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ABSTRACT
Non-alcoholic fatty liver disease (NAFLD) is a significant global public health issue, closely related to poor

dietary habits and excessive energy intake. Type 2 diabetes（T2DM） is closely related to NAFLD. Due to the
complex regulation of dietary factors on the interaction between insulin, glucose, and free fatty acids (FFA), existing
metabolic models have limitations in characterizing the dynamic response of this system. This paper uses an improved
mathematical model to simulate the dynamic effects of different dietary compositions on insulin, glucose, and FFA, the
study adopts a delayed feedback mechanism to construct a system of differential equations, which describes the
relationship between postprandial insulin secretion and the fluctuations of glucose and FFA. The results show that the
model can effectively simulate the fluctuating behavior of metabolic parameters under postprandial conditions,
verifying its predictive potential in the study of NAFLD and dietary interventions.

Keywords: Non-alcoholic fatty liver disease; free fatty acids; Insulin;
Glucose; Dietary; Type 2 diabetes.

1. Introduction
Non-alcoholic fatty liver disease (NAFLD) is a disease marked

by the accumulation of fat within the liver. Its pathogenesis is
complex, and free fatty acids (FFA) play a crucial role in it. The
relationship between type 2 diabetes （ T2DM ） and NAFLD is
complex and bidirectional[1, 2]. It is difficult to distinguish whether
NAFLD plays a causal role in the development of T2DM or whether
it is simply a result of T2DM[3]. High FFA levels can lead to
metabolic disorders like insulin resistance and hepatocyte injury,
which worsen the development of NAFLD[4, 5]. Studies have shown
that NAFLD is closely related to insulin resistance, which may be the
core mechanism leading to reduced insulin levels and increased FFA[6,

7]. Insulin resistance may raise FFA levels in the blood. This can lead
to fat accumulation and inflammation in the liver, which may then
develop into NAFLD. The lipid accumulation and inflammation in
NAFLD can be aggravated, making patients with T2DM more
susceptible to liver damage[6, 7].Consequently, an in-depth exploration
of the association between insulin, FFA, NAFLD and T2DM is
highly significant for formulating effective intervention strategies.

Exist mathematical models have been developed to simulate
metabolic interactions and provide insights into the regulation of
glucose, insulin, and lipid levels in response to dietary inputs.
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Classical models, such as those by Sturis et al.[8]and Tolić et al.[9], have been instrumental in establishing
foundational knowledge about the glucose-insulin feedback system. These models describe core mechanisms,
including insulin-stimulated glucose uptake and inhibition of hepatic glucose production. However, their
design often limits the exploration of lipid metabolism and postprandial FFA responses, as they focus
predominantly on glucose and insulin dynamics, thus excluding important dietary influences. More recent
models, König et al.[10] and Dalla et al.[11] have made significant strides by incorporating multiple
compartments to reflect organ-specific metabolic functions, enabling a more realistic simulation of
postprandial states. These models, however, frequently overlook the broader systemic effects of diet and the
detailed interaction between FFA and glucose metabolism. Mathematical modeling has emerged as a
powerful tool to understand metabolic systems by integrating biochemical interactions and simulating
metabolic changes under various conditions. Models focusing on insulin-glucose dynamics[8, 9] and hepatic
lipid metabolism[12] provide insight into key regulatory processes. These models help explore how diet and
energy balance influence insulin sensitivity, hepatic glucose uptake, and FFA levels in the bloodstream.
However, many existing models either simplify these dynamics or overlook the comprehensive effects of
dietary inputs on systemic responses.

This study aims to develop a mathematical model that encapsulates the interactions between glucose,
insulin, and FFA regulated by diet. Building on the glucose-insulin feedback model of Tolić et al.[9] and Pratt
et al.[12] framework for hepatic lipid metabolism, this model simulates the metabolic response to mixed meals
under fed and fasted states. We hypothesize that by incorporating dietary variables, this model will more
accurately reflect postprandial oscillations in insulin and FFA levels and can thus serve as a predictive tool
for metabolic studies, dietary intervention planning, and clinical applications.

2. Materials and methods
This model is founded on several hypotheses backed by the literature[8, 9, 12, 13]. Nevertheless, to prevent

this stage of model development from becoming too onerous, some details of the process are omitted. Sturis
and Tolić [8, 9] proposes a systematic insulin -glucose model which served as a basis for the glucose and
insulin equations. Similarly, Pratt and Kosic [12, 13] described the (fasting) FFA kinetics are described by
kinetic equations. The following insulin -glucose feedback loops are included in the model: glucose
stimulates pancreatic insulin secretion, insulin stimulates glucose uptake and inhibits hepatic glucose
production and glucose enhances its own uptake. The system contains two significant delays. One delay is
related to the fact that the physiological action of insulin on the utilization of glucose is correlated with the
concentration of insulin in a slowly equilibrating intercellular compartment rather than with the
concentration of insulin in the plasma. The other delay is associated with the time lag between the
appearance of insulin in the plasma and its inhibitory effect on the hepatic glucose production. The insulin-
glucose model has three main variables: the amount of glucose in the plasma and intercellular space, G, the
amount of insulin in the plasma, Ip , and the amount of insulin in the intercellular space, Ii . In addition, there
are three variables, x1 , x2 , and x3 , that represent the above-mentioned delay between insulin in plasma and
its effect on the hepatic glucose production. Vp is the distribution volume for insulin in plasma, and Vi the
effective volume of the intercellular space. Insulin degradation is assumed to be exponential, with time
constant tp for insulin in plasma and ti for insulin in the intercellular space. Assume that the delay is of third
order and the total time is td . Gin with the glucose infusion rate of 216 mg min-1 . Hepatic glucose ,GL;
Hepatic glycogen , YL; Hepatic-6-phospahte , PL; Free fatty acids in liver ,RL; Triacylglycerol storage pool in
liver, AL; TAG storage pool TL; TAG secretary pool in liver ,SL; Adipose glycerol, LA;Muscle pyruvate ,Rm;
Plasma exogenous CM TAG ,TCB; Plasma endogenous LP TAG ,TLB. The overall scheme of reactions and
transport is illustrated in Figure 1.
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The models were represented in SBML[14], which is a standard for biochemical networks, using the
Python tool SBML shorthand[15]. Model diagrams were constructed in CellDesigner[16]in accordance with the
Systems Biology Graphical Notation (SBGN)[17]. The SBML code was deposited in the Biomodels database
and assigned the identifier BIOMD0000000372[9] and BIOMD0000000382[8],but Pratt’s model[12] and
Kosic’s model[13]not in BioModels, so we reconstruct this model through the details of the paper and omit the
unnecessary parts, such as muscle, adipose tissue.

In this paper, an analysis of the mathematical model of hepatic lipid metabolism was carried out. The
model in the form of 18 differential kinetic equations (Supplementary Material Table 1) including 64
parameters (Supplementary Material Table 2) describes the metabolic response of the organism to meals
with different proportions of macronutrients with a special emphasis on FFA. Pratt et al.[12] propose the
macronutrient metabolism pathway. The model includes three compartments: liver, blood plasma and
pancreas.

Figure 1. Dietary control of insulin, glucose, and fatty acid model[8, 9, 12]
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Model diagram: at the top we show dietary input of glucose, on the right and center are hepatic
components, on the upper right are pancreas , on the left are plasma compartments, In addition to the variable
names and descriptions, we include a parameter associated with each flux, plus and minus superscripts
represent insulin stimulated and insulin inhibited pathways (A description of each species is in the
supplement).

3. Results
3.1. Simulation of insulin and hepatic glucose level in normal condition

The oscillation amplitude of insulin secretion increased with the increase of glucose infusion rate, which
was divided into two parts, one was intravenous injection, the other was oral glucose absorption, and the
total absorbed glucose was 214.6 mg min-1. When the oral glucose is set at 115.28 mg min-1 and the
intravenous infusion is set at 99.32 mg min-1, if the intravenous and oral glucose are continuously given,
hepatic glucose and insulin show periodic oscillations. (Figure 2)

Figure 2. The time evolution of the insulin (A)and blood glucose (B)concentration.

3.2. Hepatic glycogen, insulin, plasma glucose and FFA at different diet intake

A B

C D

A B
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Figure 3. A predictive model of hepatic glycogen, insulin, glucose and FFAmetabolism.

Compared with Figure 3 (A,B) and Figure 2 (A,B), the amplitude of insulin and blood glucose did not
change substantially, indicating that the fitting of the two models did not affect the original model. When the
intake was 137.9 mg glucose(higher than the equilibrium value of the model alone), (Figure 3A)Liver
plasma insulin feedback , (Figure 3B) glucose in blood and (Figure 3C) the glucose in liver changed.
Simultaneous contrast of hepatic glucose and blood glucose (Figure 3D); Changes in hepatic glycogen
(Figure 3E). The changes of FFA when the intake was 105 mg (Figure 3F), 137.9 mg (Figure 3G), and
150mg (Figure 3H) respectively. (Figure 3I) Simultaneous comparison of fatty acid changes when meal
intake was 105 mg(red line), 137.9 mg(blue dashes) and 150 mg (green dashes), respectively. (Figure 3J)
Simultaneous comparison of liver plasma glucose changes when meal intake was 105 mg (black line), 137.9
mg (red line) and 150 mg (green dashes), respectively

Figure 3B shows that when the food intake is 137.9 mg containing glucose, liver blood glucose
fluctuates between 120-80 mg, which is consistent with the physiological phenomenon of mammals. Figure
3C shows that hepatic glucose also fluctuates between 120 mg-80 mg. In Figure 3D, glucose in the blood
and glucose in the liver oscillate opposite, that is, glucose in the blood is at the highest amplitude, but
glucose in the liver is at the trough; In contrast, while glucose in the blood troughs, glucose in the liver peaks
and oscillates consistently with each other. In Figure 3E, the hepatic glycogen content remained constant at
100 g, neither increasing nor decreasing with the increase of food intake, which was consistent with

E F
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mammalian physiological phenomena. As shown in Figure 3F, when the food intake was 105mg and
glucose content, the free fatty acids increased rapidly and maintained a fixed level of oscillation; When the
food intake increased to 137.9 mg (Figure 3G), the FFA also increased, and finally fluctuated in a fixed
range. When the meal intake was increased to 150 mg (Figure 3H) containing glucose, the free fatty acid
shock gradually disappeared. Figure 3I shows the simultaneous comparison of FFA content changes when
the meal intake was 105 mg (low level), 137.9 mg equilibrium) and 150 mg (high-level). Figure 3J shows
the simultaneous comparison of glucose content changes when the meal intake was 105 mg (glucose decline),
137.9 mg (glucose equilibrium) and 150 mg (glucose rise).

3.3. Simulation of insulin and FFA levels in diabetic condition

Figure 4. Simulation of normal insulin secretion and reduce secretion by 50%.

In the later stages of diabetes, insulin secretion usually decreases significantly and may be only about
50% of the level in normal healthy human[18]. In the model, we simulated 50% of normal insulin production
(Figure 4A) and explored the relationship between insulin and FFA (Figure 4B). The results showed that
when insulin production decreased, FFA production also decreased.

4. Discussion
This study model provides a simplified framework for investigating the effects of diet on postprandial

blood glucose metabolism and lipid metabolism in the liver, which is suitable for the study of metabolic
disorders like T2DM mellitus and NAFLD. This section will discuss the advantages and disadvantages of
this model, such as the benefit of delayed insulin secretion, the lack of β-cell mass, limitations, and directions
for improvement.

The design of this model offers significant application potential for metabolic studies focusing on the
response of glucose and lipids to different dietary components after meals. Similar models have been applied
to model the metabolic dynamics of T2DM and NAFLD, in which fluctuations in glucose and FFA play a
crucial role in disease progression.[19-21]. The model is aligned with contemporary research trends by
incorporating dietary responses, with an emphasis on dietary adjustments for controlling blood glucose and
lipids. These applications also demonstrate the usefulness of the model in simulating the metabolic responses
to different dietary components in the context of metabolic syndrome (e.g., T2DM, NAFLD, etc.), and offer
insights into dietary intervention strategies for the management of metabolic syndrome. The combination of
dietary input is the highlight of this model, which can simulate the postprandial response of blood glucose
and hepatic glucose in both feeding and fasting states, overcoming the limitations of the model that focuses
only on intravenous glucose infusion, and providing a more realistic description of glucose and lipid
metabolism. However, it neglects glycogen intermediates such as glucose-1-phosphate, uridine diphosphate
glucose, inorganic phosphate, and pyrophosphate, which play a vital role in the conversion between blood
glucose and glycogen and have a considerable impact on metabolic pathways. Nevertheless, the model

A B
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disregards them.[22]. In addition, simplifying hepatic lipid metabolism, such as ignoring protein interactions
such as skeletal muscle, adipose tissue, and plasma variables, may limit the application of this model in high-
fat diet studies[5]. Another deficiency is the lack of beta cell mass production, which is not a good description
of beta cell changes under hyperglycemia. Classic β cell mass model is Topp et al.[23], mild hyperglycemia
has a negative feedback mechanism with β cell mass, while extreme hyperglycemia has a positive feedback
mechanism with β cell mass. Another model development β cell mass model of diabetes in fa/fa rats in
2007[24], show that both excessive insulin resistance and insufficient adaptation contribute to the initiation of
hyperglycemia[24]. Current models view beta cell mass as static, restricting its application in long-term
metabolic studies. Not modeling the changes in beta cell populations adapting to chronic insulin needs over
time can result in inaccurate predictions of persistent hyperglycemia[25]. For example, in people with long-
term diabetes, beta cell mass may gradually decrease. Models that do not reflect this change will
overestimate the amount of insulin secreted, resulting in inaccurate predictions of blood glucose levels.

The delayed insulin secretion is a very important feedback link in the model of insulin metabolism. If
there were no delay, insulin would not oscillate. Therefore, the analysis of insulin delay is the key to
accurately simulate the metabolic response. The model incorporates the insulin secretion delay, so it can
capture the oscillation behavior of insulin-glucose in the feedback loop. Such as those described by recent
studies[26],simulate time lags between insulin secretion and its physiological effects, crucial for maintaining
metabolic stability. For instance, insulin delays allow for more precise regulation of blood glucose following
dietary intake, as delayed secretion can prevent overcompensation that leads to hypoglycemia. These delays
also reflect real-life physiological conditions where insulin effects on glucose metabolism are not immediate.
In comparison to models without insulin secretion delays[27], such as purely linear feedback models, our
model provides an advantage by offering a closer approximation of physiological insulin responses.
Including delays enables simulations of postprandial glucose and FFA oscillations, reflecting the temporal
dynamics essential for metabolic stability. This is particularly useful for studies focused on oscillatory
regulation in metabolic systems, as disruptions in delay timings have been linked to insulin resistance and
glucose intolerance[28]. The delay mechanism in this model also allows for exploring potential therapeutic
approaches that target insulin secretion timing, highlighting the role of temporal regulation in managing
metabolic disorders.

In the later stage of diabetes, especially in patients with type 2 diabetes, as the disease progresses, the
function of β cells gradually declines and the ability to secrete insulin is significantly reduced. Studies have
shown that patients with type 2 diabetes secrete 50% to 70% less insulin than normal people[29, 30], and many
diabetics have insulin resistance before the insulin level is lower in the later stage[31, 32]. This resistance leads
to increased release of FFA. This, in turn, leads to the accumulation of fat in the liver. For example, the liver
uses excessive free fatty acids to synthesize triglycerides and store them to form fatty liver[33, 34]. In the later
stages of diabetes, however, fatty liver disease can be greatly improved through weight loss promotion or the
direct treatment of liver fat accumulation[35]. This model can well reproduce the corresponding changes in
blood glucose, hepatic glucose and FFA when insulin secretion is reduced, which is consistent with the
reality. When insulin production is 50% of normal, it can be found that blood glucose and hepatic glucose
increase significantly, which affects the content of free fatty acids. Nicely reproduced that T2DM patients are
more likely to develop fatty liver disease, providing insights into the relationship between T2DM and FFA.

Future studies of this model should focus on exploring the effects of glucose changes on pancreatic β
cells, including their generation and death, and the effect of circadian genes on blood glucose balance and
hepatic lipid metabolism. Moreover, this can be achieved by combining islet β cell mass changes, hepatic
lipid metabolism intermediates, and circadian factors of fatty acid levels, like cortisol and melatonin.
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5. Conclusion
In conclusion, this insulin-glucose-FFA model provides a versatile tool for exploring dietary impacts on

postprandial metabolism across various scenarios. Future iterations that integrate adaptive β-cell responses
and insulin secretion delays may strengthen its relevance, offering a valuable resource for both research and
clinical applications in metabolic disease management.
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Supplementary Material
Table 1. The equations describing the dynamics of the Insulin, Glucose, and FFA model

Number Variable Variable Balance Initial Conditions

1 the amount of insulin in the plasma IP
dIp
dt

= f1(G) − E(
Ip

Vp
−

Ii

Vi
) −

Ip
tp

90.0 mmol/L

2 In addition, there are three variables Ii
dIi
dt

= E ∗ (
Ip
Vp

−
Ii
Vi

) −
Ii
ti

138 mmol/L

3
glucose in the plasma and
intercellular space

G
dG
dt

= Gin − f2 G − f3 G ∗ f4(Ii) + f5(x3) 13000 mmol/L

3(1)
glucose in the plasma and
intercellular space

G
dG
dt

= Gin − f2 G −
1
5

f3 G ∗ f4(Ii) −
4
5

f3 G ∗ f4(Ii) + f5(x3) 13000 mmol/L

4 represent the above-mentioned
delay between insulin in plasma and
its effect on the hepatic glucose
production

X1
dx1

dt
=

3
td

∗ (Ip − x1) 70 mmol/L

5 X2
dx2

dt
=

3
td

∗ (x1 − x2) 70 mmol/L

6 X3
dx3

dt
=

3
td

∗ (x2 − x3) 70 mmol/L

7
The pancreatic insulin production
controlled by the glucose
concentration

f1(G) f1(G) =
Rm

1 + exp((C1 − G Vg )/a1) -

8
Insulin-independent glucose
utilization (glucose uptake by the
brain and nerve cells)

f2(G) f2(G) = Ub(1 − exp( −G (C2∗ Vg) ) -

9

The glucose dependent term in the
function describing glucose
utilization is assumed to be which
agrees with experimental result

f3(G) f3(G) =
G

C3∗ Vg
-

10 The insulin dependent term f4(Ii) f4(Ii) = U0 +
Um − U0

1 + exp( − βln( Ii C4( 1 Vi + 1 Eti ) )) -

11 The influence of insulin on the
hepatic glucose production f5(x3) f5(x3) =

Rg

1 + exp(α（ x3 Vp − C5 ））
-

12 liver glucose GL ��
���

��
= �� � − ����� + ���2�� −

�����

��� + ��
−

�����

��� + ��

1
1 + ������

+ �6��� 8 mmol/L

13 liver glycogen YL ��
���

��
=

1
2

������ 1 + tanh
���� − ��

�0
−

��

1 + ����
��

�� + �0
50 mmol/l
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Table 1. (Continued)

14 liver glucose-6-phospahte PL
��

���

��
=−

1
2

������ 1 + tanh
���� − ��

�0
+

��

1 + ����
��

�� + �0
+

�6��

1 + ��6� +
�����

��� + ��

+
�����

��� + ��

1
1 + ������

− ����� − �6��� + �����

2.06 mmol/l

15 free fatty acids in liver RL ��
���

��
= ����� + ����� −

�6��

1 + ��6� − ������ + �� 0.37 mmol/L

16 triacylglycerol storage pool in liver AL ��
���

��
= 3������ + ������ + 3����� + ������ +

3�10��

�10 + ��
+

3�6��

�6 + ��
−

3�8��

�8 + ��
−

�7��

1 + �5� 0.57 mmol/L

17 TAG storage pool TL
���

��
=

�8��

�8 + ��
− � �

�9��

�9 + ��
−

�10��

�10 + ��
40 mmol/L

18 TAG secretary pool in liver SL
���

��
=

3�6��

�6 + ��
− �9��� 0.0149 mmol/l

Table 2. List of dynamics of the Insulin, Glucose, and FFAmodel parameters [8, 9, 12, 13]

Number name value Description
1 αA 15.6L adipose tissue volume
2 αL 1.60 L liver tissue volume
3 β6 31.6L/min rate of liver de novo lipogenesis from pyruvate
4 βL 12L/min liver glycogenolysis
5 μ1 0.588 mmol/min Plasma glucose usage
6 C0 0.1mmol/L small parameters
7 k5 0.05/mmol flux control coefficient for insulin inhibition of free fatty acid oxidation
8 k61 4L/min liver glucose dephosphorylation rate
9 k6 0.3mmol/L affinity for very low-density lipoprotein 2 triglyceride secretion through secretory pathway
10 k7 0.759L/min maximum rate of free fatty acid oxidation
11 k8 0.625mmol/L affinity for esterification of free fatty acids to triglycerides
12 k9 43.583mmol/L affinity of additional bulk lipidation
13 k9a 1L/min release of very low-density lipoproteins from secretory pathway
14 k10 0.625mmol/L affinity for hydrolysis of triglycerides to secretory pool
15 k12 0.2 increased fraction of very low-density lipoprotein 1 secretion by insulin
16

k13 15mmol/L
rate at which insulin modifies the fraction of very low-density lipoprotein 1 to very

low-density lipoprotein 2 secretion
17 k14 0.6 basal very low-density lipoprotein 1 secretion fraction
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Table 2. (Continued)
18 k22 48mmol/min excess insulin secretion rate due to glucose stimulation
19 kal 0.00002L2/mmol min pyruvate to acetyl coenzyme A conversion rate
20 kba 0.0104L/min adipose uptake of endogenous lipoprotein triglycerides
21 kbl 0.156L/min liver uptake of plasma non-esterified fatty acids
22 kcl 0.0075L/min liver free fatty acid uptake of chylomicron triglycerides
23 kd 1.733×108L/mmol insulin degradation rate
24 kdl 3.5×108mmol/L liver glycogenolysis; insulin-inhibited rate
25 kgp 0.311L/min glucose-6-phospahte uptake from adipose glycerol
26 kLG 0.0115mmol/L Michaelis–Menten constant of glucokinase in liver
27 kLH 0.0115mmol/L Michaelis–Menten constant of glucokinase in liver
28 kP 1.41×107mmol/L rate of insulin-mediated glucose-6-phoshate to pyruvate
29 kPP 0.5 rate of muscle pyruvate transport to liver
30 kp6 1.93×108L2/mmol min constant of pyruvate conversion to glucose-6-phospate
31

kyl
1.28×106 L2mmol−1

min−1
rate of the glycogen synthesis stimulated by insulin

32 kr 0.00058mmol rate of endogenously derived lipoprotein triglycerides by liver as free fatty acids
33 krep 2.98mmol/L glucose-6-phospahte inhibition constant of hexokinase in muscle
34 kt 0.00348mmol/L uptake rate of plasma endogenous triglycerides into muscle free fatty acids
35 lmax 400mmol maximum glycogen store of liver
36 v6 0.6mmol/L rate of glycogen transport
37 v8 0.333mmol/min rate of glycogen transport
38 v9 0.6mmol/L rate of triglyceride release into plasma
39 v10 0.1mmol/min rate of triglyceride storage conversion to free fatty acids
40 v12 40mmol L−1 constant in triglyceride release into plasma

41 vLG 14.3mmol/min maximum rate of glucokinase in liver
42 vLH 5.57mmol/min maximum rate of hexokinase in liver
43 y0 0.1mmol/min range of liver glycogen concentration over which the release drops to zero)
44 Vp 3L the distribution volume for insulin in plasma
45 Vi 11L the effective volume of the intercellular space
46 Vg 10L -
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Table 2. (Continued)
47 E 0.2L min-1 transfer rate E between insulin between plasma and intercellular space
48 tp 6L min Insulin degradation is assumed to be exponential , with time constant tp for insulin in plasma
49 ti 100 L min Insulin degradation is assumed to be exponential , with time constant ti for insulin in the intercellular space
50 td 36 L min This delay is assumed to be of third order with a total time td
51 Rm 210 mU min-1 -
52 a1 300 mg L-1 -
53 C1 2000 mg L-1 -
54 Ub 72 mg min-1 -
55 C2 144 mg L-1 -
56 C3 1000 mg L-1 -
57 U0 40 mg min-1 -
58 Um（ 940 mg min-1 -
59 � 1.77 -
60 C4 80 mU I-1 -
61 Rg 180 mg min-1 -
62 α 0.29mU I-1 -
63 C5 26 mU I-1 -
64 Gin 216mg min-1 glucose is supplied to the plasma at an exogenously controlled rate

The above glucose-insulin model is based on the mathematical model of blood glucose balance established by Tolic and Sturis team in 2000, and we have
made the following adjustments:

The links of glucose generation and glycogen synthesis in the liver were re-established, and gluconeogenesis and glycolysis occurred in the liver. For the
sake of simplification of the model, only the links of glucose conversion into glycogen in the liver were concerned, and other links were ignored. Moreover,
according to the study[10], the conversion ratio of glycogen to grape in the liver was 80%, that is, the proportion of glucose consumption accounted for 20%, so the
equation 3 was changed to 3(1).

dG
dt = Gin − f2 G −

1
5

f3 G ∗ f4(Ii) −
4
5

f3 G ∗ f4(Ii) + f5(x3)
1
5

f3 G ∗ f4(Ii) represents the part of glucose that is used in response to insulin,
4
5

f3 G ∗ f4(Ii) represents the part of the liver where glucose is converted into
glycogen. Considering that the part of glucose absorption includes the part of food digestion and absorption, and the glucose converted by food digestion and
absorption as set in the paper, we set 125 mg min-1, and the glucose infusion rate of Gin in the previous equation was 216mg min-1, Gin was split into two parts.
One portion represents 125 mg min-1 for food digestion and absorption, and the other 95mg min-1 represents intravenous infusion of partial glucose.


