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ABSTRACT 
Predicting the thermal performance of buildings is a key research area in the context of improving energy efficiency 

and reducing environmental impacts. Several approaches have been developed to model and predict thermal performance. 
Among these approaches, machine learning techniques are distinguished by their ability to exploit large amounts of data 
and model complex systems, but their effectiveness remains to be demonstrated in different contexts. This work therefore 
explores the application of hybrid machine learning models. Six different models, including ANN-LR, ANN-RR, ANN-
RF, ANN-GB, ANN-DT, and ANN-ELM were evaluated and compared to the standalone model (ANN) based on the 
statistical metrics. Using the TRNSYS tool, the dynamic simulation of a building enhanced with PCM into the roof was 
performed to generate the data. The findings proved the effectiveness of the hybrid machine learning techniques, with 
ANN-LR and ANN-GB emerging as the most reliable hybrid approaches for accurate prediction, showcasing their 
robustness and suitability for complex prediction tasks, while ANN-RR model proved to be the least effective. 
Furthermore, the performance of the models varied considerably depending on the target, with total energy consumption 
appearing more complex and challenging for prediction. 
Keywords: buildings; hybrid machine learning; energy performance; phase change material; energy simulation 

1. Introduction 
Energy management in buildings represents a major challenge in 

the current energy transition context[1]. Buildings consume a 
significant share of the world’s energy[2], and their consumption is due 
to a complex interaction between several architectural, technological, 
and behavioral factors[3–5]. According to the Global Status Report for 
Buildings and Construction, the global buildings sector represented 
about 30% of the final energy demand in 2022[6]. Specifically, 
operational energy demand, including space heating, cooling, water 
heating, lighting, and other uses, was around 132 EJ. Additionally, an 
increase in the segment of electricity energy use of 5% is observed 
between 2010 and 2022[6]. Within the last few decades, numerous 
strategies, primarily centered on enhancing energy efficiency and 
integrating innovative technologies, have been developed in order to 
mitigate the energy consumption of buildings[7–11]. Phase change 
materials (PCMs) are one of the thermal management technologies 
used today in building envelopes[12]. These materials are able to change 
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their physical status as a result of the changes in the external temperature, making it possible to reduce gaps 
between peak and off-peak thermal loads, and optimize interior thermal comfort in buildings[13].  

Due to several interconnected factors, predicting the energy consumption of buildings enhanced with 
PCMs remains a complex challenge[14]. The use of machine learning techniques can offer an effective solution 
to model and predict these complex dynamics[15]. There is a large number of publications on machine learning. 
However, there are only a few studies in literature dedicated to the prediction of thermal performance of PCM-
Enhanced buildings. The bibliometric analysis illustrated in Figure 1 highlights the main concepts related to 
the prediction of building energy consumption, including machine learning, phase change materials, and 
energy efficiency. Although PCMs and machine learning techniques are emerging and well-explored topics 
individually, the connections between these concepts and key notions such as building envelopes and energy 
consumption remain limited. This observation reveals a notable gap in the literature regarding the application 
of machine learning models to predict the energy consumption of buildings incorporating PCMs.  

This work therefore aims to address this research gap by proposing an approach that exploits the 
capabilities of machine learning algorithms to efficiently model and predict the energy consumption of 
buildings enhanced with PCM. Using the TRNSYS tool, the dynamic simulation of a building enhanced with 
PCM was performed to generate the data. Then, the prediction performance of six different models, including 
ANN-LR, ANN-RR, ANN-RF, ANN-GB, ANN-DT, and ANN-ELM were evaluated and compared to the 
standalone model.  

 
Figure 1. Keywords co-occurrence network. 

2. Literature review 
As an application of AI, machine learning models establish their relevance in the field of building 

engineering[16]. Numerous works related to the prediction of a building’s energy consumption using machine 
learning have been thoroughly explored in the literature. For instance, Yan et al.[17] Introduces an innovative 
prediction framework that employs the stacking ensemble learning algorithm, combining several deep learning 
models to predict aspects of residential building performance. The algorithm utilizes a set of three base models 
and integrates multimodal inputs. The results demonstrate that the model exhibited markedly enhanced 
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performance. Shrestha and Shimizu[18] evaluated the thermal performance of traditional Japanese wooden 
houses. They employed support vector regression and random forest regression models for predicting indoor 
temperatures based on external factors and adjacent room temperatures. The obtained results indicated that the 
temperature prediction model for air-conditioned rooms was influenced by the thermal conditions of adjacent 
non-air-conditioned spaces. In another study[19], the authors developed a hybrid method integrating BIM-
DesignBuilder, Grey Wolf Optimization, Random Forest and Non-dominated Sorting Genetic Algorithm II, 
to optimize building design parameters. The obtained results for a building case show that Random Forest 
demonstrates strong predictive accuracy for life cycle carbon emissions, economic cost, and predicted mean 
vote. Furthermore, when applied with well-defined objectives, the multi-objective optimization framework of 
the RF-NSGA-II model serves as a tool to identify optimal solutions that balance enhanced internal comfort, 
reduced economic costs, and minimized carbon emission throughout a building’s lifespan. Mohebbi et al.[20] 
employed a novel metaheuristic optimization algorithm, the Tyrannosaurus Rex Optimization Algorithm to 
enhance the prediction accuracy of three regression techniques. The depicted results proved that the developed 
models exhibit better performance in predicting residential heating load than traditional methods. Hussein et 
al.[21], explored the use of Random Forest to predict the energy performance of buildings. The findings revealed 
that although the machine learning model exhibited considerable promise in predicting energy consumption, 
based on factors such as wall thickness, orientation, and thermal mass, not all variables attained statistical 
significance. Roodkoly et al.[22] created a machine learning-based model to predict building energy 
performance metrics for high-performance building design (HPBD). Four different models, including 
Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and K-Nearest 
Neighbors (KNN), were evaluated. The results show that ANN model outperformed the other algorithms in 
predicting annual energy consumption, CO2 emissions, and percentage of comfort hours during the design 
phase. Qin et al.[23] focused on developing accurate prediction models for heating and cooling loads in nearly 
zero-energy buildings. Machine learning models, including Multivariate Polynomial Regression, Support 
Vector Regression, Multilayer Perceptron and Extreme Gradient Boosting are implemented and compared. 
The obtained results show that feature selection significantly improves prediction accuracy while reducing 
model complexity. In another study, Shen[24] compared various machine learning against measured heating 
demand. The GPAO model, combining GPR with the Arithmetic Optimization Algorithm, achieves a 
maximum coefficient of determination of 0.991 and minimum performance errors of 0.955, demonstrating its 
superiority over other machine learning models. 

Some research works investigated the use of machine learning for predicting the thermal performance of 
PCM-integrated buildings. For example, Abbasian-Naghneh et al.[25] predicted the heating and cooling energy 
consumption using a neural network algorithm method. The model’s results were then introduced into the 
genetic algorithm to determine the optimal annual energy consumption. Urresti et al.[26,27] evaluated the 
performance of ANN for the thermal analysis of buildings with PCM integration. They studied the 
generalization of the ANN and stated that the obtained ANNs didn’t show good generalization even when 
using Bayesian Regularization. Yang et al.[28] predicted the PCM-enhanced building operational energy 
consumption by developing a stacking model combining eight typical ML models. The Non-Dominated 
Sorting Genetic Algorithm III (NSGA-III) was then combined with the stacking model. The findings proved 
that the proposed stacking model gives good results and demonstrated the effectiveness of NSGA-III in 
achieving high-dimensional multi-objective optimization. In another study[29], the authors compared three 
different machine learning models Support Vector Machines, Multiple regression, and Artificial Neural 
Networks to predict the energy demand of PCM-integrated housing. The findings indicate that ANN 
outperforms other models. Jraida et al.[15] evaluated the performance of thirteen machine learning models for 
predicting hourly energy consumption. The results demonstrated the potential of PCMs for energy savings in 
buildings and showed the effectiveness of machine learning, particularly SVM, in predicting building thermal 
performance across different climatic conditions in Morocco. 
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3. Methodology 
The approach employed in this paper is based on two main steps: the generation of energy data through 

dynamic simulations and the application of hybrid machine learning models for predicting energy consumption. 
First, Using the TRNSYS tool, a residential building with PCM integrated into the roof was modeled. The 
simulations generated hourly data on energy consumption for heating, cooling, and total consumption of the 
building. In the second step, The data from the TRNSYS simulations were carefully prepared for the machine 
learning models by being divided into two sets: a training set (70% of the data) to fit the models and a test set 
(30% of the data) to assess their generalization capacity. The selected input variables include key climate 
parameters such as dry outdoor temperature, relative humidity, wind speed and direction, and total solar 
radiation, allowing to capture the climate variations specific to the 24 Moroccan cities studied.  Six hybrid 
machine learning models, including ANN-LR, ANN-RR, ANN-RF, ANN-GB, ANN-DT, and ANN-ELM 
were evaluated and compared to the standalone model (ANN) based on the statistical metrics. 

3.1. Data 
In this study, a typical cubic residential building (3m × 3m × 3m) integrating phase change materials 

(PCMs) into the roof, was simulated under different climatic conditions covering 24 Moroccan cities. The 
building materials’ composition, layer thickness, and thermal properties are presented in Table 1. The openings 
include a single-glazed window with a thermal transmittance of 5.74 W/m² K and a wooden door, all exposed 
to outdoor conditions. The PCM used, a mixture of paraffin (60%) and ethylene polymer (40%), exhibits a 
melting temperature of 21.7 to 31 °C, a latent enthalpy of 70 kJ/kg, and a thermal conductivity varying between 
0.14 and 0.18 W/m K depending on the condition. The necessary climate data were collected from EPW 
(EnergyPlus Weather) files to capture the diversity of Moroccan weather conditions, ranging from sub-humid 
and semi-arid climates in the north to desert climates in the south[30]. The simulations were performed using 
the TRNSYS tool, coupling type 399, based on the enthalpy method to model heat transfers in PCM layers 
according to a one-dimensional Cranck-Nicolson numerical scheme, to type 56, used to simulate heat 
exchanges in multi-volume areas of the building. The simulations performed detailed hourly data on the energy 
needs for heating, cooling, and total energy consumption of the building. 

Table 1. Characteristics of building components[15]. 

 Layer No. Description Thickness 
(cm) 

Conductivity 
(W/m.K) 

Density 
(kg/m3) 

Capacity 
(kJ/kg.K) 

External wall 1(inside) 
2 
3 
4 
5(outside) 

Mortar 
Redbrick 
Air gap 
Redbrick 
Mortar 

1 
7.2 
12.6 
7.2 
1 

1.15 
1.15 
0.08 
1.15 
1.15 

1700 
1700 
1 
1700 
1700 

1 
0.794 
1.227 
0.794 
1 

External roof 1(inside) 
2 
3 
4 
5 
6(outside) 

Mortar 
Heavy concrete 
Mortar 
Bitumen sheet 
Mortar 
PCM 

2 
15 
2 
3 
1 
0.526 

1.15 
1.75 
1.15 
0.5 
1.15 
0.14-0.18 

1700 
2300 
1700 
1700 
1700 
853 

1 
0.92 
1 
1 
1 
Cpcm(T) 

Floor 1(inside) 
2 
3 
4 
5(outside) 

Mortar 
Clay 
Polystyrene 
Heavy concrete 
Limestone 

5 
3 
2 
4 
10 

1.15 
0.6 
0.039 
1.75 
2.25 

1700 
2000 
25 
2300 
2400 

1 
1.5 
1.38 
0.92 
0.8 

3.2. Machine learning models 
To enhance the robustness of the model in predicting energy consumption, six different hybrid machine 

learning models were developed by combining the artificial neural network (ANN) with different machine 
learning techniques. Each learning algorithm follows a two-step approach: first, an ANN is used to generate 
initial predictions, then, these predictions are refined by another model, such as Random Forest (RF), Decision 
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Tree (DT), Gradient Boosting (GB), Extreme Learning Machine (ELM), Linear Regression (LR) and Linear 
Ridge Regression (RR), each contributing to correct or improve the errors of the initial ANN predictions. In 
this section, the different machine learning methods used to predict hourly energy consumption are described.  

3.2.1. Artificial neural network (ANN) 

Artificial Neural Network is based on the principles of human nervous system. Human nervous system 
includes components like neurons, synapse, and dendrites to process and transfer information between 
neurons[31]. Analogous to it, ANN contains components such as artificial neurons and weights and transfer 
functions to process the information. Different network models exist. The simplest one is the feed-forward 
model[32]. It consists of three layers, the first one is the input layer that receive data, the last layer, called output 
send the evaluated results and between these two layers, a hidden layer that is used to communicate with other 
neurons and determine the solution of the problem[33,34].  

3.2.2. Decision tree (DT) 

Decision tree is a supervised learning method applied to both classification and regression problems. It 
involves building a model in the shape of a tree structure, with internal nodes representing decisions based on 
specific variable values. The branches illustrate the possible outcomes of the decision, while the leaf node 
represents a final classification or prediction. The decision tree is built by starting with the root node and 
recursively dividing the data into smaller subsets based on the values of the variables. The process continues 
until the subsets are pure, meaning that they contain only one class or one output value. The final tree can then 
be used to make predictions on new data by following the decisions and corresponding branches until a leaf 
node is reached[35].  

3.2.3. Extreme learning machine (ELM) 
The extreme learning machine (ELM) is a single-hidden layer feedforward neural networks, originally 

proposed by Reference [36]. The model consists of three layers[37,38]: 

The input layer, which imports the sample dataset �𝑥𝑥𝑗𝑗, 𝑡𝑡𝑗𝑗� of input data (𝑎𝑎𝑗𝑗 = [𝑎𝑎𝑗𝑗1,𝑎𝑎𝑗𝑗2, … ,𝑎𝑎𝑗𝑗𝑗𝑗]𝑇𝑇 ∈ 𝑅𝑅𝑗𝑗) 
and target data (𝑡𝑡𝑗𝑗 = [𝑡𝑡𝑗𝑗1, 𝑡𝑡𝑗𝑗2, … , 𝑡𝑡𝑗𝑗𝑗𝑗]𝑇𝑇 ∈ 𝑅𝑅𝑗𝑗). 

The second layer is the hidden layer and is calculated using the equation below: 

∑ 𝛽𝛽𝑖𝑖𝑔𝑔�𝑤𝑤𝑖𝑖𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖� = 𝑜𝑜𝑗𝑗𝐿𝐿
𝑖𝑖=1        (1) 

Where 𝑤𝑤𝑖𝑖 is the initial weight randomization, 𝛽𝛽𝑖𝑖 is the output weight relating the hidden nodes and the output 
nodes, L is the random number of hidden nodes, g(x) is the activation function and 𝑜𝑜𝑗𝑗 is the output value. 

The aim of the third output layer step is to find the matrix; via the following equation: 

𝐻𝐻𝛽𝛽 = 𝑇𝑇       (2) 

Where H is the hidden layer output matrix, β is the output weight, and T is the desired output. 

3.2.4. Gradient boosting (GB) 
Gradient Boosting is an automatic learning method used in regression and classification[39]. The idea 

behind boosting is to create a sequence of simple models to address the errors from the preceding models [40]. 
This learning technique is based on a gradient descent optimization of a function, 𝐹𝐹∗(𝑥𝑥). The objective is to 
find an approximation, 𝐹𝐹�∗(𝑥𝑥), by minimizing the value of a differentiable loss function. The prediction of 
𝐹𝐹∗(𝑥𝑥) is built as [41]: 

𝐹𝐹𝑗𝑗∗ (𝑥𝑥) = 𝐹𝐹𝑗𝑗−1
∗ (𝑥𝑥) + 𝑝𝑝𝑗𝑗ℎ𝑗𝑗(𝑥𝑥)     (3) 
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Where 𝑝𝑝𝑗𝑗 is the weight of the 𝑚𝑚𝑡𝑡ℎ function and ℎ𝑗𝑗 is a function to minimize the loss function. Each ℎ𝑗𝑗(𝑥𝑥) 
is trained on the dataset and pseudo-residuals are calculated. 

3.2.5. Randon forest (RF) 
Random forests are a type of ensemble learning method that combines the predictions of multiple models 

to improve their overall performance. In this case, the individual models are decision trees, and the ensemble 
is formed by training many decision trees on different subsets of observations and variables. The idea behind 
random forests is that by training many decision trees on different subsets of the data, the resulting ensemble 
will be more accurate and less likely to overfit than any individual decision tree. This is because the errors 
made by the individual trees will tend to cancel each other out and because the diversity of the trees will capture 
a wider range of relationships in the data[42]. 

3.2.6. Linear regression (LR) 
The linear regression model is considered one of the simplest machine learning algorithms for beginners 

in data mining, as it does not require tuning of parameters[42]. Additionally, it needs fewer computing resources 
and consequently has a faster prediction speed. Due to its simplicity and good prediction performance, this 
model has been widely used in many fields. The approach of regression involves modeling the linear 
relationship between the independent variable x and the dependent variable y that is under analysis. One of the 
most common regression models of linear regression is expressed as follows: 

𝑦𝑦 = 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖 + ⋯+ 𝑎𝑎𝑗𝑗𝑥𝑥𝑗𝑗 + 𝜀𝜀    (4) 

Where a is the regression coefficient of the explanatory variables, ε is a random deviation or error term, and n 
is the dimension of the explanatory variables. 

3.2.7. Linear ridge regression (LRR) 
The ridge regression was introduced by Hoerl and Kennard (1970) as a technique to address highly 

correlated regressors and stabilize the solution of the linear regression problem[43]. It is fundamentally a 
modified least-squared estimation method for the dataset exhibiting multicollinearity[44]. The Key benefit of 
ridge regression is that it reduces the complexity of the model by penalizing large coefficients, which improves 
its generalization ability and avoids overfitting. 

3.3. Performance measure 
In order to assess the performance of ML models, widely used evaluation metrics are calculated. The 

mathematical equations of these statistical indicators are listed below:     

i. Root Mean Square Error (RMSE): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑗𝑗
∑ �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖′�

2𝑗𝑗
𝑖𝑖=1                                        (5) 

ii. Coefficient of determination (R²): 

𝑅𝑅2 = 1 − ∑ �𝑦𝑦𝑖𝑖−𝑦𝑦𝑖𝑖
′�
2𝑛𝑛

𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤� )2𝑛𝑛
𝑖𝑖=1

                 (6) 

iii. Standard deviation (σ): 

𝜎𝜎 = � 𝑗𝑗
𝑗𝑗−1

(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 −𝑅𝑅𝑀𝑀𝑅𝑅2)                                                                   (7) 

iv. Mean Absolute Error (MAE): 

𝑅𝑅𝑀𝑀𝑅𝑅 = 1
𝑗𝑗
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖′|𝑗𝑗
𝑖𝑖                                                                   (8) 
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Where n is the data set size, 𝑦𝑦𝑖𝑖 is the actual value, 𝑦𝑦’𝑖𝑖 is the predicted hourly energy consumption data and 𝑦𝑦𝚤𝚤�  
is the mean of 𝑦𝑦𝑖𝑖. 

In general, lower values of the RMSE, MAE and σ values, yield superior results. The result of R² value 
around 1 suggests the model generates predictions with no error. The higher the R² value, the more favorable 
the results. 

3. Results 
The accuracy of the hybrid machine learning models in predicting energy consumption is evaluated using 

four statistical performance measures; including, mean absolute error (MAE), root mean square error (RMSE), 
coefficient of determination (R²), and standard deviation (σ). The results of the hybrid machine learning model 
evaluations are presented in Figures 2-8 and listed in Tables 2-4 for cooling, heating, and total energy 
consumption. 

Figures 2-4 compare the R² metric for the standalone model (ANN) with the studied hybrid machine 
learning models across all targets during the training and testing phases. We can note that the performance of 
the ANN model for all datasets is always greatly lower than for other hybrid machine learning. When 
predicting cooling, heating, and total energy consumption the individual model yielded an R² of 0.6303, 0.7459, 
and 0.00 for the training datasets, along with an R² of 0.6278, 0.7671 and 0.00 for the testing datasets. For 
cooling energy consumption, the R² for all the hybrid models falls within the range of 0.8089 (for the ANN-
RR in the phase of training) to 0.9185 (for the testing phase of the ANN-LR hybrid model). When predicting 
heating energy consumption, the R² for all the hybrid models falls within the range of 0.7567 (for the ANN-
RR in the testing phase) to 0.8142 (for the training phase of the ANN-LR hybrid model). For total energy 
consumption, the R² for all the hybrid models falls within the range of 0.7936 (for the ANN-RR in the testing 
phase) to 0.8586 (for the testing phase of the ANN-LR hybrid model). According to the plots, the ANN-LR 
model achieves better results as shown by the higher R² value for all datasets. The R² result is 0.9185, 
suggesting that the model elucidates about 91.85% of the variability in cooling energy consumption. 
Subsequently, the ANN-RR model yields lower results than the other hybrid machine learning. The R² result 
is 0.7936 implying that the model elucidates 79.36% of the variation in the total energy consumption, with a 
relatively small proportion of the variation left unexplained. It is worth noting that despite the ANN-RR 
model’s R², it continues outperforming the standalone model (ANN) demonstrating superior predictive 
performance even with a portion of the variation left unexplained. 

 
Figure 2. R² calculation for the cooling energy consumption prediction. 
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Figure 3. R² calculation for the heating energy consumption prediction. 

 
Figure 4. R² calculation for the total energy consumption prediction. 

Figure 5 presents the results of RMSE achieved by the standalone and hybrid machine learning models 
for predicting the three outputs during the testing phase. The findings indicate that the hybrid methods 
outperform the individual method in terms of performance. For cooling energy consumption, the standalone 
model shows a high RMSE of 237.15, while the hybrid models, especially the ANN-LR (RMSE=94.66), show 
significantly better results, with values ranging from 94.66 to 143.04. For heating energy consumption, the 
ANN model shows an RMSE of 106.58, while the hybrid methods show close performances, with an RMSE 
ranging between 92.39 and 106.14. In particular, the ANN-GB (RMSE = 92.39) shows a slight improvement 
over the individual method. For total energy consumption, the ANN model shows a high RMSE of 324.81, 
while the hybrid methods provide much more accurate results, with an RMSE ranging from 136.66 to 163.97. 
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Figure 5. RMSE calculation for the prediction datasets. 

Figure 6 presents the scatter plots of the actual cooling energy consumption versus predicted values, 
while Figures 7 and 8 present the actual heating energy consumption versus predicted, and the actual total 
energy consumption versus predicted, respectively. A 45° straight line (y=x) in these graphs represents the 
perfect fit between the predicted and actual values. As shown in Figures 6-8 the results indicate a notable 
difference in the performance of models to predict cooling, heating, and total energy consumption. For cooling 
energy consumption, the ANN-RF and ANN-GB models exhibit the closest alignment to the ideal line, with 
the training and testing results showing a relatively tight distribution, which illustrates a strong correlation 
between predicted and actual values. However, the ANN-DT and ANN-RR models show more scattered 
predictions, especially for higher values. Which suggests reduced accuracy. For heating energy consumption, 
the ANN-LR and ANN-ELM models show better alignment with the ideal line, especially for the testing data, 
which demonstrates their capability to capture heating patterns effectively. The dispersion of points is in 
general lower for heating than for cooling, which demonstrates that heating predictions are less complex for 
the models to handle. However, the ANN-RF and ANN-GB models indicate less reliable predictions for 
extreme cases.  They display slightly more spread at higher values. For total energy consumption, the results 
depicted in Figure 8 reveal an increased dispersion for all models, especially at higher values, which reflects 
the increased complexity of predicting total energy consumption. The ANN-LR and ANN-ELM models 
maintained relatively good alignment, but the scatter was more pronounced compared to heating. However, 
the ANN-RF and ANN-GB models, which performed well for cooling and heating, struggled to maintain the 
same level of correlation for total energy consumption, with points deviating more from the ideal line. Overall, 
the figures suggest that model performance varies significantly depending on the target energy type, with 
cooling and heating showing good alignment, while total energy predictions appear more challenging, resulting 
in greater scatter and reduced alignment across all models. 
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Figure 6. Scatter plot of actual vs predicted cooling energy consumption. 
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Figure 7. Scatter plot of actual vs predicted heating energy consumption.  
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Figure 8. Scatter plot of actual vs predicted total energy consumption. 

The outcome of statistical evaluators of all the targets in the training and testing phases, as delineated in 
Tables 2-4, reveals that the hybrid machine learning models show good stability between the training and 
testing phases, reflecting their ability to generalize. For the cooling energy consumption, the ANN-LR stands 
out for a relatively low MAE (47.19 in training and 46.92 in testing) and relatively stable standard deviation, 
with values close to 315 in both phases. It also obtains a Rank 1, both in training and testing, indicating a good 
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performance in terms of precision and generalization capacity. In contrast, the ANN-RR has a relatively higher 
MAE (118.12 in training and 117.08 in testing), reflecting greater error variability and lower stability, placing 
it in rank 6 in both phases. Regarding heating energy consumption and total energy consumption, although the 
ANN-LR maintains a good position with a rank 1 in training, it is the ANN-GB that obtains the best 
performance in the testing phase with a rank 1, which indicates that it generalizes better than the other methods 
on the test data, despite standard deviations relatively close to those of the other methods. On the other hand, 
the ANN-RR, remains the least efficient in rank 6, making it the worst-performing method in all outputs.  

Table 2. The statistical metrics for all hybrid ML models for cooling energy consumption. 

Method MAE RMSE R² σ RANK MAE RMSE R² σ RANK 

ANN-LR 47.192 95.79 0.91489 314.07 1 46.923 94.667 0.91858 315.36 1 

ANN-RR 118.12 144.01 0.8089 288.02 6 117.08 143.04 0.81125 290.03 6 

ANN-RF 51.293 97.792 0.91169 313.85 4 49.284 105 0.8988 318.48 5 

ANN-GB 52.961 100.15 0.90814 314.83 5 46.987 99.344 0.90764 313.87 3 

ANN-DT 50.176 96.947 0.91295 313.23 2 49.592 103.35 0.90264 313.85 4 

ANN-ELM 49.45 97.014 0.91327 314.81 3 49.228 96.293 0.91448 313.73 2 

Table 3. The statistical metrics for all hybrid ML models for heating energy consumption. 

Method MAE RMSE R² σ RANK MAE RMSE R² σ RANK 

ANN-LR 35.611 92.625 0.8142 193.9 1 35.999 94.566 0.80463 192.83 3 

ANN-RR 64.054 104.86 0.76068 184.72 6 64.302 106.14 0.75678 183.81 6 

ANN-RF 36.378 94.123 0.80808 193.71 3 35.176 100.9 0.77775 195.54 5 

ANN-GB 37.993 93.816 0.80987 193.23 5 32.739 92.398 0.81237 193.22 1 

ANN-DT 37.612 94.298 0.80636 192.29 2 34.527 96.094 0.80087 192.94 4 

ANN-ELM 37.683 94.364 0.80696 192.94 4 37.578 93.309 0.81025 191.26 2 

Table 4. The statistical metrics for all hybrid ML models for total energy consumption. 
Method MAE RMSE R² σ RANK MAE RMSE R² σ RANK 

ANN-LR 83.745 136.69 0.8560 333.29 1 84.186 136.66 0.8586 332.66 2 

ANN-RR 120.34 164.03 0.7939 320.14 6 120.57 163.97 0.7936 320.16 6 

ANN-RF 84.267 136.44 0.8566 334.08 2 86.858 148.24 0.8334 337.42 5 

ANN-GB 86.171 136.64 0.8564 334.18 4 79.863 136.86 0.8574 334.64 1 

ANN-DT 86.383 138.24 0.8533 333.69 5 83.277 139.02 0.8524 332.33 3 

ANN-ELM 83.852 137.38 0.8553 334.09 3 84.046 137.56 0.8549 333.68 4 

5. Conclusion 
In this research paper, six hybrid models were developed by combining the artificial neural network with 

several other machine learning techniques. The process consisted of first training the ANN on the input data, 
obtained from the results of the dynamic simulation using TRNSYS, to get initial cooling, heating, and total 
energy consumption predictions. These predictions were then used as input variables for other learning models. 
The performance of the hybrid machine learning models, namely, ANN-LR, ANN-RR, ANN-RF, ANN-GB, 
ANN-DT, and ANN-ELM is evaluated using different statistical performance metrics. The results showed that 
the hybrid machine learning models surpass the standalone model (ANN) in terms of performance. Some 
hybrid machine learning methods outperformed others depending on the phase and data. The ANN-LR and 
ANN-GB models emerged as the most reliable hybrid approaches for accurate prediction, while ANN-RR 
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model proved to be the least effective. Additionally, total energy consumption was more complex and 
challenging to predict.  
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