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ABSTRACT 

Accurate prediction of Protein Secondary Structure (PSS) plays a crucial role in understanding the functional 

mechanisms of proteins. This study focuses on predicting the secondary structure of the quorum-sensing control repressor 

protein (QscR) using a UNet based deep learning model. The UNet architecture, known for its exceptional performance 

is adapted to predict structural features of proteins by learning from sequence based data. The proposed model was trained 

and validated using benchmark protein datasets to ensure generalizability and accuracy. Comparative analysis with 

traditional approaches demonstrated that the UNet model achieved superior performance in terms of prediction accuracy 

and computational efficiency. The findings suggest that the UNet model is a robust tool for SS prediction and can provide 

deeper insights into quorum-sensing mechanisms, aiding in the design of novel antibacterial strategies. 
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1. Introduction 

Proteins are indispensable to living organisms due to their diverse 

functions, including catalyzing essential reactions in cellular 

metabolism, participating in DNA replication, and producing 

antibodies for the immune system. These vital biomolecules exhibit a 

hierarchical structure comprising four levels: primary, secondary, 

tertiary, and quaternary. Each structural level plays a crucial role in 

determining the protein’s overall function and significance within 

living systems. 

Understanding protein structure is a key to elucidating its function. 

To comprehend the molecular-level roles of proteins, it is essential to 

determine their secondary structure (SS)[1]. However, accurately and 

reliably predicting protein structures from amino acid sequences 

remains one of the most challenging tasks in computational biology. 

This complexity hampers the analysis of protein functions and their 

applications in drug design. Therefore, predicting protein secondary 

structure (PSS) is a critical step toward tertiary structure prediction, as 
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it provides valuable insights into protein activity, relationships, and functions. 

In bioinformatics, protein structures are commonly determined using various experimental techniques, 

including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and computational 

methods. However, conventional approaches often rely on simplistic models and assumptions that fail to 

capture the complexity of protein folding. These methods typically analyze individual sequences in isolation, 

without incorporating evolutionary information available through multiple sequence alignments or Position-

Specific Scoring Matrices (PSSMs). 

To address these limitations, machine learning and deep learning techniques have been introduced[2-5]. 

These advanced approaches leverage large datasets, evolutionary insights, and sophisticated models to deliver 

more accurate and robust predictions, effectively overcoming many of the shortcomings of traditional methods. 

A two-dimensional fusion deep neural network model, DstruCCN, which integrates CNNs with a 

supervised Transformer-based protein language model for single-sequence protein structure prediction. The 

training features extracted from both models are fused to predict the protein’s Transformer binding site matrix, 

followed by three-dimensional structure reconstruction through energy minimization techniques. This hybrid 

approach leverages the local feature extraction capabilities of CNNs and the contextual understanding of 

Transformers, aiming to improve prediction accuracy from individual sequences. However, despite its 

advantages, the model also has certain limitations. The reliance on single-sequence input can lead to reduced 

performance compared to methods that utilize multiple sequence alignments (MSAs) or evolutionary profiles[6].  

A hybrid architecture combining CNNs and LSTM networks, referred to as EN-CSLR has been 

formulated. Feature maps extracted from the second convolutional layer are passed through a softmax classifier 

to generate the first set of probability outputs. In parallel, the LSTM model comprises a sequence processing 

layer and a final layer, from which features are extracted and fed into a Random Forest classifier to produce 

the second probability output. These two probabilistic outputs are then weighted and integrated to form the 

final prediction. The model's effectiveness was validated using cross-validation experiments on the 25pdb 

dataset, achieving an accuracy of 80.18%, which surpasses the performance of individual CNN or LSTM 

models. Despite its strengths, integration of multiple models increases the system’s complexity, leading to 

higher computational costs and potentially longer training times[7]. 

A DL framework named Cascaded Feature Learning Model (CFLM) for PSS prediction. The proposed 

model utilizes a multi-stage transfer learning approach built upon the Residual Dense Network (RDN), 

enabling progressive refinement of learned features across different training stages. The effectiveness of 

CFLM is validated on the CASP 13 and CASP 14 benchmark datasets. Furthermore, comparative analysis 

shows that CFLM outperforms several recent PSSP methods, highlighting its competitive edge in prediction 

accuracy. But, the multi-stage training and transfer learning process increases training time and resource 

demands, making the model computationally intensive. Additionally, while transfer learning enhances 

generalization, it may also introduce overfitting risks[8].  

A Neural network (NN) based prediction has been developed[9,10]. A concept of adversarial learning by 

proposing a Conditional Generative Adversarial Network (CGAN)-based model has been formulated[11]. The 

architecture incorporates a specially designed multiscale convolution module and an Improved Channel 

Attention (ICA) module within the generator, enhancing its ability to extract and focus on intricate protein 

features. The proposed CGAN-PSSP method, driven by the multiscale and attention-based enhancements, 

demonstrates the potential of adversarial learning in capturing subtle and high-level features of protein 

sequences. Experimental results validated the feasibility and effectiveness of the CGAN-PSSP model, 

representing its strong feature learning capability and suggesting that it is a promising direction for future 

research in PSSP. But, training GANs, particularly in the context of bioinformatics, can be unstable and 

sensitive to hyperparameter tuning, often requiring careful balancing between the generator and discriminator.  
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The influence of amino acid properties and SSPs in predicting secondary structure was formulated. This 

model first utilizes D-Conv and a SENet for capturing local patterns and enhancing relevant channels. It then 

integrates recurrent NN variants along with a Transformer module, to extract global bidirectional dependencies 

and refine feature representation. However, the use of multiple DL components adds to the computational 

complexity and may pose challenges in terms of scalability and resource requirements[12].  

DL architectures such as CNN, RNN, Inception Networks and Graph Neural Networks (GNNs) have been 

widely adopted in PSSP. Additionally, techniques originally developed for natural language processing (NLP) 

and computer vision have also been successfully applied to capture both local and global dependencies in 

protein sequences[13,14]. 

These advancements in PSSP have leveraged DL architectures to improve prediction accuracy. While 

hybrid models can effectively capture both local and global dependencies, they often suffer from increased 

computational complexity and training instability. In this context, U-Net emerges as a promising alternative 

due to its encoder-decoder structure and skip connections, which allow it to efficiently retain both fine-grained 

and high-level features. It offers a balanced trade-off between performance and resource efficiency, making it 

well-suited for PSSP tasks. So this work opted UNet for PSS prediction. 

2. Methodology 

Figure 1 illustrates a workflow for PSSP using a UNet model. It begins with collecting protein data from 

reliable sources, followed by dataset preparation and extraction of essential features like PSSM, SSPs, and 

physicochemical properties. These features are input into the UNet model, which captures both local and global 

dependencies through its encoder-decoder structure with skip connections. The model then predicts the 

secondary structure of proteins, aiding in structural and functional understanding. 

 

Figure 1. Methodology of the proposed topology. 
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3. Dataset 

The Pseudomonas Genome Database (https://www.pseudomonas.com) is a specialized online resource 

designed for comprehensive genomic analysis of Pseudomonas species, especially Pseudomonas aeruginosa. 

It is widely used by microbiologists and bioinformaticians for studying genes, proteins, regulatory pathways, 

and virulence factors. Pseudomonas aeruginosa strains typically have between 5,500 and 6,000 open reading 

frames (ORFs), which correspond to protein-coding genes. 

After selecting the dataset, it is essential to split it into training, validation, and test sets to effectively 

evaluate the model's performance. This data splitting process ensures that the model generalizes well to unseen 

data and helps prevent over fitting.  

4. Data pre-processing 

The preprocessing stage was crucial in preparing the protein sequence data for model training and 

evaluation. Initially, protein sequences were retrieved from the Database. Sequences with incomplete 

annotations, ambiguous residues, or significant redundancy were filtered out to ensure data quality and 

diversity. 

Secondary structure annotation was performed using the DSSP (Define Secondary Structure of Proteins) 

tool. DSSP assigns structural states to each residue based on hydrogen bond patterns and geometric criteria 

derived from protein 3D structures. The original eight DSSP structural states were simplified into a standard 

three-state classification: H (Helix), E (Strand) and C (Coil).  

Each protein sequence was processed using a sliding window technique to capture the local sequence 

context for each residue. The central residue within each window was labeled with its corresponding secondary 

structure. This annotated dataset was then split into training and testing sets, maintaining a consistent structural 

class distribution. 

In this study, 70% of the dataset was used for training, while the remaining 10% and 20% each was 

allocated for validation and testing purposes. 

The structural assignment of the training data and testing data set are represented in Figure 2, and Figure 

3.  

 

Figure 2. Structural assignments in training data set. 
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Figure 3. Structural assignments in testing data set. 

From Figures 2 and 3, it is observed that the structural assignments in the training dataset consist of 47% 

coil, 31% strand, and 21% helix. In comparison, the testing dataset contains 48% coil, 31% strand, and 21% 

helix. 

After splitting the dataset, each AA in the training and testing sequences was transformed into a numerical 

representation suitable for input into the DL model. One-hot encoding technique was incorporated to convert 

protein sequences from text to numerical data using this topology and each AA is represented by a binary 

vector whose length is about 20. To incorporate evolutionary information, Position-Specific Scoring Matrices 

(PSSMs) were generated using PSI-BLAST. Each residue was represented by a 20-dimensional vector 

capturing the likelihood of amino acid substitutions, based on multiple sequence alignments. The one-hot 

encoded vector and the corresponding PSSM values were concatenated to form a single 40-dimensional feature 

vector for each AA.  Each window was then represented as a 17×40 matrix, capturing both sequence and 

evolutionary features of the surrounding AAs. These matrices were compiled into a 3D tensor of shape. This 

tensor structure served as the input for the DL model, which expects two-dimensional feature maps[12-15]. In 

this work, UNet is incorporated as DL topology, to find the SS of protein. 

5. UNet architecture 

Among various architectures, U-Net has emerged as a powerful model for sequence-based tasks due to 

its ability to learn both global context and local details[15,16]. Originally developed for biomedical image 

segmentation, U-Net employs a symmetric encoder–decoder structure with skip connections that allow precise 

localization and contextual understanding. The architecture of 2D UNet is depicted in Figure 4. 
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Figure 4. Architecture of 2D UNet. 

To effectively capture complex spatial and contextual dependencies, the model accepts a 17×40 input 

matrix, integrating sequence, evolutionary and physicochemical features. Each sample has a sequence length 

of 128 and a feature dimension of 20, resulting in a consistent input shape suitable for UNet processing. The 

UNet framework is augmented with up to 512 convolutional filters in the deepest layers to enhance the model’s 

capacity for feature representation. The network begins with a base of 32 filters and employs a consistent stride 

of 1 to preserve spatial resolution. A learning rate of 0.001 was selected after experimentation, offering stable 

convergence with the Adam optimizer. A batch size of 1 was chosen due to memory constraints and the 

sequential nature of protein data. Class balanced categorical cross-entropy loss was employed to address class 

imbalance, ensuring fair learning across all categories. ReLU activation was used for its computational 

efficiency and ability to mitigate vanishing gradients. Min-Max scaling was applied to normalize feature ranges, 

aiding in faster convergence. A stride of 1 was maintained throughout to preserve spatial detail. Feature fusion 

is achieved using 1×1 convolution layers, which help reduce dimensionality and facilitate interaction across 

channels. Dropout-augmented convolutional blocks are incorporated to reduce overfitting by randomly 

deactivating neurons during training.Early stopping was used to improve generalization. Thus, the training 

parameters utilized for segmentation is portrayed in Table 1. 

Table 1. Training parameters for segmentation model. 

Parameters U-Net 

Loss Categorical crossentropy 

Batch size 1 

Stride 1 

Early stopping Y 

Learning rate 0.001 

Number of base 

filters 
32 

Scaling Max-Min scaling 
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Parameters U-Net 

Optimizer Adam optimizer 

Activation Function ReLu 

sequence_length 128 

feature_dimension 20 

num_classes 3 

Table 1. (Continued) 

6. Results and discussion 

The proposed UNet model was trained on a dataset of protein sequences with annotated secondary 

structures and validated using the Pseudomonas aeruginosa quorum-sensing repressor protein. Table 2 depicts 

the comparative distribution of secondary structure elements alpha helices, beta sheets, and coils predicted by 

different methods including DSSP[17], STRIDE[18], and the proposed UNet-based model. 

Table 2. Secondary structure distribution between methods. 

Method Alpha (%) Beta sheet(%) Coil (%) 

DSSP 54 13 - 

STRIDE 54 11 - 

UNet 57 14 29 

 

Figure 5. Secondary structure distribution between methods. 

From the Table 2, it is observed that the UNet based model demonstrates strong alignment with DSSP 

and STRIDE in predicting alpha helices and beta sheets, with minor variations. The predicted alpha-helix 

content from UNet is slightly higher (57%) compared to DSSP and STRIDE (54%). Similarly, beta sheet 

prediction is close: 14% (UNet) vs. 13% (DSSP) and 11% (STRIDE). The coil percentage (29%) is only 

available from UNet due to limitations in the tabulated outputs of DSSP and STRIDE. In practice, DSSP and 

STRIDE do account for coil/loop regions but often focus reporting on structured regions (H/E). The presence 

of a non-zero coil prediction from UNet suggests the model's ability to identify flexible or unstructured regions, 

which is important for biological relevance  particularly in proteins like quorum-sensing repressors that may 

contain flexible DNA-binding. 

Thus, the performance metrics of the proposed system is tabulated in Table 3. 
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Table 3. Performance measures. 

Structure Precision Recall F1-score 

H 0.877 0.926 0.901 

E 0.857 0.923 0.889 

C 0.931 0.818 0.871 

The results demonstrate that the UNet model exhibits high precision and recall across all structure types, 

with the best F1-score of 0.901 achieved for helices, which constitute a dominant portion of the protein. The 

strand predictions also perform robustly, achieving an F1-score of 0.889, which highlights the model’s capacity 

to accurately detect beta-structured regions despite their lower prevalence. Coil regions, often more flexible 

and structurally diverse, yielded a slightly lower recall (0.818) but the highest precision (0.931), indicating that 

while the model tends to be conservative in predicting coil residues. The high F1-scores across all classes 

suggest that the model achieves a well-balanced trade-off between sensitivity and specificity. To further 

validate the effectiveness of the proposed UNet model, the Q3 accuracy metric was calculated. Using DSSP 

as the ground truth, and based on the estimated overlap of predicted and actual secondary structure assignments, 

the model achieved a Q3 accuracy of approximately 96%. 

This high Q3 score indicates that the model accurately predicts the majority of residues, demonstrating 

reliable classification performance across structured (H, E) and unstructured (C) regions. The close agreement 

between the predicted secondary structure distributions and those reported by DSSP and STRIDE further 

supports the robustness and generalization ability of the UNet architecture. 

 

Figure 6. Confusion matrix. 

The confusion matrix shows that the model perfectly classified Helix and Sheet structures, indicating 

strong learning of structured regions. Minor misclassifications occurred in Coil regions, which are typically 

harder to predict due to their unstructured nature. Overall, the model achieved a high Q3 accuracy of 96%, 

demonstrating excellent performance in secondary structure prediction. 

To evaluate the secondary structure prediction capability of the proposed UNet-based model, the predicted 

content was compared with secondary structure elements derived from AlphaFold and RoseTTAFold 

predictions using DSSP and STRIDE assignments. As shown in Table 2, both DSSP and STRIDE reported 

approximately 54% alpha-helical content, with beta-sheet content at 13% and 11%, respectively. In 

comparison, the UNet model predicted 57% alpha helices and 14% beta sheets, closely aligning with the 

distributions obtained from structure-based tools. Additionally, the UNet model explicitly predicted 29% coil 
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regions, which were not directly quantified in the DSSP or STRIDE outputs shown. These results suggest that 

the proposed method effectively captures structural trends consistent with state-of-the-art predictors, with the 

added benefit of providing complete secondary structure classification from primary sequence alone. 

Thus, beyond structural accuracy, the predicted secondary structure provides functional insights into 

QscR, a quorum-sensing transcriptional regulator in Pseudomonas aeruginosa. QscR belongs to the LuxR 

family of proteins, which typically exhibit a modular structure comprising an N-terminal ligand-binding 

domain and a C-terminal DNA-binding domain, often rich in α-helices. The high α-helical content (57%) 

predicted by the proposed UNet model aligns with the known helical architecture of these functional domains, 

particularly the helix-turn-helix motif critical for DNA recognition and binding. Additionally, the presence of 

well-defined β-sheets and coil regions suggests potential structural flexibility necessary for ligand interaction 

and allosteric regulation. By accurately mapping these structural elements, this findings contribute to a more 

detailed understanding of how QscR mediates quorum-sensing responses, potentially guiding future studies on 

inhibitor design or synthetic regulation of bacterial communication pathways. 

7. Conclusion 

In this study, a UNet based framework was developed and applied to predict the secondary structure of 

proteins, with a particular focus on the quorum-sensing repressor QscR from Pseudomonas aeruginosa. The 

model leveraged both sequence and evolutionary information through one-hot encoding and PSSMs to 

accurately classify residues into helix, sheet, and coil regions. The architecture’s encoder-decoder structure 

with skip connections enabled it to capture both local and global dependencies effectively, resulting in strong 

predictive performance.The proposed UNet model achieved high precision, recall, and F1-scores across all 

secondary structure classes, and a Q3 accuracy of 96%, indicating robust generalization and reliability. 

Comparative evaluation with structure-based methods such as DSSP and STRIDE, as well as benchmark 

predictors like AlphaFold and RoseTTAFold, revealed that the predicted SS distribution closely matched 

experimentally derived and computationally inferred data. This validation confirms the model’s effectiveness 

in real-world applications.The identification of prominent α-helices aligns with known DNA-binding domains, 

while β-sheet and coil predictions suggest additional flexibility and regulatory capability. These insights not 

only enhance molecular-level understanding of QscR but also highlight the potential of sequence-based deep 

learning approaches in functional annotation and drug discovery. 

Future work will explore extending this approach to multi-sequence or multi-task learning models, 

integrating additional structural and functional annotations, and validating on broader protein families to 

further enhance predictive accuracy and biological relevance. 

Funding statement 

The authors received no specific funding for this study. 

Conflicts of interest 

The authors declare that they have no conflicts of interest to report regarding the present study. 

Author contributions statement 

Conceptualization, Saravanan.K, Sivakumar.S; Methodology, Sangeetha.B, Marimuthu T; Investigation, 

Sivakumar.S ; Resources, Palanisamy P.N, Sangeetha P; Writing— Saravanan.K; 

Data availability statement 

The datasets used and/or analysed during the current study available from the corresponding author on 

reasonable request.  



10 

References 

1. Hondoh, T., Kato, A., Yokoyama, S. and Kuroda, Y. Computer‐aided NMR assay for detecting natively folded 

structural domains. Protein science, 2006; 15(4), pp.871-883. 

2. Shi, Q., Chen, W., Huang, S., Jin, F., Dong, Y., Wang, Y. and Xue, Z. DNN-Dom: predicting protein domain 

boundary from sequence alone by deep neural network. Bioinformatics, 2019;35(24), pp.5128-5136. 

3. Zheng, W., Zhou, X., Wuyun, Q., Pearce, R., Li, Y. and Zhang, Y. FUpred: detecting protein domains through 

deep-learning-based contact map prediction. Bioinformatics, 2020;36(12), pp.3749-3757. 

4. Guo, Z., Hou, J. and Cheng, J. DNSS2: Improved ab initio protein secondary structure prediction using advanced 

deep learning architectures. Proteins: Structure, Function, and Bioinformatics, 2021;89(2), pp.207-217. 

5. Wu, T., Guo, Z., Hou, J. and Cheng, J. DeepDist: real-value inter-residue distance prediction with deep residual 

convolutional network. BMC bioinformatics, 2021; 22, pp.1-17. 

6. Zhou, Y., Tan, K., Shen, X., He, Z. and Zheng, H, March. A Protein Structure Prediction Approach Leveraging 

Transformer and CNN Integration. In 2024 7th International Conference on Advanced Algorithms and Control 

Engineering (ICAACE), 2024;(pp. 749-753). IEEE. 

7. Cheng, J., Liu, Y. and Ma, Y. Protein secondary structure prediction based on integration of CNN and LSTM 

model. Journal of Visual Communication and Image Representation, 2020;71, p.102844. 

8. Geethu, S. and Vimina, E.R. Protein secondary structure prediction using cascaded feature learning 

model. Applied Soft Computing, 2023; 140, p.110242. 

9. Senior, A.W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Žídek, A., Nelson, A.W., 

Bridgland, A. and Penedones, H. Improved protein structure prediction using potentials from deep 

learning. Nature, 2020; 577(7792), pp.706-710. 

10. Roy, R.S., Quadir, F., Soltanikazemi, E. and Cheng, J. A deep dilated convolutional residual network for 

predicting interchain contacts of protein homodimers. Bioinformatics, 2022; 38(7), pp.1904-1910. 

11. Jin, X., Guo, L., Jiang, Q., Wu, N. and Yao, S., 2022. Prediction of protein secondary structure based on an 

improved channel attention and multiscale convolution module. Frontiers in Bioengineering and 

Biotechnology, 10, p.901018. 

12. Dong, B., Liu, Z., Xu, D., Hou, C., Dong, G., Zhang, T. and Wang, G., 2024. SERT-StructNet: Protein secondary 

structure prediction method based on multi-factor hybrid deep model. Computational and Structural Biotechnology 

Journal, 23, pp.1364-1375. 

13. Dai, W., 2025. A Survey of Deep Learning Methods in Protein Bioinformatics and its Impact on Protein 

Design. arXiv preprint arXiv:2501.01477. 

14. Ismi, D.P. and Pulungan, R. Deep learning for protein secondary structure prediction: Pre and post-

AlphaFold. Computational and structural biotechnology journal, 2022;20, pp.6271-6286. 

15. Stapor, K., Kotowski, K., Smolarczyk, T. and Roterman, I. Lightweight ProteinUnet2 network for protein 

secondary structure prediction: a step towards proper evaluation. BMC bioinformatics, 2022; 23(1), p.100. 

16. Mahmud, S., Guo, Z., Quadir, F., Liu, J. and Cheng, J. Multi-head attention-based u-nets for predicting protein 

domain boundaries using 1d sequence features and 2d distance maps. BMC bioinformatics, 2022; 23(1), p.283. 

17. Kabsch, W. and Sander, C., 1983. Dictionary of protein secondary structure: pattern recognition of hydrogen‐

bonded and geometrical features. Biopolymers: Original Research on Biomolecules, 22(12), pp.2577-2637. 

18. Heinig M, Frishman D. STRIDE: a web server for secondary structure assignment from known atomic coordinates 

of proteins. Nucleic acids research. 2004 Jul 1;32(suppl_2):W500-2. 


