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ABSTRACT 

The classical and the nano-structured spatial light modulators (SLMs) especially based on the polyimide 

photosensitive layers, as the key element of the optoelectronic devices, display, and telecommunications schemes are 

considered. The main emphasis is placed on the device with a polyimide photo-layer due to its high sensitivity and 

acceptable performance. A modulator’s basic characteristics are studied taken into account the comparison with the 

different types of the photo-layers, such as: ZnSe, ZnS, a-Si:H. Liquid crystal (LC) media is considered as the 

modulation system. It is indicated that the different methods and approaches are applied for investigation of the basic 

SLM parameters, such as: Z-scanning technique, third harmonic generation, four-wave mixing set-up, etc. In the current 

paper the laser holographic technique is used to investigate the resolution, sensitivity, and speed of the LC-SLM devices. 

The influence of the fullerene doping on the organic photo-layers based on the polyimide materials is presented. This 

influence of this nano-structuration process on the modulator’s basic parameters is discussed. 

Keywords: nano-structuration; spatial light modulator; photo-layers; polyimide; liquid crystal; resolution; sensitivity; 

speed; fullerene doping 

1. Introduction 

It is well known that among the basic devices used in the 

general optoelectronics, laser techniques, biomedicine instruments, 

etc. The electrically- and optically (light)-addressed spatial light 

modulator (SLM) is one of the key elements. It can be used in the 

system for the modulation and conversion of the laser beam, for the 

writing-reading information, for the specific hologram recording, for 

the activation of the optical limiting effects in order to protect the 

human eyes and technical devices from high irradiation, etc.[1–30]. 

The extended area of the SLM applications can be shown in Figure 

1. The important prospects to use the reversible and irreversible 

information recording based on the features of the matrix media are 

considered[1–3], including the structures of chalcogenide 

photolayers[4,7], of the hydrogenated tellurium carbide and the 

amorphous hydrogenated silicon photolayers[5,10], of the polyimide 

materials[6,12,13]. The liquid crystal (LC) mesophase is often chosen as 

the modulating medium in these modulators due to its easy 

controllability under the external influence and the small parameters 

of the applied supply voltage. Different effect in the LC 

mesophase[14,19] and influence of the orienting layers on the LC 
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features[15] and use of the SLM for the holograms improvements[9,17] were shown. Moreover, the specific 

organic molecular crystal and classical ones were presented[16,18,26] to use them in the modulation technique 

area. Furthermore, novel interesting architecture of the LC structures and features of the schemes are 

considered[20,31–35]. It should be remembered that basically three famous schemes can be used in order to 

operate with the SLM structure and to predict the unique properties. Z-scanning technique, generation of the 

third harmonic of the laser radiation approach (third-order generation scheme), four-wave mixing technique, 

modulation transfer function set-up, etc. are applied. Different methods to estimate the modulator basic 

parameters, such as the sensitivity, speed, contract, resistivity, etc., are considered. The spatial light 

modulator is the device, which allows modulating the amplitude, phase or polarization of the light according to 

the specific tasks. 

 
Figure 1. Visualization of the areas of the use of the spatial light modulators. 

Often, the material included in the SLM, can exhibit both the recording and modulating properties at the 

same time. It should be mentioned, that the SLM is a complicated multilayer sandwich devise. Generally SLM 

consists of two glass or quartz substrates, conducting coatings, photo-layers and modulating one. The mono- or 

poly-crystalline compounds, organic thin films, ceramics, amorphous hydrogenated structures, etc. can be 

applied as the basic photosensitive layers. Among them the following systems can be used: ZnS, ZnSe, CdS, 

CdSe, GaAs, As10Se90, a-Si:H, a-SiC:H, polyimides, polyvinyl carbozole, pyridine, polymetil methacrylate, 

etc. As the basic modulating layers the potassium—dihydrogen—phosphate (KDP) and deuterated potassium 

dihydrophosphate (DKDP) crystals, Bi12GeO20, Bi12SiO20 (BSO), 

4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate (DAST) organic crystal, ferroelectric ceramics, 

liquid crystal (LC), etc., can be used. Naturally, the specific photo- and modulating layers are selected for a 

specific spectral and energy ranges and can be activated by the external optical, electrical, acoustic, magnetic 

or thermal signal. 

In order to operate at the simplified control conditions the SLMs based on the modulating liquid crystal 

layer are used more often. These LC-SLM structures have high sensitivity (~10−6−10−7 J × сm−2), low control 

voltages (units-tens of Volts), and they have not complicated manufacture and the technological process. 

Moreover, LC-SLM has high resolution and good time characteristics. These two parameters are always in the 

compromise with each other: the higher the resolution, the lower the performance, determined by the spreading 

rate of the potential relief created when recording information. Indeed, the potential relief (potential terrain) on 

a photo-layer depended on the charge carrier mobility of the photo-layers, thus it depended on the type of the 

photo-layers. In the simple view (please see Equation 1) the spreading time  depends on the thickness of the 

photo-layer d, the mobility  of the charge carriers, and the applied voltage V[3,5]:  

 = 𝑑2−1𝑉−1 (1) 
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It should be noticed, which is very important, that the LC-SLM operates at the room temperature. For 

example, in order to activate the modulating KDP or DKDP crystals it is necessary to cool the electro-optical 

crystal to a temperature of −55 °C in order to reduce the operating voltage up to 100 V[3]. It should be noticed 

that at the room temperature the operating voltage for these inorganic crystals is close to 1.8 kV. 

It should be mentioned that the principle of the operation of the LC-SLM modulator is as follows. A 

constant or alternating supply voltage is applied to the transparent electrodes. The total resistance Z of the 

photo-layer and LC layers is chosen in such a way that in the absence of the recording (writing) light, most of 

the voltage falls on the photo-layer, and part of the voltage falling on the LC modulating layer is less than the 

threshold value of the electro-optical Frederick’s effect used in order to activate the LC mesophase. When the 

photo-layer is illuminated by the exposing radiation, its conductivity (total resistance Z) can be changed, 

resulting in a redistribution of the supply voltage between the photo-layer and the LC one. This leads to 

activate an electro-optical effect in the LC layer and to obtain the modulation of the reading radiation in the 

accordance with the law of light distribution in the photo-layer. The appropriate choice of photosensitive 

media (ZnSe, ZnS, CdS, As10Se90, -CdTe, -Si: H, -SiC: H, polyimides, etc.) ensures the operation of the 

LC modulators in a wide frequency (wave length) range. 

It should be remarked that two modes can be basically considered for the LC-SLM operation. Schemes, 

which can be used to activate the LC modulator, are titled as “transmittance mode” and the “reflectance mode”. 

Figure 2 shows two modes classically used for the LC-SLM operation. The process to record-read image in 

the “transmittance mode” is visualized in Figure 2a; other one is shown as the “reflectance mode” in Figure 

2b. 

(b)
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Figure 2. Some graphic presentation of the set-ups[3,36] in order to show the LC-SLM operation in the “transmittance” (a) and the 

“reflectance” modes (b). 

In the “reflectance mode”, the reading light passes through the electro-optical crystal twice, which leads 

to a doubling of the phase difference and the intensity of the outgoing light. Hence, the operating voltage is 

decreased! However, a significant disadvantage of this scheme is the presence of the large aberrations from the 

large number of the interfaces in this sandwich system[3]. The wave front of the reading light is bent when it 

passes in both directions. The absence of the plane-parallelism of the opposite surfaces of the plates leads to 

multiple an internal reflections. The presence of a wedge leads to the appearance of the various types of the 

aberrations. Indeed, the wave front correction can be carried out, for example, by the cylindrical corrective 

lenses selecting. In the case of the devices operating in the “transmittance mode”, these distortions are absent, 

since the aberrations occurring on the front surface are compensated on the back side of the structure. 
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The effective operation of the LC-SLM is connected with some geometric (constructions, scheme to 

activate the devices by the external fields) and with the physical-chemical parameters, which regarded not only 

to the specific native parameters of the modulators, but also depended on the modifications, for example, via 

nano-structuring of the interface, photo layer or modulating compound[9,13,28–46]. 

So, it should be clarified why the study of the parameters of the classical or modified SLMs is so 

important? The fact is that new materials, including metamaterials, novel operational schemes of the exposure 

to the photo layers, including terahertz exposure, extended fields of the application, including biomedicine, are 

in increasing demand and show the evidence of the improvement of their characteristics. 

In the current paper the comparative SLM parameters are shown. The advantage of the nano-structuring 

is considered in order to improve the basic parameters of the LC-SLM based namely on the polyimide 

photosensitive layer and nematic LC modulation one because the polyimide layers showed the highest 

resolution, which is very important to test, for example, the blood cells or the DNA structures for the 

biomedicine applications, as for example, which were previously shown in papers by Kamanina[47] and 

Kamanin and Kamanina[48] for the LC cells with the polyimide orienting layers. 

2. Method and materials 

As has been mentioned above the SLMs had a typical structure. It was operated in the “transmittance” 

mode. The photo-layers were the polyimide, sensitized polyimide, ZnS, ZnSe and a-Si:H structure. The LC 

modulation layer was the mixture of 4′-Pentyl-4-biphenyl-carbonitrile materials (Sigma-Aldrich Co.). 

To investigate the SLM characteristics the holographic technique was used; the scheme was analogous to 

that shown in the study of Kamanina and Vasilenko[49]. Nanosecond Nd-pulsed laser with the conversion of the 

first harmonic to the second one was used. The LiF passive laser crystal was used to transfer the general 

irradiation to the pulsed one. To clarify the experimental scheme in details, for the better understanding, this 

one is shown in Figure 3. 

One can see from Figure 3 (the general scheme that was applied) that the laser beams converted to the 

second harmonic passed the M1 mirror with a reflection of almost 99.9%, were then divided by the BS 

dividing plate into two parts; one beam passed from the first face of the plate, the second was reflected from the 

M2 mirror. The ratio of starts incident on the modulator (SLM) was 1:1. Behind the lens L the responses were 

recorded in the first diffraction order in the Raman-Nath diffraction conditions. This means that the period of 

the recorded lattice (the inverse of the spatial frequency) must be greater than the thickness of the medium 

being tested. Photodiodes PD1, PD2 provided information about the falling and the past laser beams to correct 

the measurements. The He-Ne laser was used as an additional in order to read the information, if the regime 

was changed from the reversible mode to the irreversible one. But it should be mentioned that the diffraction 

efficiency  was usually measured in the self-diffraction mode (reversible mode). 

It is worth emphasizing once again why the holographic technique was used? The method close to the 

four-wave displacement of the laser beams allows to exam the material without the basis structure destroying, 

the step by step, that is, the pulse by pulse. This makes it possible to fix and further to calculate many physical 

parameters of the studied complicated sandwich system. This is an advantage, say, over the use of the 

destructive method of the third harmonic generating approach, for example. It should be mentioned, that via 

the holographic set-up the researchers can estimate the change of the diffraction efficiency at the large range of 

the spatial frequencies that permits to observe the dynamic change of the refractivity at the diffusion and drift 

process for charge carrier moving. 
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Figure 3. Some view of the experimental set-up used in the current experiments to study the SLM characteristics[49]. 

The matching conditions were fulfilled for the laser and the supply voltage pulses. It should be noticed, 

that the delay D between the laser pulse with the energy density of Winput and the voltage pulse with the pulse 

width of sup was varied. For example, Figure 4 presents the following dependence for the LC-SLM based on 

the polyimide PI photo-layer. One can testify that the best results have been obtained for the delay placed in the 

range 1–5 ms. It should be mentioned that the standard deviation was less than 1%–2%. 
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Figure 4. Dependence of the diffraction efficiency on time delay between the laser pulse and supply voltage pulse.  = 100 mm−1, 

Winput = 400 J × cm−2, supply voltage amplitude А = 60 V, sup = 50 ms, T = 1 Hz. 

Under the Raman-Nath diffraction conditions, a thin amplitude-phase holographic grating was recorded 

by the second harmonic ( = 532 nm) of the pulsed Nd-laser (pulse width of 20 ns) on the photo-layer. The 

chosen laser regime was according to which the relation was correct: Λ−1 ≥ d, where Λ−1 is the inverse spatial 

frequency of the recording (i.e., the period of the recorded grating) and d is the film thickness. 

A spatial frequency  was varied from 50 mm−1 to 700 mm−1. An energy density of the irradiation 

incident upon the photo-layer lays in the range from 100 J  cm−2 to 2 mJ  cm−2. The supply voltage pulses 
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were rectangular in the shape. They had amplitude of 10–60 V; a repetition frequency (T) of 0.5–10 Hz; their 

pulse width  was varied from 20 ms to 100 ms. 

It should be mentioned once again that the delay D between the laser and supply voltage pulses was 

controlled, that allowed a time lag of the structure to be taken into account and the write-readout regime to be 

optimized. D was varied from 5 s to 50 ms. The optimal regime made possible the enhancement of the SLM 

speed without essential sacrifice of the SLM resolution. The holographic grating recorded was read out in the 

self-diffraction mode or by the collimated beam of a CW He-Ne laser with a power density of 100 Wcm−2. 

The photo response was registered in the first diffraction order in the focal plane of the lens located behind the 

LC-SLM. The diffraction efficiency  was estimated via the measurement of the intensity in the first and zero 

diffraction. CW He-Ne laser was used in order to check and visualize the grating in the irreversible mode. In 

this case the energy density used to form the grating was exceeded 0.5–0.6 J × cm−2. At this high value of the 

energy density the thermal affect is included into the recording regime as one of the physical mechanism. Some 

image of the grating imprinted in the photo layer (in the irreversible mode) based on the polyimide is shown in 

Figure 5. 

 
Figure 5. Optical microscopy view (upper part of the picture) and ASM-image (the lower part of the picture) of the recorded grating 

obtained in the irreversible mode. 

Since the results obtained aim to show both the effect of photo-layer sensitization on the modulator 

parameters, and the difference between polymer photo-layers, due to their excellent resolution, from other 

photo-layers, the emphasis should be placed on the method of preparing the photo-layer on the sensitized 

polyimide. In this case the polyimide films were prepared from 3–6.5% PI solutions in tetrachloroethane by 

the centrifugal method. The films were modified by adding fullerenes C60 and C70 with the concentrations 

changed from 0.2 to 0.5 wt.% relative to the photosensitive polymer component. The film thickness was 

varied within 2–4 micrometers. (One should remember that the basic grating was recorded at the spatial 
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frequency of 100 mm−1, thus the period of the grating is approximately of 10 micrometers). It should be 

noticed that both the polymer and the fullerenes are well soluble in tetrachloroethane, which provided for the 

obtaining of the homogeneous films with high stability under laser irradiation. The polymer films have been 

placed onto glass substrates (crown K8) covered with the transparent conducting layers based on the ITO 

(indium-tin-oxides) contacts. It should be noticed why namely the polyimide materials have been chosen to 

dope them with the fullerenes? It is due to the fact that polyimide structure is the system with the initial 

intramolecular donor-acceptor interaction. The acceptor fragment of the polyimide has the electron affinity 

energy close to 1.14–1.4 eV. When the fullerenes, as the intermolecular effective acceptor (with the electron 

affinity energy of 2.65–2.7 eV) have been introduced in the polyimide, the inter molecular charge transfer 

process can be activated. This one can be supported by the photoconductive, mass-spectrometry, spectral 

analysis and via the appearance of the high frequency Kerr effect in it. The efficiency of the polyimide 

doping process and the prediction to use it for the LC-SLM operation was previously shown in the study of 

Kamanina[50]. 

3. Results and discussion 

The basic parameters of the studied LC-SLM with the different photo-layers are shown in Table 1. The 

sensitivity S was estimated by the energy density required to achieve 1% of the diffraction efficiency . 

Time-on and time-off parameters were measured at the waveform response from the 0.1 level to 0.9 level and 

from the maximum of the response to 0.1 its level respectively. 

Table 1. Comparative basic parameters of the LC-SLM with the different photo-layers. 

Photo-layer types max (at )  S, J × 

cm−2 

ton, ms toff, ms 

Pure PI 15 (at 100) 5  10−6 20 500 

Pure PI 10 (at 150) ~5  10−6 10 300 

PI + 0.2 wt.% C70 17 (at 100) 5.5  10−6 10 100 

PI + 0.2 wt.% C70 12 (at 150) 5.3  10−6 8–10 90 

PI + 0.5 wt.% C70 16–17 (at 100) 5.7  10−6 5–8 60 

ZnS 10 (at 50) 2.5  10−6 5 30 

ZnSe 10 (at 50) 2  10−6 5–7 50 

a-Si:H 5–7 (at 50) 2  10−4 1–3 10 

One can see from Table 1 that the highest diffraction efficiency  at the reasonably high spatial 

frequencies  (100 mm−1) was obtained for SLM with the organic polyimide photo-layer. There are two 

probable reasons for the high resolution of the LC SLM based on polyimide. Firstly, it should be remarked that 

the carrier mobility of polyimide is 10−5–10−8 cm2 × V−1s−1[12]. Thus, the charge carriers are spreading very 

slowly when the holographic grating is recorded. The spreading time can be about 20 ms and larger. By 

choosing the delay between the laser and supply voltage pulses, a compromise between high resolution and 

short switching times can be possibly reached. Second, the polyimide photo-layer, which was used in the 

present work, was sensitized with the intermolecular acceptor based on fullerene C70 with the higher electron 

affinity energy than the one for the intramolecular polyimide acceptor (diimide one). It predicts the increase of 

the polarizability of the polyimide media[51,52] and, as a result, it provokes the decrease of the time parameters. 
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It should be clarified a little bit that one can observe some difference between the parameters of the pure PI 

shown in first and second lines of Table 1. It is due to the fact that at large spatial frequencies (short periods of 

recorded grating) the dominating process for the charge transfer is diffusion; in opposite case it is drift[53]. Thus, 

the mechanism of the charge carrier moving can be a little bit different that influences on the main SLM 

parameters via the photo-layers used. 

Moreover, the increase of the fullerene C70 content can slightly increase the sensitivity due to the reason 

that the photoconductivity slightly increases in this range of the fullerene C70 content, see Figure 6. It is worth 

clarifying that the same dependence was obtained if the polyimides and fullerenes were dissolved in the 

chloroform, then solutions were mixed in the selected concentrations and the films were sprayed by the 

centrifugation with the subsequent measurement of the photoconductive parameters. 

 
Figure 6. Dependence of the relative value of the conductivity of the polyimide photo-layer on the fullerene C70 content. 

It should be remarked that the estimation of the conductivity was made via the mathematical procedure 

shown in Equation (2) accepted from the book by Gutman and Lyons[54]. 

𝜇 = 1013
𝑗𝑑3

𝜀𝑉2
 (2) 

Here  is the charge carrier mobility; j is the current density; d is the film thickness; V is the applied bias 

voltage;  is the dielectric constant. 

It should be drawing the attention once again namely for the polyimide photo-layer. This shows that the 

polyimide photo-layers (used for the modulator operation) have the unique advantage and it was not chosen for 

nanoparticles modification by chance. This material allows one to significantly shift the spectral parameters to 

the IR region when the nano-objects introducing; it is thermally stable and stores recorded information for 

quite a long time; it is good candidate to activate the charge transfer complex formation process, that predict 

the improvement of the basic SLM parameters. So many times these photo-layers were treated in the different 

mode and obtained good results. 

As an additional data about the change the polyimide properties in order to make the novel composite 

photo-layer, the SEM-image is established. It predicts the good coinciding condition for the doping process. 

SEM–image data are shown in Figure 7. 
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Figure 7. The image obtained on an electronic scanning microscope of the cross-section of a polyimide film with 0.2 wt.% C70 (light 

area) applied to a glass substrate (dark area). 

It should be clarified that the data shown in the study of Kamanina et al[51,52] are coincided with the 

improvement of the characteristics not for the SLM device, but namely for the polyimide photo-layers doped 

with the nanoparticles. But in the current paper this evidences are included in the SLM operation in order to 

improve the sensitivity, speed and resolution as the mail SLM features. Moreover, it should be remarked that 

up to now so many scientific team search for the ways to find the compromise between the resolution and 

speed of the SLM, test the novel area of the SLM applications, study the influence of the operation scheme 

regime on the parameters of the SLM, etc.[53–58]. Thus, the results of the current paper can extend some area of 

the material science useful for the SLM characteristics investigation and applications, including the 

nano-structuration process. 

The polyimide structures properties change can be considered via the comparison of the some results for 

the doped polyimide presented in the current paper and with the data obtained of other scientific groups for the 

polyimide materials. In paper written by Du et al.[59] the researchers were used UV irradiation to change the 

contact angle at the polyimide surface due to the ultraviolet laser direct texturing. It is coincided with our 

results. Really, the skeleton of the fullerene molecules influence on the surface wetting features. For our doped 

polyimide we have established the following link for the contact angle: 90–91 (pure polyimide), 93–94 (0.2 wt.% 

C70 doped), 95–96 (0.5 wt.% C70 doped). Thus, the sensitization process (our approach) and the UV 

structuring[59] predicted the change of the surface via the visualization of the contact (wetting) angle. In the 

paper written by Cherkashina et al.[60] the polyimide structured with the WO2 component was tested with the 

application of the electron irradiation. The increase of the mechanical properties of the PI-WO2 composite was 

established. It is coincided with the testing of the mechanical parameters for our PI-C70 structure as well, which 

increase the microhardness on 5%. It is worth saying that comparing different methods is most likely not 

entirely true. However, a simple comparison based on the observation of a trend in improving the properties of 

matrix polyimide during the surface doping or the texturing suggests that this process changes the properties of 

the polyimide. 

Regarding the value of the basic parameters of the ZnS, ZnSe and a-Si:H photo-layers it should be taken 

into account the following reasons. The peak of the spectral sensitivity, for example of the ZnSe films lies in 

the range of 450–480 nm. Therefore, writing the grating was not the most favorable at the wavelength of 532 

nm, which is not coincided with the range of the spectral sensitivity of the ZnSe photo-layer. The relatively 

high value of the diffraction efficiency (about 10%) is perhaps explained by the availability of a long-wave tail 

of the optical absorption. The same evidences can be possible for the explanation for the ZnS photo-layer, but 

its operation can be extended from 400 nm to 800 nm with good advantage, which revealed the better 

sensitivity at the wavelength of 532 nm. Concerning the a-Si:H photo-layer it should be told that the potential 

relief was partially erased by the readout beam of the He—Ne laser at the wavelength of 632 nm. Thus, the 
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“transmittance” mode is not good to study the SLM based on this layer, the mirror should be placed between 

photo-layer and LC one in order to avoid the influence of the reading beam on the photo layer. But, the 

dynamic characteristics of the LC SLM with the a-Si:H photo-layer were the better due to high charge carrier 

mobility of this structure. Nevertheless, it is quite obvious to compare the basic characteristics of the 

modulators with the different photo-layers. This allows one to more clearly view the advantages and 

disadvantages of each device with different methods of testing it. 

Furthermore, it should be said that currently, due to the use of the different nanostructures, it is possible 

to create modulators devices in which the functions of both recording and read-outing layers will be 

performed by one material. This is possible, for example, when using such effective nanostructure as the 

graphene, graphene oxides, reduced graphene oxides, Ag NPs, etc.[61–65]. Furthermore, the polymer-dispersed 

spatial light modulators with the nanostructured layers or the interface, with some unique experimental 

conditions, etc. can be considered as well[66,67]. 

4. Conclusion 

To summarize the showed results it should be firstly testify that the unique holographic set-up were used 

to study the basic LC-SLM parameters. The main electro-optical characteristics of the light-addressed 

liquid-crystal spatial light modulators with various photosensitive layers (ZnSe, ZnS, a-Si:H, polyimide) were 

comparatively studied by this technique using the “transmittance” mode. The resolution, sensitivity and speed 

parameters were taken into account. It should be noticed that the LC SLM based on the polyimide photo-layer 

was demonstrated the highest resolution. It was estimated at the spatial frequencies of 100 and 150 mm−1, at 

which the sensitivity was found in the range of 5.7  10−6–5.3  10−6 J  cm−2. Thus the efficiently of the 

doping process for the polyimide materials was supported. Unfortunately, the speed of the device based on the 

polyimide photo-layer is not so good, in comparison with that for the semiconductor’s photo-layers. The effect 

was conditioned by the low charge carrier mobility in the polyimide structure, which can reveal slow spreading 

the potential relief created at the photo-layer-LC interface. Due to higher charge carrier mobility in the ZnSe, 

ZnS, a-Si:H materials it was shown the better their dynamic characteristics. 

It is worth noting that in an addition to the design of the modulator (its scheme of operation for 

“transmittance” or “reflection”, the holographic or the modulation transfer function techniques, etc.), to the 

choice of the photo-layer and the modulating medium, it is quite obvious that the doping of the photo-layer 

with nanoparticles causes the modification of the main parameters of the LC-SLM. 

The results obtained can extend the area of the application of the LC-SLM, not only for the 

optoelectronics use, but for the biomedicine and education process applying. This is very significant for young 

researchers to actually see the recording of the amplitude-phase holograms on the organic photo-layers of the 

light modulators. Based on the teaching practice at the Electrotechnical University of the author of this article, 

it is important for students and postgraduates to see the visual physical effects obtained when working in the 

field of the materials science. 

Indeed, so many experiments can be involved in future for this perspective direction. XRD spectra, 

ellipsometry data, SEM analysis, comparative data established not only by the holographic recording 

technique, but by Z-scanning scheme, third harmonic generation, etc. can be made. But, it will be considered 

in future, these data will be shown in the other paper, not in this one. 
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