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ABSTRACT
Zinc oxide is considered an effective photocatalyst for degradation of several organic contaminants found in waste-

water. This work reports the biological synthesis of zinc oxide nanoparticles and its calcium nanocomposites to study 
the photocatalytic deterioration of two dyes, viz. Rhodamine B and Methylene blue, under natural sunlight. Nanoparti-
cles were synthesized using zinc acetate and starch extracted from potato at pH 7–8. Potato starch acts as both a capping 
agent and a reducing agent. They were characterized spectroscopically via XRD, SEM, HR-TEM, EDAX and FT-IR 
techniques. Bean/spherical shaped ZnO NPs were obtained in the size range of 29–49 nm whereas calcium coating on 
ZnO decreased the particle size, i.e., 25–35 nm. Their photocatalytic ability to degrade Rhodamine B and Methylene 
blue was studied under natural sunlight and monitored using UV-Vis spectrophotometer. Synthesized ZnO nanoparticles 
and its calcium coated ZnO nanocomposites showed promising results in degradation of these dyes. Methylene blue was 
completely degraded in an hour at 8 mg of the sample. Although degradation of Rhodamine dye was slow, synthesized 
samples were effective catalysts as compared to the ones reported in the literature.
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1. Introduction
World appears as an aesthetic place due to the colours in the 

surrounding. These are either natural or man-made. The key com-
ponent that renders colours around us is dyes. Dyes are primarily 
responsible for the colour of fabrics and drugs. Dyeing process 
requires a massive amount of water for processing and activation 
of colour. There are several industries like tanneries, food process-
ing, cosmetics, textile, and pharmaceuticals that discharge toxic 
contaminants[1,2]. Textile industries are mainly responsible for 
water pollution as they discharge unwanted effluents and release 
that in nearby water bodies. Moreover, in some cases, wastewater 
is directly used for irrigation purposes that is dangerous to edi-
ble crops as well as to soil. Rapid industrialization has led to the 
tremendous production of dye loaded wastewater in the past few 
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years. The major problems associated with the dye 
pollution are high demand for fashion, complex na-
ture of dyes, poorly managed industries and more-
over their non-biodegradable nature make them to 
last long in the environment producing several haz-
ards[3]. Rhodamine B and Methylene blue dyes are 
frequently used in textile, paint & pigment indus-
tries and medical area[4]. If we look around, we see 
that water bodies have turned blue, green, red and 
even black when dye concentration is many more 
times. Due to which these water bodies have been 
declared dead. Their presence in water has severely 
affected aquatic life and causes several health is-
sues such as eye and skin problems, palpitation of 
heart and even has been identified as cancer-causing 
agents[5,6]. Hence, dye removal from wastewater is 
needed before discharging into the environment. 
Several approaches have been reported for the treat-
ment of dye loaded water such as adsorption, coag-
ulation, filtration, and AOPs. Nanomaterials have 
been widely used as filters, adsorbents, membranes 
etc. in the wastewater treatment[7,8]. Their response 
towards environment depends upon various param-
eters like temperature, range of sunlight, pH[9,10]. 
Photocatalysis is a viable and sustainable process 
to remove dyes from waste water[11–13]. Photoca-
talysis is the reaction induced by the UV-Visible 
light when falls over the surface of semiconducting 
materials. Heterogeneous photocatalysts based on 
semiconductors, such as TiO2, ZnO and ZnS, have 
received much attention for the use of solar energy 
in solving environmental problems[14]. Morphology 
of the photocatalyst has a remarkable role in such 
reactions. Among all, zinc oxide is very common 
semiconductor with a wide band gap (3.27 eV) at 
room temperature and high exciton binding energy. 
Owing to exceptional properties such as environ-
ment safe, economical, non-toxic, and stability, zinc 
oxide nanoparticles have been used in several fields 
especially cosmetics and catalysis[15,16]. The pho-
tocatalytic efficiency is also improved by coating 
the ZnO catalyst surface with Au, Ag, Cu, etc.[17–19]. 
Zinc oxide nanoparticles have been synthesized by 
various top down and bottom-up approaches[20–23]. 
Biological approaches using plants sources for na-
noparticle synthesis seem to be the valuable alter-
natives to chemical methods[24]. Potato is a tuberous 
crop and rich in starch content. Starch is a natural 
polymer, abundant in nature, economical, renewable 

and moreover easily available. Starch, on hydrolysis 
produces amylose (linear polymer) and amylopectin 
(cross-linked polymer), these two polymers due to 
their interaction form a molecular capsule which 
can act as a template for the growth of NPs[25,26]. 
Calcium oxide is considered to be sustainable pho-
tocatalyst so combination of two might result in an 
effective photocatalyst[27]. CaO NPs have higher 
surface area that led to higher adsorption of dyes 
on their surface. In the present article, we present 
a simple and one-pot green method for the syn-
thesis of ZnO nanoparticles (NPs) and Ca-ZnO 
nanocomposites using potato starch. Photocat-
alytic activity of the samples was studied by deg-
radation of two organic dyes, Methylene blue and 
Rhodamine B[28–30].

2. Materials and methodology

2.1 Chemicals
Zinc acetate dihydrate (Zn(CH3COO)2∙2H2O), 

Calcium chloride (CaCl2) and sodium hydroxide 
(NaOH) were of analytical grade (99% purity) and 
purchased from Merck, India. Methylene blue and 
Rhodamine B were purchased from Sigma-Aldrich. 
Deionized (DI) water was used to prepare solution 
and extract.

2.2 Preparation of potato starch
Potatoes were bought from the local market. 

They were washed several times with DI water to 
remove dirt. About 10 g was cut into small pieces 
and then boiled in 100 mL of DI water for 15 min. 
After cooling, the solution was centrifuged to re-
move the insoluble fraction. The cloudy solution 
was then stored in glass bottles and refrigerated for 
later use.

2.3 Preparation of zinc oxide nanopar-
ticles (POP)

40 mL of potato starch extract was taken in a 
100 C.C beaker containing a magnetic bead. The 
solution was heated to a temperature of 60–70 ℃, 
followed by addition of zinc salt. The pH of the 
solution was maintained in the range of 7.5–8.0 
(with NaOH)[31,32]. It was stirred at this tempera-
ture for 30–40 min until a pale-yellow precipitate 
was formed. The resulting solution was centrifuged 
and then washed with DI water, followed by drying 
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in an oven at 80 ℃. The dried powder was then 
cal-cined at 500 ℃ in a muffle furnace for 15 min. 
The synthesized sample was named as POP and 
stored for further analysis.

2.4 Preparation of Ca-ZnO nanocom-
posites (POP11 and POP21)

Ca-ZnO nanocomposites were prepared by 
coprecipitation method. To synthesize Ca-ZnO 
nanocomposites, desired amount of Zn salt was dis-
solved in potato starch (extract) taken in a beaker 
at temperature 60 ℃. The pH of the solution was 
maintained in the range of 7–8 by adding sodium 

hydroxide solution. Solution was stirred for half an 
hour to reduce the zinc salt to the metallic Zn at the 
maintained temperature. Calcium salt in two dif-
ferent weight ratios (Zn:Ca = 1:1 and 2:1) was then 
added in small lots with continuous stirring. Result-
ing solution was stirred for nearly an hour and NPs 
were collected by centrifugation. They were washed 
with DI water to do away with the impurities and 
dried in oven. It was calcinated at 500 ℃ in a muf-
fle furnace for 15 min (Figure 1). The Ca-ZnO 
nanocomposites prepared in 1:1 and 2:1 ratio was 
named as POP11 and POP21, respectively.

Figure1. Graphical representation of starch mediated coated and uncoated ZnO NPs and their photocatalytic activity towards dye 
degradation.

A hypothetical mechanism for the formation of 
Ca-ZnO nanocomposites is given in. Equation (1). 
The samples were stored for further analysis.

(1)

2.5 Characterization of ZnO NPs and 
Ca-ZnO nanocomposites

The samples were obtained as white/off white 
solids. They were characterized by SEM coupled 
with EDAX, HR-TEM, FT-IR and XRD. Absorb-
ance was determined with a UV-Vis spectropho-
tometer (Motras) in the range of 200–800 nm. 
Crystalline phases of the synthesized ZnO NPs and 
its calcium nanocomposites were characterized by 
an X-ray diffractometer recorded with a Bruker, D8 
Discover X-ray source supplied with Cu 2-theta in 
the range of 10°–90°. The morphology and size of 
the synthesized ZnO NPs and their nanocomposites 

were investigated by scanning electron microscopy 
(SEM), energy dispersive X-ray analysis (EDAX) 
(JEOL JSM-6610LV) and high-resolution electron 
microscopy (HR-TEM) (Thermo Fischer Scientific 
Talos L120C). FT-IR was recorded on a Nicolet 
iS50 FT-IR between 4,000 and 400 cm−1 to deter-
mine the nature of the functional groups of the nan-
oparticles and their nanocomposites.

2.6 Photocatalytic activity
The photocatalytic properties of the synthe-

sized samples were determined by the degradation 
of Rhodamine B (RB) and Methylene blue (MB) 
dyes. First, a dye solution was prepared by dissolv-
ing 10 mg of the respective dye in 1 L of deionized 
(DI) water. Weighed amount (2/4/8 mg) of the 
synthesized ZnO NP/Ca-ZnO nanocomposites was 
added to 100 mL of the corresponding dye solu-
tion taken in 250 C.C. Erlenmeyer flask. Controls 
for both dyes were also prepared without samples. 
The solution was stirred with a magnetic stirrer for 
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15 min to reach equilibrium. It was then exposed 
to sunlight and observed until sunlight reached its 
maximum (usually 6–7 h). The solution was shak-
en occasionally. Aliquots of 2–3 mL were taken at 
certain time intervals and the photocatalytic deg-
radation activity was determined. The absorption 
spectrum of the supernatant was measured with a 
UV-visible spectrophotometer at different wave-
lengths. The concentration of the dye at different 
time intervals was calculated by measuring the 
absorbance value of Methylene blue at 627 nm and 
the absorbance value of Rhodamine B at approx. 
554 nm.

The percentage of dye degradation was deter-
mined by the following formula:

(2)
C0 = initial concentration of dye, C = concen-

tration of dye at a particular time interval.

3. Results and discussion

3.1 XRD
Potato starch mediated ZnO nanoparticles 

(Figure 1(a)) have characteristics peaks at 32.08° 
(100), 36.28° (002), 36.57° (101), 47.89° (102), 
56.77° (110), 63.04° (103), 68.19° (201) that repre-
sents hexagonal wurtzite structure of ZnO. Intensity 
of the ZnO peak at 36.57° (101) was higher than the 
intensities of the other peaks, indicating a consid-
erable growth of NPs. The XRD pattern shows that 
prepared calcium nanocomposites of ZnO also have 
hexagonal wurtzite structure. In calcium coated 
ZnO nanoparticles, growth mainly took place in the 
(101) plane, although intensities of peaks at (002) 
and (100) have somewhat become more intense as 

compared to ZnO NPs (Figure 2(a)). Also, there is 
an additional diffraction peak appeared at 29.46° 
characteristics of Ca. This confirms the incorpora-
tion of calcium ion into ZnO lattice. It is noteworthy 
that calcium coating did not affect the crystallinity 
of ZnO with a wurtzite structure[33].

3.2 FT-IR
The FT-IR spectra of ZnO nanoparticles and its 

calcium nanocomposites (Figure 2(b)) reveals the 
capping/stabilizing agents found in potato starch. 
Spectra shows a broad band at 3,437 cm−1 associat-
ed with O-H stretching of starch present in potato. 
This band diminished in case of POP11 and POP21 
indicating their involvement in the nanocompos-
ite synthesis. The characteristics peak due to C=O 
group appeared at 1,614 cm−1. The spectrum repre-
sents a weak peak near to 459 cm−1 corresponds to 
ZnO[34–36].

3.3 SEM (scanning electron micros-
copy) and HR-TEM (high-resolution 
transmission electron microscope)

Validation of the XRD result was verified 
by the SEM (scanning electron microscope) and 
HR-TEM (high-resolution transmission electron 
microscope). Shape and surface morphology of 
the zinc oxide nanoparticles and their calcium na-
nocomposites, POP11 and POP21 are displayed in 
Figure 3(a–c) and Figure 4(a–f). ZnO nanoparti-
cles (POP) showed aggregated morphology made 
up of many more likely to be beans shaped uniform 
particles. The coating of calcium ions into the 
crystalline structure could change the morphology 
which is clear in the SEM and TEM images. Incor-
poration of calcium into ZnO did not change the 

(a)                                                                                               (b)

Figure 2. (a) XRD pattern of ZnO NPs (POP) and Ca- ZnO (POP11 & POP21) and (b) FT-IR spectrum of POP, POP11 and POP21.
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morphology of the Ca-ZnO nanocomposites at low 
magnification. But at a higher magnification, there 
was more aggregation observed than uncoated ZnO 
NPs consistent with the results reported in the liter-
ature and they were likely spherical in shape[37]. It 
is significant to note that the lack of uniformity can 
be further explained by the accumulation of ZnO 
nanoparticles and the formation of irregular crystals 
during the synthesis process. The particle size in 
ZnO nanoparticles ranges from 29–49 nm whereas 
in case of Ca-ZnO nanocomposites, the particle size 
ranges between 72–89 nm for POP11 and 25–35 nm 
for POP21.

3.4 EDS and element mapping
Elemental analysis and elemental mapping 

of the samples were performed by EDAX/EDS. 
EDAX images confirms the presence of Zn, O and 
Ca elements as elemental constituents of the synthe-
sized nanoparticles/nanocomposites. EDAX images 
of ZnO nanoparticles indicates the presence of Zn 
and O atoms in a stoichiometric ratio (Figure 5(a)). 
EDS images of Ca-ZnO nanocomposites shows that 
Ca is present in the nanostructure in addition to Zn 
and O (Figure 5(b) and (c)). Moreover, no impurity 

peaks were found in POP (according to the results), 
indicating the high purity of the synthesized sample. 
Although traces of chlorine can be seen in POP11 
and POP21 which might not be removed during 
washing (due to the use of calcium chloride salt in 
nanocomposites preparation). Furthermore, weight 
percentages of Zn and O were 60.11 and 39.89 in 
POP. Weight percentages of Zn, O and Ca elements 
in POP11 were found to be 58.04, 32.29 and 9.67 
and in POP21, they were 71.45, 24.56 and 3.27 
along with trace of chlorine[38].

Figure 5. EDS image and element mapping of (a) POP (b) 
POP11 and (c) POP21.

Figure 3. SEM images of (a) POP (b) POP11 and (c) POP21.

Figure 4. HR-TEM images of (a & b) potato starch mediated 
ZnO NPs (POP) (c & d) POP11 and (e & f) POP21.
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3.5 Photocatalytic activity of Methyl-
ene blue and Rhodamine B

Photocatalytic reactions involve electron-hole 
pair formation by semiconductor NPs. When irradi-
ated with sunlight, the absorbed photons can cause 
electrons to be excited from the valence band (VB) 
to the conduction band (CB) to produce an electron 
and a hole. These species then generate oxidizing 
agents such as H2O2, O

−
2 , OH− after interaction with 

oxygen and water on the surface of the ZnO. These 
are strong oxidizing agents and can decompose or-
ganic dyes into carbon dioxide and water (Equations 
(3–8))[39,40].

(3)

(4)

(5)

(6)

(7)

(8)
Figure 6 shows the effect of ZnO NPs and 

its calcium nanocomposites (1:1 and 2:1) on pho-
todegradation of MB (Methylene blue) and Rh B 
(Rhodamine B) dyes under natural sunlight. Ac-

cording to Lambert Beer’s law, the concentration 
of dye is directly proportional to its absorbance. 
Degradation of Methylene blue dye by potato-me-
diated ZnO NPs and its calcium composites was 
investigated, and the results are shown in Figure 
6(a–c). Degradation of Methylene blue was studied 
as the disappearance of the peak nearly at 627 nm. 
In all the cases, blue colour of the Methylene blue 
was faded by 17%–20% in just 1 h[41]. It almost 
became colourless after 5 h which is clear from 
Figure 6(a–c). Similar trend was observed in the 
case of Rhodamine B. Coating of calcium on the 
surface of ZnO nanoparticles increased the deg-
radation of Methylene blue and Rhodamine B as 
evident in POP21. Higher concentration of calcium 
(in case of POP11) did not have much impact on 
degradation of Methylene blue. The degradability 
of a Rhodamine B dye was monitored by change in 
its absorption peak at 554 nm. As evident from the 
figure, the degradation efficiency of the Rhodamine 
B dye by synthesized ZnO NPs and its calcium 
composite increased with time[42–44]. Although, it has 
been reported that Rhodamine B dye degrades very 
slowly, our synthesized samples could effectively 
degrade it (Figure 6(d–f)). Degradation efficiency 
of Rhodamine B was nearly in the range of 29%–
31% for POP and POP11 nanocomposite but higher 
in case of POP(21), i.e., 36% after 7 h[45]. MB and 
Rh B are cationic dyes and their adsorption by the 
synthesized sample is indicating negatively charged 
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surface of the synthesized samples[46]. Comparison 
between degradation efficiency of two dyes has 
been shown in Figure 7.

3.6 Effect of concentration of POP/
POP11/POP21

The impact of concentration of POP/POP11/
POP21 on dye degradation was also studied by 
UV-Vis spectrophotometer. The degradation of 
dyes became faster on increasing the concentra-
tion of the POP/POP21/POP11 (Figure 8). When 

4 mg of synthesized samples was added in 100 
mL of Rhodamine B dye solution (constant vol-
ume) under natural sunlight, the dye degradation 
was enhanced to nearly 90% in 180 min whereas 
it was approximately 70% in case of 8 mg sample 
suspended in the same volume of dye solution in 
80 min. Similarly, blue color of the Methylene blue 
dye was completely vanished in just 30 min when 
8 mg of sample was suspended in the dye solution. 
Observed results confirmed that synthesized ZnO 
nanoparticles and its calcium composites are very 

Figure 7. a) % Degradation of Rhodamine B; b) % Degradation of Methylene blue by ZnO nanoparticles (POP) and its nanocompos-
ites (POP11 and POP21).

Figure 8. % degradation of RB at a) 4 mg concentration; b) 8 mg concentration of POP/POP11/POP21 and % degradation of MB at c) 
4 mg concentration; d) 8 mg concentration of POP/POP11/POP21.

a) b)

a) b)

c) d)
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effective photodegradation of Methylene blue and 
Rhodamine B[47,48].

4. Conclusion
Potato starch mediated ZnO nanoparticles and 

its calcium composites (POP11 and POP21) were 
successfully synthesized by simple and one pot 
method. They were investigated by FT-IR, HRTEM, 
XRD, SEM-coupled EDAX, etc. HR-TEM images 
revealed that bean as well as spherical shaped na-
noparticles in the size range of 29–49 nm were ob-
tained in the present method. However, coating of 
calcium (2:1) had decreased the particle size but 
further rise in calcium amount (1:1 ratio) had led to 
increase in the size of the nanoparticles. The XRD 
pattern showed that coated and uncoated ZnO NPs 
have stable hexagonal wurtzite structure. EDS im-
ages showed the presence of Zn, O and Ca elements 
in the synthesized samples. They could degrade the 
Methylene blue completely and Rhodamine B up 
to 38% under natural sunlight when just 2 mg was 
suspended in 100 mL dye solution in 6–7 h. At 8 
mg of the samples, dye solutions were completely 
decolorized. These results indicate their potential 
in the deterioration of toxic organic compounds in 
wastewater.
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