucose, 

inorganic phosphate, and pyrophosphate, which play a vital role in the conversion between blood glucose and 

glycogen and have a considerable impact on metabolic pathways. Nevertheless, the model disregards them.[22]. 

A B 
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In addition, simplifying hepatic lipid metabolism, such as ignoring protein interactions such as skeletal muscle, 

adipose tissue, and plasma variables, may limit the application of this model in high-fat diet studies[5]. Another 

deficiency is the lack of beta cell mass production, which is not a good description of beta cell changes under 

hyperglycemia. Classic β cell mass model is Topp et al.[23], mild hyperglycemia has a negative feedback 

mechanism with β cell mass, while extreme hyperglycemia has a positive feedback mechanism with β cell 

mass. Another model development β cell mass model of diabetes in fa/fa rats in 2007[24], show that both 

excessive insulin resistance and insufficient adaptation contribute to the initiation of hyperglycemia[24]. Current 

models view beta cell mass as static, restricting its application in long-term metabolic studies. Not modeling 

the changes in beta cell populations adapting to chronic insulin needs over time can result in inaccurate 

predictions of persistent hyperglycemia[25]. For example, in people with long-term diabetes, beta cell mass may 

gradually decrease. Models that do not reflect this change will overestimate the amount of insulin secreted, 

resulting in inaccurate predictions of blood glucose levels. 

The delayed insulin secretion is a very important feedback link in the model of insulin metabolism. If 

there were no delay, insulin would not oscillate. Therefore, the analysis of insulin delay is the key to accurately 

simulate the metabolic response. The model incorporates the insulin secretion delay, so it can capture the 

oscillation behavior of insulin-glucose in the feedback loop. Such as those described by recent 

studies[26],simulate time lags between insulin secretion and its physiological effects, crucial for maintaining 

metabolic stability. For instance, insulin delays allow for more precise regulation of blood glucose following 

dietary intake, as delayed secretion can prevent overcompensation that leads to hypoglycemia. These delays 

also reflect real-life physiological conditions where insulin effects on glucose metabolism are not immediate. 

In comparison to models without insulin secretion delays[27], such as purely linear feedback models, our model 

provides an advantage by offering a closer approximation of physiological insulin responses. Including delays 

enables simulations of postprandial glucose and FFA oscillations, reflecting the temporal dynamics essential 

for metabolic stability. This is particularly useful for studies focused on oscillatory regulation in metabolic 

systems, as disruptions in delay timings have been linked to insulin resistance and glucose intolerance[28]. The 

delay mechanism in this model also allows for exploring potential therapeutic approaches that target insulin 

secretion timing, highlighting the role of temporal regulation in managing metabolic disorders. 

In the later stage of diabetes, especially in patients with type 2 diabetes, as the disease progresses, the 

function of β cells gradually declines and the ability to secrete insulin is significantly reduced. Studies have 

shown that patients with type 2 diabetes secrete 50% to 70% less insulin than normal people[29, 30], and many 

diabetics have insulin resistance before the insulin level is lower in the later stage[31, 32]. This resistance leads 

to increased release of FFA. This, in turn, leads to the accumulation of fat in the liver. For example, the liver 

uses excessive free fatty acids to synthesize triglycerides and store them to form fatty liver[33, 34]. In the later 

stages of diabetes, however, fatty liver disease can be greatly improved through weight loss promotion or the 

direct treatment of liver fat accumulation[35]. This model can well reproduce the corresponding changes in 

blood glucose, hepatic glucose and FFA when insulin secretion is reduced, which is consistent with the reality. 

When insulin production is 50% of normal, it can be found that blood glucose and hepatic glucose increase 

significantly, which affects the content of free fatty acids. Nicely reproduced that T2DM patients are more 

likely to develop fatty liver disease, providing insights into the relationship between T2DM and FFA. 

Future studies of this model should focus on exploring the effects of glucose changes on pancreatic β cells, 

including their generation and death, and the effect of circadian genes on blood glucose balance and hepatic 

lipid metabolism. Moreover, this can be achieved by combining islet β cell mass changes, hepatic lipid 

metabolism intermediates, and circadian factors of fatty acid levels, like cortisol and melatonin. 
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5. Conclusion 

In conclusion, this insulin-glucose-FFA model provides a versatile tool for exploring dietary impacts on 

postprandial metabolism across various scenarios. Future iterations that integrate adaptive β-cell responses and 

insulin secretion delays may strengthen its relevance, offering a valuable resource for both research and clinical 

applications in metabolic disease management. 
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Supplementary Material 
Table 1. The equations describing the dynamics of the Insulin, Glucose, and FFA model 

Number Variable Variable Balance Initial Conditions 

1 the amount of insulin in the plasma IP 
dIp

dt
= f1(G) − E(

Ip

Vp
−
Ii
Vi
) −

Ip

tp
 90.0 mmol/L 

2 In addition, there are three variables Ii 
dIi
dt

= E ∗ (
Ip

Vp
−
Ii
Vi
) −

Ii
ti

 138 mmol/L 

3 
glucose in the plasma and 

intercellular space 
G 

dG

dt
= Gin − f2(G) − f3(G) ∗ f4(Ii) + f5(x3) 13000 mmol/L 

3(1) 
glucose in the plasma and 

intercellular space 
G 

dG

dt
= Gin − f2(G) −

1

5
f3(G) ∗ f4(Ii) −

4

5
f3(G) ∗ f4(Ii) + f5(x3) 13000 mmol/L 

4 
represent the above-mentioned  

delay between insulin in plasma and 

its effect on the hepatic glucose 

production 

X1 
dx1
dt

=
3

td
∗ (Ip − x1) 70 mmol/L 

5 X2 
dx2
dt

=
3

td
∗ (x1 − x2) 70 mmol/L 

6 X3 
dx3
dt

=
3

td
∗ (x2 − x3) 70 mmol/L 

7 

The pancreatic insulin production 

controlled by the glucose 

concentration 

f1(G) f1(G) =
Rm

1 + exp((C1 − G Vg⁄ )/a1)
 - 

8 

Insulin-independent glucose 

utilization (glucose uptake by the 

brain and nerve cells) 

f2(G) f2(G) = Ub(1 − exp(−G (C2 ∗ Vg)⁄ ) - 

9 

The glucose dependent term in the 

function describing glucose 

utilization is assumed to be which 

agrees with experimental result 

f3(G) f3(G) =
G

C3 ∗ Vg
 - 

10 The insulin dependent term f4(Ii) f4(Ii) = U0 +
Um − U0

1 + exp(−βln(Ii C4(1 Vi + 1 Eti⁄⁄ )⁄ ))
 - 

11 
The influence of insulin on the 

hepatic glucose production 
f5(x3) f5(x3) =

Rg

1 + exp(α（ x3 Vp − C5⁄ ））
 - 

12 liver glucose GL 𝛼𝐿
𝑑𝐺𝐿
𝑑𝑡

= 𝑆𝐺(𝑡) − 𝑘𝑔𝑙𝐺𝐿 + 𝑘𝑔𝑙2𝐺𝐵 −
𝑣𝐿𝐺𝐺𝐿

𝑘𝐿𝐺 + 𝐺𝐿
−

𝑣𝐿𝐻𝐺𝐿
𝑘𝐿𝐻 + 𝐺𝐿

(
1

1 + 𝑘𝑟𝑒𝑝𝑃𝐿
) + 𝑘6𝐼𝑃𝐿 8 mmol/L 

13 liver glycogen YL 𝛼𝐿
𝑑𝑌𝐿
𝑑𝑡

=
1

2
𝑘𝑦𝐼𝐼𝑃𝐿 (1 + tanh (

𝐼𝑚𝑎𝑥 − 𝑌𝐿
𝐶0

)) −
𝛽𝐿

1 + 𝑘𝑑𝐼𝐼
(

𝑌𝐿
𝑌𝐿 + 𝑦0

) 50 mmol/l 
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Table 1. (Continued) 

14 liver glucose-6-phospahte PL 

𝛼𝐿
𝑑𝑃𝐿
𝑑𝑡

= −
1

2
𝑘𝑦𝐼𝐼𝑃𝐿 (1 + tanh (

𝐼𝑚𝑎𝑥 − 𝑌𝐿
𝐶0

)) +
𝛽𝐿

1 + 𝑘𝑑𝐼𝐼
(

𝑌𝐿
𝑌𝐿 + 𝑦0

) +
𝛽6𝑅𝐿

1 + 𝑘𝑝6𝐼
+

𝑣𝐿𝐺𝐺𝐿
𝑘𝐿𝐺 + 𝐺𝐿

+
𝑣𝐿𝐻𝐺𝐿

𝑘𝐿𝐺 + 𝐺𝐿
(

1

1 + 𝑘𝑟𝑒𝑝𝑃𝐿
) − 𝑘𝑃𝐼𝑃𝐿 − 𝑘6𝐼𝑃𝐿 + 𝑘𝑔𝑝𝐿𝐴 

2.06 mmol/l 

15 free fatty acids in liver RL 𝛼𝐿
𝑑𝑅𝐿
𝑑𝑡

= 𝑘𝑃𝑃𝑅𝑀 + 𝑘𝑝𝐼𝑃𝐿 −
𝛽6𝑅𝐿

1 + 𝑘𝑃6𝐼
− 𝑘𝑎𝐼𝐼𝑅𝐿 + 𝜇𝐵 0.37 mmol/L 

16 triacylglycerol storage pool in liver AL 𝛼𝐿
𝑑𝐴𝐿
𝑑𝑡

= 3𝑘𝑐𝐼𝑇𝐶𝐵 + 𝑘𝑏𝐼𝐴𝑁𝐵 + 3𝑘𝑟𝑇𝐿𝐵 + 𝑘𝑎𝐼𝐼𝑅𝐿 +
3𝑣10𝑇𝐿
𝑘10 + 𝑇𝐿

+
3𝑣6𝐴𝐿
𝑘6 + 𝐴𝐿

−
3𝑣8𝐴𝐿
𝑘8 + 𝐴𝐿

−
𝑘7𝐴𝐿
1 + 𝑘5𝐼

 0.57 mmol/L 

17 TAG storage pool TL 
𝑑𝑇𝐿
𝑑𝑡

=
𝑣8𝐴𝐿

𝑘8 + 𝐴𝐿
− 𝐹(𝐼)

𝑣9𝑇𝐿
𝑘9 + 𝑇𝐿

−
𝑣10𝑇𝐿

𝑘10 + 𝑇𝐿
 40 mmol/L 

18 TAG secretary pool in liver SL 
𝑑𝑆𝐿
𝑑𝑡

=
3𝑣6𝐴𝐿
𝑘6 + 𝐴𝐿

− 𝑘9𝑎𝑆𝐿 0.0149 mmol/l 

 

Table 2. List of dynamics of the Insulin, Glucose, and FFA model parameters [8, 9, 12, 13] 

Number name value Description 

1 αA 15.6L adipose tissue volume 

2 αL 1.60 L liver tissue volume 

3 β6 31.6L/min rate of liver de novo lipogenesis from pyruvate 

4 βL 12L/min liver glycogenolysis 

5 μ1 0.588 mmol/min Plasma glucose usage 

6 C0 0.1mmol/L small parameters 

7 k5 0.05/mmol flux control coefficient for insulin inhibition of free fatty acid oxidation 

8 k61 4L/min liver glucose dephosphorylation rate 

9 k6 0.3mmol/L affinity for very low-density lipoprotein 2 triglyceride secretion through secretory pathway 

10 k7 0.759L/min maximum rate of free fatty acid oxidation 

11 k8 0.625mmol/L affinity for esterification of free fatty acids to triglycerides 

12 k9 43.583mmol/L affinity of additional bulk lipidation 

13 k9a 1L/min release of very low-density lipoproteins from secretory pathway 

14 k10 0.625mmol/L affinity for hydrolysis of triglycerides to secretory pool 

15 k12 0.2 increased fraction of very low-density lipoprotein 1 secretion by insulin 

16 
k13 15mmol/L 

rate at which insulin modifies the fraction of very low-density lipoprotein 1 to very 

low-density lipoprotein 2 secretion 

17 k14 0.6 basal very low-density lipoprotein 1 secretion fraction 
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Table 2. (Continued) 

18 k22 48mmol/min excess insulin secretion rate due to glucose stimulation 

19 kal 0.00002L2/mmol min pyruvate to acetyl coenzyme A conversion rate 

20 kba 0.0104L/min adipose uptake of endogenous lipoprotein triglycerides 

21 kbl 0.156L/min liver uptake of plasma non-esterified fatty acids 

22 kcl 0.0075L/min liver free fatty acid uptake of chylomicron triglycerides 

23 kd 1.733×108L/mmol insulin degradation rate 

24 kdl 3.5×108mmol/L liver glycogenolysis; insulin-inhibited rate 

25 kgp 0.311L/min glucose-6-phospahte uptake from adipose glycerol 

26 kLG 0.0115mmol/L Michaelis–Menten constant of glucokinase in liver 

27 kLH 0.0115mmol/L Michaelis–Menten constant of glucokinase in liver 

28 kP 1.41×107mmol/L rate of insulin-mediated glucose-6-phoshate to pyruvate 

29 kPP 0.5 rate of muscle pyruvate transport to liver 

30 kp6 1.93×108L2/mmol min constant of pyruvate conversion to glucose-6-phospate 

31 
kyl 

1.28×106 L2mmol−1 

min−1 
rate of the glycogen synthesis stimulated by insulin 

32 kr 0.00058mmol rate of endogenously derived lipoprotein triglycerides by liver as free fatty acids 

33 krep 2.98mmol/L glucose-6-phospahte inhibition constant of hexokinase in muscle 

34 kt 0.00348mmol/L uptake rate of plasma endogenous triglycerides into muscle free fatty acids 

35 lmax 400mmol maximum glycogen store of liver 

36 v6 0.6mmol/L rate of glycogen transport 

37 v8 0.333mmol/min rate of glycogen transport 

38 v9 0.6mmol/L rate of triglyceride release into plasma 

39 v10 0.1mmol/min rate of triglyceride storage conversion to free fatty acids 

40 v12 40mmol L−1 constant in triglyceride release into plasma 

41 vLG 14.3mmol/min maximum rate of glucokinase in liver 

42 vLH 5.57mmol/min maximum rate of hexokinase in liver 

43 y0 0.1mmol/min range of liver glycogen concentration over which the release drops to zero) 

44 Vp 3L the distribution volume for insulin in plasma 

45 Vi 11L the effective volume of the intercellular space 

46 Vg 10L - 
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Table 2. (Continued) 

47 E 0.2L min-1 transfer rate E between insulin between plasma and intercellular space 

48 tp 6L min Insulin degradation is assumed to be exponential , with time constant tp for insulin in plasma 

49 ti 100 L min Insulin degradation is assumed to be exponential , with time constant ti for insulin in the intercellular space 

50 td 36 L min This delay is assumed to be of third order with a total time td 

51 Rm 210 mU min-1 - 

52 a1 300 mg L-1 - 

53 C1 2000 mg L-1 - 

54 Ub 72 mg min-1 - 

55 C2 144 mg L-1 - 

56 C3 1000 mg L-1 - 

57 U0 40 mg min-1 - 

58 Um（ 940 mg min-1 - 

59 𝛽 1.77 - 

60 C4  80 mU I-1 - 

61 Rg 180 mg min-1 - 

62 α 0.29mU I-1 - 

63 C5 26 mU I-1 - 

64 Gin 216mg min-1 glucose is supplied to the plasma at an exogenously controlled rate 

The above glucose-insulin model is based on the mathematical model of blood glucose balance established by Tolic and Sturis team in 2000, and we have 

made the following adjustments: 

The links of glucose generation and glycogen synthesis in the liver were re-established, and gluconeogenesis and glycolysis occurred in the liver. For the 

sake of simplification of the model, only the links of glucose conversion into glycogen in the liver were concerned, and other links were ignored. Moreover, 

according to the study[10], the conversion ratio of glycogen to grape in the liver was 80%, that is, the proportion of glucose consumption accounted for 20%, so the 

equation 3 was changed to 3(1). 
dG

dt
= Gin − f2(G) −

1

5
f3(G) ∗ f4(Ii) −

4

5
f3(G) ∗ f4(Ii) + f5(x3) 

1

5
f3(G) ∗ f4(Ii) represents the part of glucose that is used in response to insulin,

4

5
f3(G) ∗ f4(Ii) represents the part of the liver where glucose is converted into 

glycogen. Considering that the part of glucose absorption includes the part of food digestion and absorption, and the glucose converted by food digestion and 

absorption as set in the paper, we set 125 mg min-1, and the glucose infusion rate of Gin in the previous equation was 216mg min-1, Gin was split into two parts. 

One portion represents 125 mg min-1 for food digestion and absorption, and the other 95mg min-1 represents intravenous infusion of partial glucose. 


