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ABSTRACT 

The topological entropy HS of all 2907 convex 4- to 9-atomic polyhedral clusters has been calculated from the 
point of different symmetrical positions of the atoms. It shows a general trend to drop with growing symmetry of clus-
ters with many local exceptions. The topological entropy HV of the same clusters has been calculated from the point of 
different valences (chemical bonds) of the atoms. It classifies the variety of clusters in more details. The relation-
ships between the HS and HV entropies are discussed. 
Keywords: Convex Polyhedral Clusters; Automorphism Group Orders; Symmetry Point Groups; Chemical Bonds; Top-
ological Entropy

1. Introduction 
A general theory of convex polyhedra is given by Grünbaum[1]. In the series of papers we consider a 

special problem on the combinatorial variety of convex n-hedra rapidly growing with n. All combinatorial 
types of convex 4- to 12-hedra and simple (only 3 facets/edges meet at each vertex) 13- to 16-hedra 
have been enumerated and characterized by automorphism group orders (a.g.o.’s) and symmetry point 
groups (s.p.g.’s)[2]. Asymptotically, almost all n-hedra (and n-acra, i.e. n-vertex polyhedra, because of duality) 
seem to be combinatorially asymmetric (i.e. primitive triclinic). A method of naming any convex n-acron by 
a numerical code arising from the adjacency matrix of its edge graph has been suggested[3]. The combinatori-
al types of convex n-acra with the minn and maxn names and some asymptotical (as n → ∞) relations be-
tween the latter have been found by Voytekhovsky[4,5]. Here we consider the topological entropies as addi-
tional characteristics of convex n-acra. 

Obviously, convex n-acra can also be interpreted as atomic clusters with atoms located in vertices and 
the edges considered as chemical bonds. It is interesting to know, if the topological entropy correlates with 
the a.g.o.’s of atomic clusters. If so, it can be taken as a continuous approximant of the discrete s.p.g.’s. On 
the other hand, there are convex n-acra with different numbers of edges, as a whole, and different valences of 
the vertices, in particular. It follows from the general theory of systems that their complexity mostly depends 
on relationships between the elements (e.g., chemical bonds of the atoms) rather than on the number of the 
elements themselves (e.g., the number of vertices equivalent under the automorphism group). Does the topo-
logical entropy effectively fix the complexity of the convex n-atomic clusters? The paper discusses these 
questions. 

2. Statistical entropy and its properties 
The concept of entropy has been suggested in thermodynamics by Clausius in 1865. Its statistical inter- 
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pretation has been performed by Boltzmann in 1872. Afterwards, Shannon[6] and Halphen[7] have inde-
pendently found the formula 

 

 

in the framework of the mathematical theory of communication and population statistics, respectively. In any 
case, this is the convolution of some distribution of probabilities pi with an obvious restriction p1 + … + pn = 
1. The H function is bounded by Hmin = 0, if one of pi = 1 (the others are 0’s), and Hmax = log n, if any pi = 1/n. 
Its schematic graphs for two (arcs with Hmax = lg 2) and three (surface with Hmax = lg 3) probabilities are 
given over the barycentric diagram p1 + p2 + p3 = 1 in Figure 1. It is easy to see that small changes of the 
probabilities pi at the corners of a diagram affect big changes of H, while the same changes of pi in the cen-
tral part of a diagram do not affect H that much. 

 
Figure 1. The graph of H(p1, p2, p3). Hereinafter in nites, as decimal logarithms are used. 

3. Entropy HS of convex n-acra 
The above formula allows us to characterize the topology of convex n-acra in different ways. For exam-

ple, let us define the entropy HS from the point of different symmetrical positions of the vertices. In this case, 
for any n-acron, numbers ni of vertices in different symmetrical positions and, afterwards, the probabilities pi 
= ni/n = ni/Σni should be calculated. It follows from the above that, for given n, HS,max is attained by n-acra 
with any two vertices non-equivalent under the automorphism group, for example, by combinatorially 
asymmetric n-acra (i.e. those, which cannot be transformed to symmetric convex n-acra by the continuous 
transformations), n ≥ 7. At the same time, HS,min is attained by vertex-transitive n-acra. These include regular 
(Platonic) and semi-regular (Archimedian) polyhedra, as well as the infinite series of prisms and antiprisms. 
They have even number n ≥ 4 of vertices, precisely: 4, 6, 8, 12, 20 for Platonic solids, 12 (2 times), 24 (4 
times), 30, 48, 60 (4 times), 120 for Archimedian solids, and any even n ≥ 6 for prisms and antiprisms (cube 
and octahedron are topologically equivalent to a tetragonal prism and a trigonal antiprism, respectively). The 
further question is how HS depends on a.g.o.’s and s.p.g.’s of n-acra with growing n. The edge graphs of all 
2907 convex 4- to 9-acra and their a.g.o. and s.p.g. statistics (Table 1) have been extracted from [2]. 

The lexicographically ordered sequences of the vertices numbers in different symmetry positions for all 
convex 4- to 9-acra and related s.p.g.’s are as follows. 4-acron. 4: 43𝑚𝑚 (tetrahedron). 5-acra. 14: 4mm (te-
tragonal pyramid), 23: 6𝑚𝑚2 (trigonal bipyramid). 6-acra. 1122: m, 15: 5m (pentagonal pyramid), 222: 2, 
mm2, 6: 6𝑚𝑚2 (trigonal prizm), 𝑚𝑚 3𝑚𝑚 (octahedron). 7-acra. 1111111: 1, 11122: m, 1222: 2, m, mm2, 124: 
mm2, 133: 3m, 16: 6mm, 25: 10𝑚𝑚2. 8-acra. 11111111: 1, 111122: m, 11222: 2, m, 1124: mm2, 1133: 3m, 
2222: 2, mm2, 17: 7m, 224: mm2, 2/m, 26: 3𝑚𝑚, 6𝑚𝑚2, 6/mmm, 44: mmm, 42𝑚𝑚, 43𝑚𝑚, 8: 82𝑚𝑚, 𝑚𝑚 3𝑚𝑚. 
9-acra. 111111111: 1, 1111122: m, 111222: m, 12222: 2, m, mm2, 1224: mm2, 144: mm2, 4mm, 18: 8mm, 27: 

∑
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14𝑚𝑚2, 333: 3, 3m, 36: 3m, 6𝑚𝑚2. The data have been used to calculate the entropy HS (Figure 2). 

 
Table 1. Symmetry statistics of convex 4- to 9-acra, V – vertices, F – facets 

The entropy HS shows the general trend: the higher a.g.o., the lower HS. But, there are a lot of local ex-
ceptions. The two 5-acra contradict to the trend. Some n-acra with the same a.g.o.’s (and even s.p.g.’s) have 
different HS, while some n-acra with the same HS have different s.p.g.’s (and even a.g.o.’s). Moreover, some 
n-acra with higher a.g.o.’s also has higher HS. For given n, an equation HS = const is solvable over the p1, …, 
pn, if and only if const = 0 or lg n. For the case 0 < const < lg n, it is not (i.e., infinitely many points lie on the 
isoline H = const, see Figure 1). In a discrete case, there is a finite number of probabilistic distributions pi = 
ni/n for given n, and, therefore, a finite number of HS values, which can be calculated in advance. In this case, 
for given HS, related probabilities can be found. It is impossible, if n is not fixed. For example, the probabilities 
(3/6, 3/6) for a 6-acron and (4/8, 4/8) for an 8-acron give the same HS. For given n, the same HS values are 
possible for n-acra with different s.p.g.’s and even a.g.o.’s mainly depending on whether the vertices lie on 
the planes and/or axes of symmetry. 

4. Entropy HV of convex n-acra 
It seems that the entropy HS characterizes a “disorder” more than a “complexity” of n-acra. The first 

parameter is quite well characterized by s.p.g’s. From this point of view, combinatorially asymmetric n-acra 
are maximum disordered, while n-acra with HS = 0 are maximum ordered. At the same time, there are n-acra 
with the same s.p.g.’s, but vertices of different valences. We presume them to be of different complexity, 
which is not fixed by HS. To distinguish between them, we suggest the entropy HV considering different va-
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lences of vertices of n-acra: pi = vi/n. For example, there are 7 combinatorially asymmetric 7-acra (Table 1) 
of the same entropy HS = Hmax = lg 7. But almost all of them are unique as for valences of their vertices[3] 
(Figure 3): 232, 3211, 331 (two 7-acra), 412, 43, and 511. Hereinafter each sequence records the numbers vi 
of i-valent vertices from v3 to vmax. Obviously, the entropy HV differs for the six classes. In the same way, the 
combinatorially asymmetric 8-acra (140 in total, Table 1) can be divided into 31 classes (see Figures in [2]). 
But, as 0’s and permutations of the indexes vi do not change HV, combinatorially asymmetric 8-acra can be 
divided into 12 classes of different HV. 

 
Figure 2. Entropy HS of convex 4- to 6-acra (A, 10 in total), 7-acra (B, 34), 8-acra (C, 257), and 9-acra (D, 2606) vs. a.g.o. The s.p.g.’s 
are given to the dots if they do not follow from the Table 1. 

The lexicographically ordered sequences of the numbers of the vertices with different valences for con-
vex 4- to 9-acra and related s.p.g.’s have been extracted from [2] and are as follows. 4-acron. 4: 43𝑚𝑚 (tet-
rahedron). 5-acra. 23: 6𝑚𝑚2 (trigonal bipyramid), 41: 4mm (tetragonal pyramid). 6-acra. 06: 𝑚𝑚 3𝑚𝑚 (octa-
hedron), 222: mm2, 24: mm2, 321: m, 42: 2, 501: 5m (pentagonal pyramid), 6: 6𝑚𝑚2 (trigonal prizm). 7-acra. 
052: 10𝑚𝑚2, 133: 3m, 151: m, 2221: 2, 2302: mm2, 232: 1, mm2, 2401: mm2, 25: 2, mm2, 3031: 3m, 313: m, 
3211: 1, m, 331: 1, m, 412: 1, 2, 4201: m, mm2, 43: 1, 2, m, 3m, 511: 1, m, 6001: 6mm, 61: m, mm2. 

8-acra. 044: 42𝑚𝑚, 0602: 6/mmm, 062: mm2, 08: 82𝑚𝑚, 1331: m, 1412: m, 143: 1, m, 1511: 1, m, 161: 1, 
m, 206: 3𝑚𝑚, 2141: mm2, 2222: 2, mm2, 22301: m, 224: 1, 2, m, mm2, 23111: 1, 2321: 1, m, 24002: mm2, 
2402: 1, mm2, 24101: 1, 242: 1, 2, m, 2/m, 2501: 1, m, mm2, 26: 2, m, 6𝑚𝑚2, 3113: m, 31211: 1, 3131: 1, m, 
3212: 1, m, 32201: 1, m, 323: 1, m, 33011; 1, 3311: 1, 34001: m, 341: 1, m, 4004: 43𝑚𝑚, 4022: 1, mm2, 
40301: m, 404: 1, mm2, 42𝑚𝑚, 4121: 1, m, 4202: 1, 2, 42101: 1, m, 422: 1, 2, m, mm2, 4301: 1, m, 3m, 44: 1, 
2, m, mmm, 42𝑚𝑚, 503: 1, m, 3m, 5111: 1, 52001: m, 521: 1, m, 602: 2, m, 6101: 1, 62: 1, 2, m, 
mm2, 70001: 7m, 701: m, 8: mm2, 𝑚𝑚 3𝑚𝑚. 

9-acra. 036: 6𝑚𝑚2, 0441: mm2, 0522: mm2, 054: m, 4mm, 0603: 6𝑚𝑚2, 0621: 1, mm2, 07002: 14𝑚𝑚2, 
072: 2, mm2, 0801: mm2, 09: 6𝑚𝑚2, 1251: m, 1332: 1, 135: 1, m, 1413: m, 14211: 1, m, 1431; 1, m, 15102: m, 
1512: 1, m, 15201: 1, m, 153: 1, m, 16011: 1, m, 1611: 1, m, 17001: m, 171: 1, m, 2142: 2, m, 21501: m, 216: 
m, 2223: 2, m, 22311: 1, m, 224001: 2, 2241: 1, m, mm2, 2304: mm2, 23121: 1, m, 23202: 2, m, 232101: 1, m, 
2322: 1, 2, m, mm2, 23301: 1, m, 234: 1, 2, m, mm2, 240201: 2, 2403: 1, m, 241011: 1, 24111: 1, 242001: 1, 
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2, m, 2421: 1, 2, m, 250002: mm2, 25002: 1, mm2, 250101: 1, 2502: 1, 2, m, 25101: 1, m, 252: 1, 2, m, 
260001: mm2, 2601: 1, 2, m, mm2, 27: 1, 2, m, mm2, 3033: m, 3m, 3051: 1, m, 31221: 1, m, 31302: 1, 
313101: 1, 3132: 1, 31401: 1, m, 315: 1, m, 32031: 1, m, 32112: 1, m, 321201: 1, m, 3213: 1, m, 322011: 1, m, 
32211: 1, m, 323001: 1, m, 3231: 1, m, 33021: 1, m, 33102: 1, m, 331101: 1, 3312: 1, m, 33201: 1, m, 333: 1, 
m, 3, 3m, 340011: 1, m, 34011: 1, m, 341001: 1, m, 3411: 1, m, 35001: 1, m, 351: 1, m, 40212: 2, 402201: 
mm2, 4023: 2, m, 40311: 1, m, 404001: 4mm, 4041: 1, 2, m, mm2, 41022: m, 4104: 1, m, 41121: 1, m, 41202: 
1, m, 412101: 1, 4122: 1, 2, m, mm2, 41301: 1, m, 414: 1, 2, m, mm2, 4203: 1, 2, m, mm2, 42111: 1, 422001: 
1, 2, m, 4221: 1, 2, m, mm2, 43002: 1, 2, 430101; 1, m, 4302: 1, 2, m, 43101: 1, m, 432: 1, 2, m, mm2, 
440001: 1, m, mm2, 4401: 1, 2, m, mm2, 45: 1, 2, m, 4mm, 50031: m, 5013: 1, m, 50211: 1, m, 503001: m, 
5031: 1, m, 5112: 1, m, 51201: 1, m, 513: 1, m, 52011: 1, m, 521001: 1, m, 5211: 1, m, 53001: 1, m, 531: 1, m, 
6021: 1, 2, m, 6102: 1, 2, m, 61101: 1, 612: 1, 2, m, 620001: m, mm2, 6201: 1, 2, m, 63: 1, 2, m, 3m, 
6𝑚𝑚2, 7011: 1, m, 71001: 1, m, 711: 1, m, 800001: 8mm, 8001: m, mm2, 81: 1, m, mm2.  

The data have been used to calculate the entropy HV (Figure 3). The main feature of HV is that it classi-
fies the variety of convex 4- to 9-acra in more details than HS with HS ≥ HV for any n and s.p.g. 

 
Figure 3. Entropy HV for the same classes of convex n-acra as in Figure 2. 

5. Discussion 
The relationships between the entropies HS and HV in a general case can be formulated in two state-

ments.  
Statement 1. HS ≥ HV for any convex n-acron, i.e. for any n and s.p.g. 
Proof. First of all, the statement is true for all convex 4- to 9-acra (Table 2). HS > HV mostly for n-acra 

of low symmetry, while HS = HV mostly for n-acra of high symmetry with the transition classes of a.g.o.’s 
from 2 to 12. Careful consideration of n-acra has allowed to establish the following. Let us take any n-acron 
with vertices of different symmetry positions. Obviously, vertices equivalent under the automorphism group 
have the same valences. The question is if the non-equivalent vertices have different valences or not. HS = 
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HV if so, HS > HV if not. In the latter case, decrease in the variety of valences is resulted in reduction of HV (if 
compared with HS) in accordance with the general properties of the entropy H. The rigorous proof is given in 
Appendix 1. 

 
Table 2. Relationships between HS and HV for convex 4- to 9-acra. Note: > means HS > HV for all n-acra in the class; = means HS = 
HV for all n-acra in the class; ≥ means both types of n-acra are in the class. 

Statement 2. Entropy HV never reaches maximum lg n. 
Proof. In other words, we should prove that there are no n-acra with all vertices of different valences. 

Actually, even more strict statement takes place: any convex n-acron has at least 4, or 3 and 2, or 3 pairs of 
vertices of the same valences. The rigorous proof is given in Appendix 2. 

5. Conclusions 
It follows from general considerations that the topological entropy HS is hardly interpreted in initial terms 

(in our case, a.g.o.’s and s.p.g.’s of convex n-acra even for given n). The HS value fixes any n-acron on a scale 
between HS,min = 0 and HS,max = lg n. But, small changes of the probabilities pi at the corners of a field of def-
inition (Figure 1) affect big changes of HS, while the same changes of pi in the central part of the field of 
definition do not affect HS that much. HS,max = lg n is attained by, for example, combinatorially asymmetric 
convex n-acra (for n ≥ 7). Hmin = 0 is attained by, for example, regular and semi-regular n-acra (all the cases 
are enumerated) as well as the infinite series of prisms and antiprisms (for even n ≥ 4). Between the 
two bounds, the entropy HS of convex 4- to 9-acra shows a general trend: the higher a.g.o., the lower HS. But 
there are a lot of exceptions. For given n, the 0 < HS < lg n values do not allow us to know a.g.o.’s (the more so 
s.p.g.’s) of n-acra. 

The entropy HS characterizes a “disorder” rather than a ‘complexity’ of convex n-acra. The first one is 
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quite well characterized by s.p.g’s. The second one should distinguish n-acra of the same s.p.g. and different 
numbers of edges, for example, the overwhelming majority of combinatorially asymmetric n-acra for given n 
≥ 7. To do this, the topological entropy НV is suggested, which considers the valences of vertices of n-acra. It 
classifies the variety of convex 4- to 9-acra in more details. It is proved that HV can reach 0 as minimum (for 
example, for regular and semi-regular polyhedra, as well as the infinite series of prisms and antiprisms), but 
never lg n as maximum, because there are no convex n-acra with all vertices of different valences. It is also 
proved that HS ≥ HV for any convex n-acron, i.e. for any n and s.p.g. HS = HV if the vertices non-equivalent 
under the automorphism group also have different valences, and HS > HV if not. 
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Appendix 1 
Consider the sequences of numbers vi of different valences for convex 5- to 9-acra (related HV are in 

parentheses) ordered by the algorithm to follow: … p … q … (H1) → … p-1 … q+1 … (H2), where 1 ≤ p ≤ q.  
5-acra. 23 (0,292) → 14 (0,217).  
6-acra. (Hereinafter 0’s and permutations of vi are omitted in the sequences as they do not affect HV.) 

222 (0,477) → 123 (0,439) → 24 (0,276) → 15 (0,196) → 6 (0).  
7-acra. The main trend: 1222 (0,587) → 1123 (0,555) → 223 (0,469) → 133 (0,436) → 124 (0,415) → 

34 (0,297) → 25 (0,260) → 16 (0,178); offshoot: 124 (0,415) → 115 (0,346).  
8-acra. The main trend: 11123 (0,649) → 1223 (0,574) → 1133 (0,545) → 233 (0,470) → 224 (0,452) 

→ 134 (0,423) → 44 (0,301) → 35 (0,287) → 26 (0,244) → 17 (0,164) → 8 (0); offshoots: 2222 (0,602) → 
1223 (0,574); 1133 (0,545) → 1124 (0,527) → 1115 (0,466); and 134 (0,423) → 125 (0,391) → 116 (0,319).  

9-acra. The main trend: 11223 (0,661) → 2223 (0,595) → 1233 (0,569) → 333 (0,477) → 234 (0,461) 
→ 144 (0,419) → 135 (0,407) → 45 (0,298) → 36 (0,276) → 27 (0,230) → 18 (0,152) → 9 (0); offshoots: 
11223 (0,661) → 11133 (0,636) → 11124 (0,620); 1233 (0,569) → 1224 (0,553) → 1134 (0,528) → 1125 
(0,499) → 1116 (0,435); 234 (0,461) → 225 (0,432); and 135 (0,407) → 126 (0,369) → 117 (0,297).  

The above sequences could be ordered in different ways. We have followed the rule of a “slow down” to 
include as many sequences in the main trends, as possible. With no exception, the above algorithm causes 
H1 > H2. To prove the inequality in a general case (for any 1 ≤ p ≤ q and n), we should show that 

– (p/n) ln (p/n) – (q/n) ln (q/n) > – [(p-1)/n] ln [(p-1)/n] – [(q+1)/n] ln [(q+1)/n]. 

If p → 1, then [(p-1)/n] ln [(p-1)/n] → 0. Hence, for p = 1 we get an obvious inequality (q+1) (1+1/q)q > 
1. For 2 ≤ p ≤ q we should prove the inequality 

pp / (p-1)p-1 < (q+1)q+1 / qq = f(q) . 

Consider f(q) as a continuous function and use a logarithmic derivative 

df/dq = ln(1+1/q) × (q+1)q+1 / qq > 0 . 

That is, f(q) grows with the growing arguments q = p, p + 1, p + 2, etc.  
Let us show that the above inequality takes place even for the minimum argument q = p, i.e.  

pp / (p-1)p-1 < (p+1)p+1 / pp   or   1 < (p+1)p+1 (p-1)p-1 / p2p = f(p) . 

Again, consider f(p) as a continuous function and use a logarithmic derivative 

df/dp = ln(1-1/p2) × (p+1)p+1 (p-1)p-1 / p2p < 0 . 

That is, f(p) drops with the growing arguments p = 2, 3, 4, etc. Indeed, f(2) = 1,6875, f(3) = 1,404…, f(4) 
= 1,287…, f(5) = 1,223…, f(6) = 1,182…  

Nevertheless, if p → ∞, then 

lim f(p) = lim (p+1)p+1 (p-1)p-1 / p2p = lim (1+1/p)p (1-1/p)p [1+2/(p-1)] = e × e-1 × 1 = 1 . 

That is, f(p) tends to 1 from above, i.e. f(p) > 1 for any p. Thus, H1 > H2 for any 1 ≤ p ≤ q and n.  
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Appendix 2 
Assume that a convex polyhedron exists with all the facets being different (i.e. of different number of 

edges). Let us consider its Schlegel diagram on a facet with a maximum number of edges (k-lateral facet, 
Figure 4a). More precisely, let us consider how its corona (i.e. a set of facets touching it edge-to-edge) 
is built. After (k-1)-, (k-2)- … 4-, and 3-lateral facets being attached to k-lateral one in any order, 3 more 
edges are free. And we can conclude that our initial assumption that all facets are different is wrong. Obvi-
ously, in the above case, 3 same (i.e. of the same number of edges), or 2 and 1, or 3 different facets can be 
attached to them. As any (i.e. 3- to k-lateral) facet is used, 4 same, or 3 and 2, or 3 pairs of same facets will 
result on a polyhedron. 

Assume that not all k-3 types of the facets are submitted in the corona. Then, after the facets of each 
type being attached by one to k-lateral facet, more than 3 edges are free. To complete the corona, one should 
choose more than 3 facets from their less than before (k-3) variety. Obviously, both reasons may not reduce 
the frequency of occurrence of the facets in the corona: 4 same, or 3 and 2, or 3 pairs of same facets. Final-
ly, because of the duality, any convex n-acron has at least 4, or 3 and 2, or 3 pairs of vertices of same valenc-
es. The limit cases are: a tetrahedron, a trigonal dipyramid, and a 6-acron of mm2 s.p.g. (Figure 4b). 

 
Figure 4. The Schlegel diagram on a k-lateral facet. b) The limit convex 4-, 5-, and 6-acra. See text. 


