
Applied Chemical Engineering (2023) Volume 6 Issue 3 

doi: 10.24294/ace.v6i3.2564 

1 

Original Research Article 

Optimized planning framework of solar photovoltaic based generation 

with EV charging station in a rural distribution network considering 

uncertainties 
Sasmita Tripathy1,*, Sharmistha Nandi1, Sriparna Roy Ghatak1, Parimal Acharjee2, Pampa Sinha1 

1 School of Electrical Engineering, Kalinga Institute of Industrial Technology University, Bhubaneswar 751024, India 
2 School of Electrical Engineering, National Institute of Technology Durgapur, Durgapur 713209, India 

* Corresponding author: Sasmita Tripathy, sasmita2020@gmail.com 

ABSTRACT 

To address the adverse impacts due to rapid growth of electric vehicles (EVs), a robust planning framework is 

developed in this paper for optimal deployment of EV charging stations and solar energy resources in the distribution 

network. Uncertainty modeling of EV is done using probability density function considering stochastic parameters 

extracted from real National Household Travel Survey (NHTS)datasheet. Considering solar irradiance as the uncertainty 

parameter, a practical Photovoltaic (PV) model is developed using beta probability function. To solve the problem of 

optimal allocation of EV charging stations and PV in the distribution network, proposed Teaching Learning Based 

Optimization algorithm is used. The problem is formulated to minimize the power loss reduction index and the voltage 

deviation index while considering system constraints. Here this proposed approach is tested to Indian 28 bus rural 

distribution network and standard IEEE 69 bus system in MATLAB. Also to assess the efficiency of the proposed 

technique, it is compared with three different algorithms, i.e., Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO) and Differential Evolution (DE) in terms of convergence characteristics and computational time. The system 

indices, i.e., voltage profile, line loss, voltage stability and the penetration level of EV charging station are improved 

after simultaneously optimally deploying EV charging station and PV units both in rural and standard 69 bus 

distribution networks. Different case studies were conducted and it was observed that deployment of EV charging 

station in the network leads to deterioration of voltage profile, voltage stability and line loss. The simulation outcome 

further reveals that the addition of PV panels concurrently with EV charging stations enhances the system performances 

and the penetration level of EV charging station in the network. 

Keywords: electric vehicle; photo voltaic; National Household Travel Survey; voltage stability index; Teaching 

Learning Based Optimization Algorithm 

1. Introduction 

Conventional Internal Combustion Engine vehicle emits the 

greenhouse gas mainly CO2 which causes global warming effect[1]. 

Hence the transportation sector is slowly getting transformed from 

conventional to EV. EVs are eco-friendly in nature which are 

developed to reduce the dependency on fossil fuel and to limit the 

greenhouse gas emission. Due to growing popularity of EV, there is 

an increase in load demand in the distribution sector of the power 

system. This causes various technical issues such as poor voltage 

profile, voltage stability and higher value of power loss[2]. EVs draw 

power from grid for charging the vehicles and the grid demand is 

fulfilled mostly by thermal power stations which are in turn the main 

cause of environmental pollution. Hence to meet the surplus demand 
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due to EV charging, to reduce greenhouse gas emission and to reduce the dependence on fossil fuels, the 

renewable sources should be jointly allocated with EV charging station in the radial distribution system[3]. 

However, most of the renewable energy sources are uncertain and intermittent in nature which may lead to 

issues such as over voltage, increased line loss, etc. Therefore, for safe and reliable operation of power 

system it becomes essential to integrate EV charging station and renewable energy source in the distribution 

system with proper planning and analysis. Considering this fact in the present research work PV renewable 

source and electric vehicle charging station is jointly allocated in the distribution network. 

This paper[4] presents different optimal power flow formulations designed to find the maximum number 

of plug-in electric vehicles that can be simultaneously charging for a given power system operating condition. 

The impacts i.e., voltage profile of the system and penetration level of EV charging station is analyzed 

without considering important system parameters such as total line loss and voltage stability. In some 

previous research works[5,6], the planning of network is done with EV considering minimization of system 

loss, maximization of voltage profile, nevertheless renewable energy sources such as PV were not considered 

in the planning model. In this paper[7], different types of realistic charging models of EVs are developed and 

they are optimally integrated in distribution network using Grey Wolf Optimization (GWO) algorithm. The 

impacts of optimal integration EVs are analyzed without considering any renewable PV sources in the 

network. In some of the recent works[8,9], the simultaneous deployment of EVs and PV is done, but 

uncertainties of EV and PV are not considered which makes the analysis less practical. Uncertainties of EV 

like trip distance, trip end time, battery capacity, etc are essential for real and practical modelling. Similarly 

uncertainty parameter of PV such as solar irradiance, temperature, etc. needs to be taken into account for 

developing real and practical framework. 

The consequences of different types of static EV models are studied and analysed in terms of active and 

reactive power loss and voltage deviation[10,11]. But dynamic modelling which considers hourly variation of 

EV should be taken into account for developing realistic planning model. EVs were integrated in the 

distribution system considering a deterministic approach[12]. However, as battery capacity, arrival time, trip 

distance, etc. are various uncertain parameters a probabilistic approach should be considered to develop a 

practical EV load model[13].In this paper[14], the electric vehicle charging station and Distributed Generators 

are simultaneously located using Harries Hawk Optimization method by minimizing power loss, voltage 

deviation and maximizing the voltage stability index. Here the authors consider the deterministic model of 

EV charging station and Distributed Generators instead of their probabilistic modeling which is more 

practical in nature. For simultaneous deployment of EV charging station and renewable source in the 

distribution network, the capacity and location of both should be fixed properly and carefully so that all the 

parameters such as voltage profile, voltage stability should be within the limits. If the size or location of EV 

charging stations and renewable sources are not suitable in the planning framework, then it will hamper 

various technical parameters such as line loss, voltage profile and voltage stability[15]. In this paper[16], it 

evaluates the potential benefits of the connection of photovoltaic generation with electric vehicles charging 

stations in commercial building considering voltage quality issues. It doesn’t utilize any optimization 

algorithms for integration. 

Soft computing methods are very helpful now-a-days to solve nonlinear problem by satisfying equality 

and inequality constraints. Soft computing technique solves the problem with less computational time 

whereas traditional mathematical method takes more time[17,18]. 

To optimally integrate EV charging stations and renewable source, different researchers utilized various 

optimization algorithms like GA algorithm[19], PSO algorithm[20], DE algorithm[21]. The proposed model of 

the ideal site for an EV charging station is solved using the GA technique[22,23]. For the placement of EV 

Charging station, Particle Swarm Optimization (PSO) algorithm is adopted and the optimization problem is 
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formulated by taking power loss as objective function[24,25]. The authors suggest another nature inspired 

algorithm i.e., Differential Evolution (DE) algorithm[26] for finding the optimal location of charging station 

and renewable energy sources by considering power loss and voltage profile as objective function. 

Parameters like crossover probability and mutation probability for GA algorithm, acceleration factors and 

weight updates for PSO algorithm, crossover and mutation parameters for DE algorithm need to be defined 

initially. So, these mentioned soft computing methods have some disadvantages like lots of parameter which 

needs to be tuned, poor convergence rate, excessive computational time, etc.[27] Hence these methods are 

more complex for solving the optimization problem. This study[28] proposes an effective deterministic 

methodology to maximize the accommodation of EVs and percentage power loss reduction in radial 

distribution networks. Instead of multiobjective function, here single objective function i.e., only 

minimization of total loss is considered. 

In this paper, due to the above drawbacks of soft computing methods, the Teaching-Learning Based 

Optimization (TLBO) method is used for obtaining the optimal location and capacity of EV charging stations 

and PV. TLBO algorithm is a nature inspired algorithm considering the teaching learning process between 

the students and teachers in a classroom[29]. This algorithm requires fewer parameters to be tuned as 

compared to other algorithms. This proposed technique only requires the population size and maximum 

number of iterations for execution. For simplicity of this algorithm, it is easy to implement for optimization 

problem and the obtained solutions are accurate and better. 

To make the planning framework accurate, in the present research work all the realistic uncertain 

parameters of EV such as trip miles, trip end time, state of charge, battery capacity and charging level are 

considered to develop probabilistic EV model. These data are extracted from real NHTS datasheet consisting 

of travel survey data of Americans[30]. Similarly, the stochastic parameter of PV like solar irradiance is 

considered for developing the probabilistic hourly output power curve of PV.  

In this paper, the optimization problem is formulated using the objective function of minimization of 

power loss reduction index and voltage fluctuation index by satisfying various system constraints such as 

demand-supply constraints, voltage constraints, capacity of EV charging station and PV constraints. The 

power flow is done by backward forward sweep algorithm in MATLAB software (version 2018a) and here 

28 bus Indian rural network and IEEE 69 bus are chosen as the test network. For thorough analysis of the 

distribution network, the technical performances such as voltage profile, line loss, voltage stability values are 

evaluated and studied for the network considering the integration of EV charging station with PV. This 

parameter is computed on 24 h average for analyzing and comparing the results more accurately. Further the 

penetration level of EV charging station for safe and secure system is also evaluated. To proof the efficacy of 

the proposed TLBO algorithm, the results are compared with three different optimization algorithms such as 

GA[19], PSO[20] and DE[21] in terms of convergence characteristics value and statistics values. The present 

research work will enable the planning engineers of the distribution companies to accurately design the 

system considering the electric vehicle charging station. The major contributions of the present work paper 

are as follows: 

• Stochastic modelling of EV charging station is done utilizing the real NHTS datasheet considering 

various uncertainty parameters such as trip mileage, trip end time, state of charge, battery capacity using 

probability density function. Also, uncertainty modelling of PV module is done using beta probability 

density function considering stochastic parameters such as solar irradiance, temperature, etc. 

• A robust optimized planning model is developed considering various objective functions such as 

minimization of Power Loss Reduction Index (PLRI) and Voltage Deviation Index. Further the voltage 

stability of the network is also calculated with deployment of EV charging station and PV in the 
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network. While developing the planning framework the security constraints such as demand-supply 

constraints, voltage constraints, capacity of PV and EV charging station constraints are considered.  

• The EV charging station and PV module are jointly allocated in the Radial Distribution System at 

optimal location with optimal size utilizing proposed TLBO algorithm. Also, the effectiveness of this 

proposed algorithm is studied and its efficacy is established by comparing it with other known 

optimization algorithms. 

• Different case studies are conducted considering placement of only EV charging station in the 

distribution network, placement of PV panels and EV charging station concurrently as well as a 

thorough comparative performance analysis is done in terms of various technical parameters such as EV 

penetration level, line loss, voltage profile, voltage stability. 

2. Uncertainty modelling of EV charging stations and PV 

In this section the modeling of EV charging station and PV is discussed as follows: 

2.1. EV modelling 

A set of trustworthy and real data is needed to predict EV charging station load profiles. The NHTS 

statistics are taken into consideration as dependable and beneficial in figuring out the behavior of different 

automobile owners[30]. The Federal Highway Administration (FHWA) of the United States conducts the 

National Household Travel Survey (NHTS) 2017 to gather information on Americans’ travel habits[31]. All 50 

states and the District of Columbia are represented by 129,696 households in the NHTS 2017, which also 

includes information on trip origin and destination, trip time, purposes of trip and mode of transportation 

(U.S. DOT 2017)[30]. The datasheet represents everyday journeys over a period of 24 h, and that they have 

been accrued for journeys of all functions and lengths, and to all regions of the country, each city and rural. 

Each household, person, and vehicle with inside the 2017 NHTS datasheet has a completely unique ID 

number. These functions are used to evaluate distinct parameters for predicting power density functions for 

arrival time, and trip mileage of EVs, which are mentioned with inside the following paragraph. In this 

survey data, the four most popular vehicle classes—passenger cars, pickup trucks, sport utility vehicles, and 

vans are taken into account. 

Before modelling the daily charging EV load at-home charging station, several random factors that may 

affect EV charging load must be taken into account. In this present work, uncertain factors such as trip 

mileage, charging start time, charging level and battery capacity of a single EV are considered. By extracting 

these stochastic factors from NHTS datasheet, initial State of Charge (SoC), energy consumption, charging 

duration and power demand of a single vehicle can be determined. After quantifying all these parameters, 24 

h EV load curve can be developed. 

2.1.1. Daily travel distance 

Due to a paucity of trip statistics, it is assumed that EVs have driving characteristics equal to those of 

traditional vehicles, which have the same daily trip characteristics. In general, it is found that the 

dissemination of day by day driving distance is of log-normal type, with zero likelihood of event of all 

negative distances, and a “tail” expanding to limitlessness for positive distance. For the prediction of the SoC 

and the behavior of every day mileage of each vehicle, the Probability Density Functions (PDFs) are 

quantified as follows[31]: 

𝑓𝑑 =
1

𝑥𝑑𝜎𝑑√2𝜋
𝑒𝑥𝑝 [−

(𝑙𝑛 𝑑 − 𝜇𝑑)
2

2𝜎𝑑
2 ] (1) 

where Xd = daily trip distance of EV. µd = mean value of EV, σd = standard deviation of EV. 
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Figure 1 demonstrates that the majority of daily driving lengths lie between 10 and 70 miles. The 

likelihood of daily trip distances exceeding 100 miles is rather low. Additionally, it is shown that the daily 

trip distances follow logarithmic normal distribution. 

 
Figure 1. Probability density function of EV daily distance travelled. 

Figure 2 shows the percentage of EVs arrival time at different hours of the day. The maximum EVs 

arrive at home for charging in between 6 pm to 8 pm. 

 
Figure 2. Percentage of vehicles verses arriving time. 

2.1.2. State of charge 

The amount of charge left in the car after all journeys are completed is known as the state of charge 

(SoC). The SoC of a car can be calculated using the distance travelled and the EV’s all-electric range. The 

percentage of the overall charge used to represent SoC. Assuming an EV-x is completely charged and travels 

‘x’ miles on electricity[32], the following equation determines the SoC of a vehicle travelling ‘d’ miles:  

𝑆𝑜𝐶 = {(1 −
𝑑

𝑥
) ∗ 100, 𝑑 ≤ 𝑥

0, 𝑑 > 𝑥

 (2) 

where d= distance travelled by each vehicle. 

In this paper, the maximum and minimum values of SoC are taken to be 0.90 (representing 90%) and 

0.20 (representing 20%), respectively. Here the distance is taken i.e., calculated from Equation (2). 

2.1.3. Charge start time 

In the present work, EV proprietors begin charging at the time when they wrap up their trip and get back 

to the charging stations. On the basis of this supposition, it is inferred that the start of EV charging is thought 

to begin at the finish of the previous journey, designated here as tstart. Calculations for the charging start 
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time’s probabilistic nature include the following[31]:  

𝑓𝑐(𝑡𝑠𝑡𝑎𝑟𝑡) =

{
 
 

 
 1

𝜎𝑐√2𝜋
𝑒
(−

(𝑡𝑠𝑡𝑎𝑟𝑡−𝜇𝑐)
2

2𝜎𝑐
2 )

, (𝜇𝑐 − 12) ≤ 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 24

1

𝜎𝑐√2𝜋
𝑒
(−

(𝑡𝑠𝑡𝑎𝑟𝑡+24−𝜇𝑐)
2

2𝜎𝑐
2 )

, 0 ≤ 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ (𝜇𝑐 − 12)

 (3) 

where µc = mean value of charge start time, σc = standard deviation of charge start time. 

Figure 3 depicts that the probability distribution of the EV charging start time and also it shows that the 

pattern of this distribution is of normal type. Moreover, it is observed that the beginning time of charging of 

EVs at 8 pm is the highest one during 24 h period. 

 
Figure 3. PDF of start time of charging. 

2.1.4. Power demand 

In this research work, initial battery SOC and charging begin time are assumed as two independent 

variables. At power level 𝑃𝑗 at time instant ‘t’, the probability of power for EV charging can be expressed as 

𝜑(𝑃𝑗, 𝑡) where φ is the PDF,(1 ≤ 𝑡 ≤ 24)[33]. 

𝜑(𝑃𝑗, 𝑡) = 𝑓𝑐(𝑡𝑠𝑡𝑎𝑟𝑡) ∗ ℎ(𝑆𝑜𝐶𝑗)(𝑗 = 1,2,3, . . . , 𝑛𝑐) (4) 

where, h(SoCj) is the PDF of initial SoC. 

The overall estimated power demand Pn can be quantified using the following formula. 

𝑃𝑛 =∑∑𝑃𝑖𝑗 ∗ 𝜑(𝑃𝑖𝑗, 𝑡)

𝑛𝑐

𝑗=1

𝑛

𝑖=1

 (5) 

where the number of EV and the number of hourly intervals are n and nc respectively. 

2.2. PV modelling 

A PV panel transforms solar energy into electrical form based on the radiation that strikes the panel’s 

surface. Since solar irradiance affects solar cells’ performance, it is crucial to take into account this variable’s 

behaviour while modelling a PV unit. Using the stochastic parameter i.e., solar irradiance (𝑠𝑡 ), the 

uncertainty modelling of PV is stated using beta probability density function[34]. Mathematically it is 

represented as follows: 

𝑓𝑝𝑑
𝑡 (𝑠𝑡) = {

Γ(c+d)

𝛤(𝑐)𝛤(𝑑)
(𝑠𝑡)𝑐−1(1 − 𝑠𝑡)𝑑−1, 𝑖𝑓0 ≤ 𝑠𝑡 ≤ 1𝑐, 𝑑 > 0

0,                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 
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𝑐 =
𝜇 × 𝑑

1 − 𝜇
𝑑 = (1 − 𝜇) × (

𝜇(1 + 𝜇)

𝜎2
− 1) (7) 

The following equation represents the maximum power output 𝑃0(𝑠
𝑡)of a deployed PV array at a 

particular ‘t’ 

IVFLFNsP t = mod0 )(  
(8) 

𝐹𝐿𝐹 =
𝑉𝑀𝑃𝑃 × 𝐼𝑀𝑃𝑃
𝑉𝑂 × 𝐼𝑆

, 𝑉 = 𝑉𝑂 −𝐾𝑉 × 𝑇𝐶  (9) 

𝐼 = 𝑠𝑡[𝐼𝑆 +𝐾𝐼 × (𝑇𝐶 + 25)], 𝑇𝐶 = 𝑇 + 𝑠
𝑡(
𝑇0 − 20

0.8
) (10) 

where Nmod is the number of PV modules, V & I are voltage and current of a PV module respectively, VMPP & 

IMPP the maximum power point voltage and current, V0 represents open circuit voltage, IS represents short 

circuit current, TC is the temperature of a PV cell, KI & KV temperature coefficient of current and voltage 

respectively. 

Each hour is broken into a number of states to increase accuracy. The solar output P(s)h for each hour is 

assessed as follows: 

𝑃(𝑠)ℎ =∑𝑃𝑜(𝑠
𝑡) × 𝑓𝑝𝑑

𝑡 (𝑠𝑡)

𝑁𝑆

𝑖=1

 (11) 

where NS represents number of states in an hour[34]. 

Using Equation (11), the power of solar irradiance states for each hour is estimated. Thus by employing 

this probabilistic solar irradiance model, PV output curve is generated which is integrated to the distribution 

system. To develop the hourly stochastic power curve of PV, historical datasheet consisting of five year data 

of solar irradiance is considered in this work. This historical datasheet is the collection of solar irradiance 

data of the place Durgapur in the state of West Bengal (Latitude 23.5204 °N, Longitude 87.3119 °E)[35]. 

3. Voltage stability 

One crucial system performance metric is the voltage stability. To secure system voltage stability, the 

voltage on each bus should be within the permissible range. Assessing the impacts of distribution system 

merging with EV charging stations and PV modules entails examining and discussing the following 

parameter.  

Voltage stability index 

For stable operation and improving the voltage stability, the voltage stability index (VSI) should be 

maximized i.e., SI(ni)>0[36]. Mathematically voltage stability index is represented as follows[36]: 

𝑆𝐼(𝑛𝑖) = |𝑉𝑚𝑖|
4 − 4[𝑃𝑛𝑖(𝑛𝑖)𝑅𝑛𝑖 +𝑄𝑛𝑖(𝑛𝑖)𝑋𝑛𝑖]|𝑉𝑚𝑖|

2 − 4[𝑃𝑛𝑖(𝑛𝑖)𝑅𝑛𝑖 +𝑄𝑛𝑖(𝑛𝑖)𝑋𝑛𝑖]
2 (12) 

As shown in Figure 4, Pni(ni) represents the total active power fed through bus ni. Whereas the total 

reactive power load through bus ni is represented by Qni(ni). Rni and Xni are the resistance and reactance of the 

branch i. 
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Figure 4. A Representative branch of a radial distribution system. 

4. Objective functions and constraints 

In this section, different objective functions are explained for solving the optimization problem by 

satisfying different types of equal and unequal constraints as follows:  

4.1. Objective functions 

For solving the optimization problem of finding out the position and sizing of both EV charging stations 

and PV units in the distribution network, here two objective functions are considered as follows. These 

objective functions should be minimized. 

4.1.1. Power loss reduction index (PLRI) 

The real power loss is a major performance parameter for planning of distribution network. Here the 

first objective function is power loss reduction index which is defined as the ratio of real power loss of the 

system with EV charging station or PV or both and the system without EV charging station or PV[37].To solve 

the optimization problem, this index should be minimized and it is quantified as follows: 

𝑃𝐿𝑅𝐼 =
𝑃𝐿𝑜𝑠𝑠𝑤𝐸𝑉/𝑃𝑉

𝑃𝐿𝑜𝑠𝑠𝑤𝑜𝐸𝑉/𝑃𝑉

 
(13) 

where 𝑃𝐿𝑜𝑠𝑠𝑤𝐸𝑉/𝑃𝑉= Real Power Loss of the system with devices, PLosswoEV/PV= Real Power Loss of the 

system without devices. 

4.1.2. Voltage deviation index (VDI) 

Another important aspect of the system is the voltage profile deviation from the rated voltage (1 p.u). 

This deviation index should be minimized at each bus of the system and maintained within the range at the 

demand site[38].Accordingly, this fluctuation index may vary with the value of voltage profile. This index 

value should be minimized for solving the problem. Mathematically the second objective function is 

represented as follows: 

𝑉𝐷𝐼 = ∑ |1 − 𝑉𝑛𝑖|

𝑛𝑛

𝑛𝑖=1

 (14) 

4.2. Constraints 

The objective functions should be minimized subject to various equality and inequality constraints 

discussed as follows. 

4.2.1. Demand-supply constraints 

The power balance equation is updated by adding PV and EV in the bus. Mathematically it is 

represented as follows: 

 
mimiV   

mi 

niI

 
ni 

nini jXR +  
nini jQP +  

Sending End Receiving End 

niniV   
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∑𝑃𝐺𝑖 − 𝑃𝐿𝑜𝑠𝑠 = 𝑃𝑑

𝑛𝑛

𝑖=1

 (15) 

∑𝑄𝐺𝑖 −𝑄𝐿𝑜𝑠𝑠 = 𝑄𝑑

𝑛𝑛

𝑖=1

 (16) 

where PGi and QGi are total active and reactive powers injected at ith bus respectively. PLoss and QLoss are the 

active and reactive power losses at the ith bus. Similarly, Pd and Qd are the active and reactive power demands 

at the ith bus respectively. 

4.2.2. Voltage constraints 

The magnitude of each voltage should be within the minimum and maximum limit. 

maxmin VVV i   
(17) 

4.2.3. PV capacity 

The PV output power should be within the maximum and minimum capacity as follows: 

maxmin PVPVPV i   
(18) 

4.2.4. EV charging station capacity 

The active and reactive power of EV charging station should be kept within the range as follows: 

EVEVEV PPP max1min   (19) 

5. Problem formulation 

In this present work, the integration of uncertain EV charging station and uncertain PV unit in the 

distribution network is done optimally by proposed TLBO optimization algorithm. The input parameters to 

this problem are line data and load data of 28-bus and 69-bus test system, probabilistic EV model, 

probabilistic PV model. The output parameters of this problem are optimal size and location of EV charging 

station and PV. 

Multi-objective function is formulated considering following objectives as follows. 

1) Minimization of PLRI 

2) Minimization of VDI 

Mathematically this multi objective function is represented as follows, 

𝑀𝑖𝑛𝐹𝑇 = 𝜏𝑃𝐿𝑅𝐼 + 𝛽𝑉𝐷𝐼
 

(20) 

The values of coefficients are τ=0.5, β=0.5. These two objective functions have equal weights means 

they have same importance for minimization of objective function value. 

6. Methodology 

In this research work, the EV charging stations with PV units are deployed optimally by proposed 

TLBO algorithm. Due to fewer tuning parameters and less time taken for convergence, the proposed TLBO 

method is applied for the present research work. 

6.1. Teaching learning based optimization algorithm 

Here the proposed TLBO algorithm is a nature inspired population based algorithm which has the main 

principle of teaching-learning process of a class[39]. In a classroom, the teacher gives maximum effort on 

education of all the learners of a class. So the learners gain knowledge from the best learner of the classroom 

i.e., the teacher. Then the learners interact with themselves to further modify and improve their gained 
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knowledge. The result of the class depends upon the results of the students. For this algorithm, the students 

of the class and the total subjects taught in the class are considered as the population and the variables of the 

optimization problem respectively. This algorithm is performed in two phases i.e., teacher phase and learner 

phase. 

6.1.1. Teacher phase 

During this phase, the teacher helps students to enhance their knowledge so that the result of the class is 

improved. But depending upon the teaching skills of teachers and potentials of students present in the class, 

learners will gain the knowledge[27]. Suppose the total number of subjects and total number students in the 

class are represented by ‘m’ and ‘n’ respectively and the population is represented by k = 1, 2, 3, ..., n and the 

process of sequential teaching–learning method is represented by ‘i’. The mean results for a particular 

subject of all the students i.e., learners are expressed by Mji whereas j = 1, 2, ..., m. By considering the results 

of all the subjects, the teacher of the class recognizes for the result of best learner and it is expressed as 

jkbestiikbesttotal XX &,−  for all subjects and for a particular subject ‘j’ respectively. This above process of 

teacher phase is expressed mathematically as follows[34]: 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑚𝑒𝑎𝑛𝑗𝑘𝑖 = 𝑟𝑖(𝑋𝑗𝑘𝑏𝑒𝑠𝑡𝑖 − 𝑇𝐹𝑀𝑗𝑖) 
(21) 

where TF is known as the teaching factor and its value is randomly decided and ri is the random number in 

the range [0,1].  

𝑇𝐹 = 𝑟𝑜𝑢𝑛𝑑[1 + 𝑟𝑎𝑛𝑑(0,1){2 − 1}] (22) 

As per the algorithm, the solution is revised as follows:  

𝑋𝑗𝑘𝑖
′ = 𝑋𝑗𝑘𝑖 +𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑚𝑒𝑎𝑛𝑗𝑘𝑖

 
(23) 

where Xjki is the outcome of the class’s students taking into account all the disciplines and the new value of 

learners is
'

jkiX . 

This will be permitted if it gives a better value. All function values accepted at the end of the teacher 

phase are saved and utilised as input during the next phase of proposed algorithm. 

6.1.2. Learner phase 

In this phase, the learners i.e., students of the class gain their knowledge and also enhance their learning 

through mutual interaction among themselves. This learning process can be demonstrated as follows. 

Randomly two different learners, i.e., P and Q are chosen such that  

𝑋𝑡𝑜𝑡𝑎𝑙−𝑃𝑗
′ ≠ 𝑋𝑡𝑜𝑡𝑎𝑙−𝑄𝑗

′  
(24) 

where
'

jPtotalX − and 
'

jQtotalX − are updated values of 
jPtotalX − and 

jQtotalX − respectively at the end of teacher 

phase. 

If
''

jj QtotalPtotal XX −−  , 

𝑋𝑗𝑝𝑖
" = 𝑋𝑗𝑝𝑖

′ + 𝑟𝑖(𝑋𝑗𝑄𝑖
′ − 𝑋𝑗𝑝𝑖

′ ) (25) 

If
''

jj PtotalQtotal XX −−  , 

𝑋𝑗𝑝𝑖
" = 𝑋𝑗𝑝𝑖

′ + 𝑟𝑖(𝑋𝑗𝑃𝑖
′ − 𝑋𝑗𝑄𝑖

′ ) (26) 

The value of 
"

jpiX is approved if it has better value otherwise rejected. The proposed TLBO algorithm 

consisting of teacher phase and learning phase as discussed above is demonstrated in the flowchart i.e., in 

Figure 5. 
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Figure 5. Flowchart of proposed TLBO algorithm 

6.2. Implementation of TLBO for installation of EV charging stations and solar panels in the 

distribution network 

For optimal deployment of EV charging stations and PV unit, the TLBO technique is applied by 

initializing number of population, number of iterations, number of design variables (size & location of EV 

charging station and PV) and limits of design variables. EV charging stations and PV units are randomly 

placed with different capacity within their limits. Then these randomly generated control variables contain a 

vector which describes the results of a particular student and it also describes a solution for the optimal EV 

charging stations with PV units deployment problems. Each set of matrix PEVi & PPVi describes a possible 

solution of location and capacity of EV charging station & PV respectively and is given by, 

𝑃𝐸𝑉𝑖 = [𝑙𝑜𝑐𝑖,1, 𝑙𝑜𝑐𝑖,2, . . . , 𝑙𝑜𝑐𝑖,𝑁𝐷 , 𝐸𝑉𝑖,1, 𝐸𝑉𝑖,2, . . . , 𝐸𝑉𝑖,𝑁𝐷]
 

(27) 

𝑃𝑃𝑉𝑖 = [𝑙𝑜𝑐𝑖,1, 𝑙𝑜𝑐𝑖,2, . . . , 𝑙𝑜𝑐𝑖,𝑁𝐷 , 𝑃𝑉𝑖,1, 𝑃𝑉𝑖,2, . . . , 𝑃𝑉𝑖,𝑁𝐷]
 

(28) 

where EVi & PVi are the initial size of installed EV charging stations and PV units. ND represents number of 

EV/PV installed. Initial solution of PEV&PPV are generated according to the population size (NP), which is 

given by: 

 

Initialize all variables and the population size 

Evaluate the mean grade of the subject (variable) as per 

Equation (21) 

Determine the best solution (teacher)  

As per Equation (23) Revise the  

Revise the values of variables based on best solution 

 

Is current solution is better 

than previous ? 

Restore the best solution with latest solution 

 
Choose the two solutions arbitrary XjPi and XjQi and revise 

the solution as per Equations (25) and (26) 

 

Is current solution is better 

than previous? 

 

Restore the best solution with latest solution 

Is termination criteria satisfied? 

Record the best solution 

Stop 

Reject 

Yes 

No 

No 

Yes 

Reject 

No 

Yes 

 

Teacher 

Phase 

 

Learner 

Phase 

Start 



 

12 

𝑃𝐸𝑉 = [𝑃𝐸𝑉,1, 𝑃𝐸𝑉,2, . . . , 𝑃𝐸𝑉,𝑖 , . . . , 𝑃𝐸𝑉,𝑁𝑃]
 

(29) 

𝑃𝑃𝑉 = [𝑃𝑃𝑉,1, 𝑃𝑃𝑉,2, . . . , 𝑃𝑃𝑉,𝑖 , . . . , 𝑃𝑃𝑉,𝑁𝑃]
 

(30) 

Then the load flow is done by forward-backward sweep method and these solution matrices are updated 

by teacher phase and learner phase as discussed above. After the termination criteria have been checked, the 

best solutions for capacity and location of EV charging stations and PV units are printed. In Figure 6, the 

proposed methodology considered in this paper is explained in the flowchart. 

 
Figure 6. Flowchart of proposed methodology adopted in this paper. 
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7. Results and discussion 

MATLAB software (version R2018a) is used to implement the above process of allocation of EV 

charging stations and PV unit. After uncertainty modelling of EV charging station, the probabilistic load 

curve of EV charging station is generated for 24 h as shown in Figure 7. PV unit is simultaneously and 

optimally allocated in the system. PV output power curve which is developed as discussed in Section 2.2, is 

shown in Figure 8[34]. 

 
Figure 7. Hourly probabilistic EV load curve. 

 
Figure 8. PV Output power curve for 24 h. 

The planning framework in the present work allocates simultaneously three EV charging stations and 

three PV panels in a distribution network using the proposed TLBO technique. The size of population and 

iteration counts are initialized as 50 and 100 respectively. Four variables: EV charging station capacity, 

locations, PV unit size and locations are considered in the present work. The minimum and maximum values 

for EV charging stations are 4 MW and 33 MW as shown in Figure 7, while the lower and upper values for 

PV units are 0.1 MW and 1.8 MW respectively as shown in Figure 8[34] as taken into account. 

Selection of parameters for execution of TLBO: 

Since the results of the proposed optimization method are sensitive to the choice of parameters, so 

sufficient attention should be given while selecting the parameters for the algorithm. Here the parameters for 

the proposed technique are population size and maximum number of iterations. The program is run for 100 

times i.e., maximum number of iterations. For each iteration, the optimal solutions are obtained. It is 

observed that after 30 number of iterations, the optimal solutions are converged. Moreover, if the iterations 

counts are increased more than 100, then there is no significant improvement in optimal solutions rather it 
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consumes more computational time. Similarly here the problem is solved for varying the size of population 

from 10 to 100 and at the size of 50 the best solutions are obtained. After the size of 50, no significant 

changes in best solutions are found out, so the size of population is considered as 50 in this paper by solving 

with the proposed TLBO technique. 

To analyze the system performance by allocating EV charging stations and PV units in distribution 

network, three cases are considered as follows: 

Case I: Base Case  

Case II: System with EV charging stations  

Case III: System with EV charging stations and PV units  

The two test systems i.e., 28 bus rural Indian system and IEEE 69 bus system are used to analyze and 

discuss the effects. 

7.1. Rural 28 bus system 

In this paper, for analysing and comparing the results, first test system is taken as standard 28 bus rural 

Indian test system. It consists of 28 buses and 27 branches as in Figure 9 and the total load of this system are 

829.88 kW as real power and 828.07 kVaras reactive power. 11 kV & 1 MVA are considered as base voltage 

and base MVA respectively[40]. The radial distribution load flow is done by forward-backward sweep method 

and the line loss, voltage values at each bus are quantified. The total loss of this system without any devices 

is quantified after the load flow as 68.85 kW as real loss and 46.07 kVaras reactive loss. In this test system 

optimal allocation of EV charging stations and PV units are obtained for all the three cases considering 

minimization of objective functions. All the equality and inequality constraints as explained in Equations 

(15)–(19) are satisfied. With the obtained results the parameters such as voltage profile, real power loss and 

voltage stability index are evaluated for all the three cases.  

 
Figure 9. Single line diagram of Indian 28 bus rural distribution test system. 

In Table 1, the optimal location and size of EV charging stations and PV units are shown for different 

cases of the network. It reveals that for case II considering all the security constraints, the obtained optimal 

capacity of EV charging station is 4.33 MW which is 13% penetration in the network. In this paper, this 

penetration level is quantified as percentage of EV charging station penetrated to the system relative to the 

peak load as shown in Figure 7. After integrating PV unit at optimal location with EV charging station, the 

capacity of EV charging station rises to 5.1 MW that is 16% penetration in the distribution network. Hence 

the capacity of charging station is increased so more no. of EVs can be penetrated in the network for 

charging in Case III than that of Case II. 
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Table 1. Optimal size & location of EV charging station & PV unit using TLBO in the 28-Bus system for different cases. 

Cases EV charging station PV 

Size (MW) Location Size (MW) Location 

Case II 2.11, 1.35, 0.87 2, 4, 14 - - 

Case III  2.32, 1.01, 1.76 3, 12, 4 1.14, 0.85, 0.92 11, 26, 28 

From Table 2, it is observed that the real power loss increases after the integration of EV charging 

station in the network, so PLRI value increases with the presence of EV charging station. The total line loss 

increases from base case value of 68.86 kW to 120.54 kW which is almost 68%. But in Case III, the line loss 

value diminishes by 23% from Case II. As in Case I, there is no EV charging station and PV in the system, 

the ratio remains as 1. But in Case II, the loss of the system with EV charging station at optimal places 

increases so this value increases to 1.7452. In Case III, due to the optimal placement of PV and EV charging 

station, this value decreases to 1.3988.  

Similarly VDI value for base case is 0.8140. But if EV charging station is allocated in the network with 

optimal capacity and location, this index value increases to 1.2681 as the voltage profile deviates more from 

the rated voltage profile in Case II. This value reduces to 0.9203 in Case III after EV charging stations and 

PV units are simultaneously allocated at the optimal position with optimal capacity. 

Table 2. Objective function values of the 28-Bus system for different cases. 

Cases PLRI VDI 

Case I 1.0000 0.8140 

Case II (TLBO) 1.7452 1.2681 

Case III (TLBO) 1.3988 0.9203 

The average hourly bus voltage profile graph is demonstrated for all three cases in Figure 10. It is 

observed that the minimum voltage of value 0.919 p.u for Case I i.e., base case occurs at bus number 9. For 

Case II, after optimally locating EV charging stations at bus no. 2, 4 and 14 with optimal size 2.11 MW, 1.35 

MW and 0.87 MW respectively, it is also observed that more voltage drop occurs and the minimum voltage 

reduces to the value of 0.8012 p.u from the base value. For Case III where the EV charging stations along 

with PV modules are optimally incorporated in the radial distribution system, the minimum bus voltage 

profile improves to the value 0.9085 p.u. 

 
Figure 10. Voltage profile of Indian rural 28 bus system for different cases. 
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Figure 11 shows the VSI value at each bus of the Indian rural 28 bus system for different cases. It is 

observed that the lowest VSI is 0.705 at the bus number 12 for base case. As this index is a major index to 

predict the voltage collapse in the power system, so small change in VSI value will affect the power system. 

For Case II by optimally adding EV charging stations to the network, the VSI value diminishes to 0.577. This 

index value is improved to the value 0.663 by optimally placing both EV charging stations and PV modules 

in the distribution network. 

 
Figure 11. VSI value at different bus no. of rural 28 bus system for different cases. 

7.2. IEEE 69 bus system 

In this paper, for analysing and comparing the results, second standard IEEE 69 bus test system is taken 

which has 69 nodes and 73 branches[41]. The single line diagram of IEEE 69 bus system represented in 

Figure 12 has the total load of this system is 3.80 MW as real power and 2.69 MVaras reactive power and 

base voltage of 12.66 kV and 1 MVA as base. The radial distribution load flow is done by forward-backward 

sweep method[42]. Then the total real power loss of the system is 224 KW, and the total reactive loss of the 

system is 110 KVar. EV charging stations are injected in this test system at three different locations with 

different capacity using TLBO optimisation method.  

 
Figure 12. Single line diagram of IEEE 69 bus distribution test system. 

The optimal location and size of EV charging stations and PV units after integration in the 69 bus 

system are listed for different cases in Table 3. It reveals that for Case II, the total obtained capacity of EV 

charging stations is 5.93 MW which is nearly 18% penetration of peak EV load curve. After integrating PV 

unit at optimal locations the capacity of EV charging station rises to 7.02 MW that is approximately 22% 

penetration level. Hence more EV charging stations can be penetrated in the distribution network by jointly 



 

17 

assigning PV unit. 

Table 3. Optimal size & location of EV charging station & PV Unit using TLBO in the 69-Bus system for different cases. 

Cases EV charging station PV 

 Size (MW) Location Size (MW) Location 

Case II 2.27, 1.89, 1.74 2, 31, 49 - - 

Case III 2.61, 1.93, 2.46 3, 9, 38 1.06, 0.28, 1.76 25, 55, 63 

The objective function values i.e., PLRI and VDI values for 69-bus test system are shown in Table 4. 

The real power loss in the system without any device remains 224 kW, but after integrating EV charging 

station in the system, this value becomes 319.02 kW that is 45% of base value. However, having both EV 

charging station and PV in the system, the loss decreases to 288.72 kW which is 11% less than that of Case II. 

In Case I, there is no device in the system, the ratio remains as 1. But in Case II, the loss of the system with 

EV charging stations at optimal places increases hence this index increases to 1.4251. In Case III, due to the 

presence of PV and EV charging stations at optimal places with optimal size, this value decreases to 1.2858.  

Table 4. Performance analysis of the 69-Bus system for different cases. 

Cases PLRI VDI 

Case I 1.0000 0.2198 

Case II 1.4251 0.5124 

Case III 1.2858 0.3936 

The VDI value for base case is 0.2198 if EV charging stations are allocated in the network at optimal 

location with optimum capacity, this index value increases to 0.5124 as the voltage profile deviates more 

from the rated voltage profile in Case II. This value reduces to 0.3936 in Case III after EV charging stations 

and PV unit are simultaneously deployed. 

Figure 13 shows the voltage profile graph of IEEE 69 bus distribution system for three different cases. 

It is observed that minimum voltage level i.e., 0.92 p.u. occurs at the bus number 64 for base case scenario. 

After integrating EV charging stations, the voltage profile for each bus is observed. As the demand of 

electricity rises due to EV charging, the voltage profile falls as compared to the base case and the minimum 

voltage becomes 0.85 p.u. 

 
Figure 13. Voltage profile of IEEE 69 bus with different cases. 

To enhance the voltage profile, diminish the excess demand due to EV and minimise the environmental 
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pollution, the solar energy source is incorporated with the 69 bus system at bus number 25, 55, 63 with 

optimal size of 1.06 MW, 0.28 MW, 1.76 MW. Then it is noticed that for Case III the voltage profile 

improves and the minimum voltage increases to 0.91 p.u as compared to Case II. 

Figure 14 shows the graph between bus numbers versus VSI value at each bus for IEEE 69 bus 

distribution system for three cases. It is observed that the bus number 60 has minimum VSI value i.e., 0.7014. 

For Case II by optimally adding EV charging stations to the network using TLBO algorithm, the VSI value 

diminishes to 0.586. This index value is improved to the value 0.648 by simultaneously deploying both EV 

charging stations and PV modules at the optimal location with optimal capacity using TLBO technique in the 

distribution network. 

 
Figure 14. VSI value at different bus no. of IEEE 69 bus system for different cases. 

To validate the effectualityof the proposed TLBO algorithm, three soft computing algorithms such as 

GA, PSO and DE are also applied for concurrent allocation of the EV charging stations and PV units. 

7.3. Comparison of proposed algorithm with PSO, GA and DE 

To proof the efficacy of proposed technique, the convergence characteristics and statistical values are 

compared among four algorithms i.e., TLBO, GA, PSO and DE. All algorithms are applied to find out the 

optimal placement and sizing of EV charging stations and PV units in the distribution network. To solve this 

optimization problem, the common parameters i.e., population size and number of iterations are taken as 50 

and 100 respectively for all algorithms.  

For GA technique, the parameters are considered as crossover probability 0.85 and mutation probability 

0.01[22]. Similarly another nature inspired algorithm i.e., PSO algorithm is implemented by considering the 

parameters as; accelerating factors (c1 & c2) 0 & 2, updating factors (w1 & w2) 0.4 & 0.9[25]. Another heuristic 

optimization method i.e., DE algorithm[26] is applied by taking the parameters for this DE algorithm are 

considered as crossover 0.3 and mutation 0.45. 

Convergence characteristics graph of TLBO algorithm with other algorithms for objective function for 

69 bus system is illustrated in Figure 15. It is observed that the proposed TLBO algorithm converges faster 

with the lowest value of objective function than other three algorithms i.e., PSO algorithm, GA algorithm, 

and DE algorithm. Hence this algorithm is more effective for placing optimally EV charging stations and PV 

units in the IEEE 69 bus test network by minimizing the objective functions. 
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Figure 15. Convergence characteristics of different algorithms. 

Table 5 shows the statistical value i.e., mean (µ) and standard deviation (σ) and the required 

computation time of operation for implementation of different optimization algorithms in the 69 bus test 

network. The lowest value of mean and standard deviation represents the better performance of optimization 

algorithm. It is observed that the proposed TLBO algorithm has the lowest value of mean and standard 

deviation than other three algorithms which reveals that TLBO algorithm is more effective. Moreover, 

another observation revealed that the proposed TLBO method required least time among all other algorithms 

for execution of optimization problem in the 69 bus test system.  

Table 5. Comparison of TLBO algorithm with other algorithm. 

Different parameters TLBO GA PSO DE 

Mean (µ) 0.6085 0.6307 0.6231 0.6124 

Standard deviation (σ) 0.0041 0.0052 0.0048 0.0043 

Computation time (in Sec) 11.5623 15.9401 14.2137 12.9728 

8. Conclusion 

In this present work, the influence of EV charging station loads and solar energy sources on Indian 28 

bus rural network and IEEE 69 bus system is rigorously examined in terms of the system indices such as 

voltage, voltage stability and power losses. To assess the effects on distribution network, both EV charging 

station along with PV is optimally incorporated in the radial distribution network using proposed TLBO 

algorithm. The device allocation is done considering minimization of PLRI and VDI by satisfying various 

system constraints i.e., demand supply constraint, voltage constraints and capacity of EV charging station & 

PV unit. In view of realistic aspects, a practical framework of EV charging station and PV in the distribution 

network is developed by considering uncertainty parameters such as trip miles, trip end time and vehicle 

types from real NHTS datasheet for EV charging station and solar irradiance for PV. 

To analyze the system performance different case studies are conducted. In Case II where only EV 

charging stations are optimally deployed in the test networks, the result shows that there is deterioration of 

the line loss, voltage stability and voltage. However, there is a significant improvement in results in terms of 

voltage profile, stability and line loss in Case III, where both EV charging stations and PVs were jointly 

allocated in both the test networks. Therefore, it is concluded that concurrent optimal allocation of EV 

charging stations with solar PV based generation units using the proposed TLBO algorithm improves 

performance indices such as total line loss, voltage stability, and voltage profile for both the rural network as 

well as the IEEE standard system. Also it is observed from the above research work that the proposed TLBO 
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algorithm is more effective than other optimization algorithms considering the convergence characteristics, 

statistical values and computation time of operation. 
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