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ABSTRACT
Coumarin and its derivatives are intriguing to researchers in both chemical and pharmaceutical fields because they

have a unique benzopyrone scaffold and a lot of bioactive properties. This review delves into the significance of the
coumarin scaffold in the design and engineering of bioactive molecules, offering insights into its chemical, biological,
and pharmacological roles. Coumarins are praised for their many medical uses, such as their ability to fight cancer,
reduce inflammation, kill microbes, stop blood clots, and act as an antioxidant. This is possible because they have a
special chemical structure with α,β-unsaturated α-lactones and electron-rich aromatic rings. The flexibility of this
scaffold is amazing; it can be changed chemically in many ways, which lets different derivatives with different
biological activities be made. The historical significance of coumarins is underpinned by their natural occurrence in
various plants and their pivotal role in therapeutic applications since the 19th century. Their synthetic versatility has led
to advancements in drug development, particularly in creating anticoagulants, antivirals, and neuroprotective agents. In
addition, coumarins have been shown to work well in cosmetic formulations, cardiovascular health, and diabetes
treatments, showing that they can be used for many things. The efficient synthesis, purification, and functionalization of
coumarins still face problems. This shows the need for new methods to get around problems like harsh reaction
conditions and high costs. New computer techniques, such as 3D-QSAR and pharmacophore modeling, have made it
easier and faster to study compounds that are built on a coumarin scaffold. These techniques have also made these
compounds more therapeutically useful. This narrative review underscores the coumarin scaffold's prominence in
medicinal chemistry and its future prospects as a platform for developing novel bioactive molecules. Coumarins are
important for advancing science and health because they can change chemical forms easily and have a wide range of
biological effects.
Keywords: coumarin scaffold; bioactive molecules; pharmacological applications; synthetic methodologies, chemical
engineering

1. Introduction
Coumarin is a natural compound and belongs to the class of

benzopyrones that contains isocoumarins, furanocoumarins,
pyranocoumarins, and others, as illustrated in Figure 1[1]. The third
ones are the most important because they are found in many plants
and have a lot of biological activities, biodegradability, and
toxicological acceptability. The chromophore has an α,β-unsaturated
α-lactone inside it that works through binding to biological targets
and lactonizing[2]. The benzene ring and the C-3 and C-4 tails change
how the core reacts, dissolves, and stays stable as well. Therefore, the
design and optimization of new coumarin analogues have aroused the
interest of pharmaceutical, agricultural, cosmetic, and stain
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industries[3]. These coumarin particles consist of numerous moieties, necessitating the development of
efficient synthesis methodologies. Because of these factors, it is important to look into the progress made in a
quick and fresh way to make bioactive molecules that are very useful in medicinal chemistry, with a focus on
the history of coumarin structure[4].

Figure 1. The chemical structures of coumarin and its related main classes.

This review covers the bioactive properties of coumarins with a historical perspective on their structures.
The trends and classification of this family are analyzed, and the different methodologies for preparing these
molecules are classified. Due to the large number of applications and methods, several coumarin applications
and methodologies have not been mentioned. Therefore, the focus is on the most relevant and current
pharmaceutical examples. We have provided summaries and conclusions on the bioactivity and chemical
engineering of the coumarin framework.

2. Historical background of coumarin
Coumarins are important bioactive compounds that have attracted attention owing to their varied and

diverse pharmaceutical properties. These groups of compounds, comprising both natural and synthetic forms,
exhibit promising functionalities in pharmaceutical development[5]. Certain molecules that contain coumarin
are bioactive because they have different functional groups that can interact with various biological
molecules, like DNA, RNA, proteins, glutathione, and metals[6]. Because of this, coumarin and its derivatives
can be used to take pictures of living things, kill parasites and bacteria, fight cancer and viruses, protect cells
from damage, and reduce inflammation[7].

Coumarin is the prototype item of its family of chemical compounds, which is based on pyrone and
chromen-2-one. The name coumarin originates from 'Coumarouna purple wood' in French. Some species of
the Fabaceae family synthesize this phytoalexin in response to external stimuli[8]. The first characterization
of the coumarin structure took place in 1820, followed by the first synthesis in 1868. In 1933, a group of
pharmacists discovered coumarin in walnut for the first time[9]. Researchers have detected coumarin in over
50 different plant species, as well as various vegetable and dairy products. Various fruits, vegetables, and
edible plants, including cinnamon, cloves, chamomiles, and Artemisia species, contain high amounts of
coumarin[10]. Since the 1940s, coumarin's anticoagulant properties have led to its use in therapy. The safer
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drug warfarin has replaced coumarin due to its potential to induce hepatotoxicity and allergic reactions[11].
Researchers have tried to find ways to lessen these undesirable side effects and use coumarin in drug therapy
because it can stop blood clots, mostly because it reduces inflammation and protects cells from damage
caused by cancer[12]. In addition to the above-mentioned properties, and perhaps more importantly, coumarin
also has magnetic and photoelectric properties and can undergo metal coordination and cation transfer
processes[13]. Scientists have developed coumarin-metal coordination and are now looking at lanthanide
complexes that glow when mixed with coumarin scaffold derivatives. This is an important study branch
because it has an effect on these luminescent probes used in biology and phototherapy[14].

3. Chemical properties of coumarin
Benzene and α-pyrone rings join to form coumarins, an important group of phenolic compounds.

Scientists can use the way a two-ring substitution binds to make highly functionalized derivatives that react
and behave in biology in very different ways[15]. For various decades, coumarins have been receiving
scientific and practical admiration for different applications. They have several intriguing properties and a
diversity of biological activities[16]. These chemicals are a "golden scaffold" for pharmacologically adjusted
molecules and unique functional materials because they have so many useful effects in medicine, biology,
sensors, lighting, electroluminescence, antimicrobials, and more[17]. It is easily understandable why
coumarins bear the reputation of the "skeleton of pharmacologically active constituents." Being able to mix
chemicals by accident is not possible because coumarins naturally react with each other in epitactic
displacement and different functional group transformations[18]. Instead, we must establish rules to identify
enantiomerically pure compounds in sufficient quantities. The refracted organic reactivity of coumarin
derivatives comprises a diversity of reactions.

4. Biological activities of coumarin derivatives
Coumarin and its derivatives possess various intriguing biological properties, such as anti-inflammatory,

anticancer, antioxidant, antimicrobial, and especially anticoagulant activity[19]. Coumarin is a key part of
drug design because it has the lactone group, which is also known as the "characteristic scaffold," and
electron-rich aromatic rings. Because it's not possible to make different coumarin derivatives naturally,
scientists and engineers are always coming up with new ways to get it ready, such as total synthesis,
extraction from natural sources, and making engineered catalysts for changing coumarin[20]. At the moment,
a lot of research is being done to try making coumarin derivatives more effective against different diseases.
Among important biological activities, the anticoagulant activity of these derivatives has greatly attracted the
research community[21]. Numerous studies have showcased effective anticoagulant molecules, and
researchers have studied and designed their scaffolds based on the coumarin skeleton. These possible blood
thinner coumarin derivatives have a lot of activity and selectivity, which makes them intriguing as
pharmaceutical lead compounds for future blood thinner treatments[22].

5. Synthetic strategies for coumarin derivatives
Synthetic organic chemists are interested in adding an oxygen atom to the phenyl part of the coumarin

molecule because it has a lot of biological effects. For making this kind of coumarin, the easiest way is to use
phenols, which are simple to get directly from the corresponding substituted hydroxylnaphthalenes[23].
Mixing flavones with cerium salts in polyphosphoric acid made it easy to obtain many 3,4-dihydrocoumarin
derivatives. As long as you use ethyl glyoxylate on alumina at room temperature for an hour with NaH, you
can make 3-arylcoumarins up to 86% of the time [24]. Using a Pechmann route, aromatic compounds that
contain bromine can be used as building blocks to make 3-arylcoumarins. Nature typically produces
pyranocoumarins chemically, using neutrophil oxidase as a catalyst. However, the high cost of using this
enzyme makes the process very lengthy[25].
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Oxidative cyclization easily incorporates various types of enolizable 1,3-dicarbonyl or -ketoesters into
coumarin cores. The Pechmann route transforms aromatic compounds bearing an enolizable alkene moiety
into 3-arylcoumarins. Three-cyclohexyl-1-crolin was mixed with the right aromatic aldehyde in diethyl ether
and solid NaOH to make a lot of diryl ketones with an enolizable aldehyde[26]. Small changes in the structure
of a natural compound can cause significant changes in its biological activity. 3-arylcoumarins are known to
have different pharmacological effects. Adding halogen, nitro, methyl, or methoxy chains to their aromatic
ring did not have a big effect on their estrogenic activity, though[27]. In Table 1, the main reactions used to
make coumarin-based compounds are listed, along with the main pros and cons of using these reactions.

Table 1. Overview of synthetic reactions for coumarin-based derivatives; advantages and disadvantages.

Reaction name Advantages Disadvantages Ref.
Pechmann Condensation - Simple and cost-effective.

- Utilizes easily available phenols and β-
keto esters.
- Can be catalyzed by various acids,
including environmentally friendly
catalysts.

- Requires acidic conditions, which may
not be suitable for acid-sensitive
chemicals.
- May lead to side reactions with certain
reactants.

[28]

Knoevenagel
Condensation

- Mild reaction conditions.
- Suitable for a wide range of reactants.
- Produces 3-substituted coumarins
efficiently.

- May require longer reaction times for
less reactive reactants.
- Potential formation of by-products.

[29]

Perkin Reaction - Useful for synthesizing 3- and 4-
functionalized coumarins.
- Employs readily available starting
ingredients.

- Requires high temperatures.
- Limited to substrates that can withstand
harsh conditions.

[30]

Wittig Reaction - Allows for introducing of various
substituents at the 3-position.
- Provides access to a diverse range of
coumarin-based derivatives.

- Requires the preparation of
phosphonium salts.
- May involve multiple steps, increasing
complexity.

[31]

Kostanecki Reaction - Effective for synthesizing 4-
arylcoumarins.
- Utilizes simple starting ingredients.

- Requires strong bases, which may not
be compatible with all functional groups.
- Limited substrate scope.

[20]

Baylis-Hillman Reaction - Provides access to 3-functionalized
coumarins under mild conditions.
- Can be performed with various acrylate
derivatives.

- Often results in low yields.
- Slow reaction rates.
- Limited to specific ingredients.

[32]

Michael Addition - Useful for synthesizing 3-
aroylcoumarins.
- Can be performed under mild
conditions.

- May require the use of strong bases.
- Potential for side reactions.

[33]

Heck-Lactonization - Allows for the synthesis of 3,4-
difunctionalized coumarins.
- Utilizes palladium catalysis.

- Requires expensive palladium catalysts.
- Sensitive to steric hindrance around the
double bond in enoates.

[34]

6. Coumarin as a pharmacophore
The point of this study was to draw attention to how important the coumarin scaffold is in molecular

systems made for medical uses. So, we looked at the main bioactive molecules and molecular systems that
showed the 2H-chromen-2-one scaffold and wrote a review based on chemical facts. We were able to show
that the coumarin scaffold can be utilized in various ways for molecular design in order to create bioactive
molecules or molecular systems that exhibit a wide range of biological activities or strengths[35]. The same
activity might not be caused by the same mechanism; substituents or other scaffolds can change the
properties of a molecule or molecular system; molecular systems made from this scaffold should be biosafe
to avoid side effects in biomedical uses[36]. In addition to having intriguing photochemical properties that
make the Fenton photoreaction work, coumarin can be used in a lot of different ways to make different
structures. The considerable number of available synthetic procedures that lead to the substrate's chemical
transformations evidences this versatility. Many bioactive molecules contain coumarin, making it a unique
scaffold; these molecules have antibiotic, antitumor, antiviral, antioxidant, and anti-inflammatory properties,
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among other things. Neurodegenerative diseases, cardiovascular diseases, and their complications can also
benefit from their use[37–39].

7. Coumarin-based drug design and development
Coumarin is a benzopyrone whose name is derived from the French "couverin", a piece of cloth for

covering when wet, and whose perfume is reminiscent of that of coumarin. Many plants biosynthesize this
product, with its concentration varying within different organs based on genotype, developmental stage, and
environment[40]. Besides being able to stabilize the membrane and work as a strong antioxidant, coumarin
has many other biological effects, such as blocking a number of human enzymes and receptors[41]. However,
many countries have banned its consumption due to its known nephrotoxicity. At the same time, a lot of
molecules with a coumarin scaffold were made because scientists are becoming more interested in coumarin
because it is safe, has strong biological activity, and is simple to make[42].

It is now known that coumarin or one of its derivatives can be used as a building block to make
molecules that can interact with a wide range of known human protein receptors. A hybridization method,
ligand-based design of bioactive compounds, pharmacophore modeling, or high-throughput virtual screening
were used to make the design happen[43]. Major human diseases, like Alzheimer's, inflammation, AIDS, and
cancer, as well as heart, parasitic, and other diseases, are affected by these molecules because they mess up
important metabolic and signaling pathways[44]. About 47% of these coumarin-based agents or their analogs
have reached clinical development, while 33% are already considered commercially available drugs.
However, it is known that increasing the consumption of the already existing coumarin derivatives can be
poisonous[45]. Also, it doesn't make sense to try to get specific biological effects from a single chemical
scaffold when the pharmacodynamic spectrum is enormous and unexplored. These coumarin agents are
excellent at protecting cells from damage and keeping membranes stable because they are amphoteric, the
monomers are small, and the coumarin itself is structured in a certain way[46]. Therefore, from its one-
dimensional use in smelling to its three-dimensional use as a drug, this journey has been made over many
generations by bringing to light a wide range of coumarin derivatives.

8. Coumarins in natural sources
Natural sources of coumarins include a wide variety of plant families, such as Rutaceae, Apiaceae,

Fabaceae, and Asteraceae. Various species and environmental conditions contain these compounds in
varying concentrations in leaves, seeds, roots, and bark. For instance, the sweet-smelling tonka bean is rich
in coumarin, giving it its characteristic aroma[47]. Other notable sources include cinnamon, sweet clover, and
certain citrus fruits. These plants often use coumarins as allelopathic agents to stop competing plants from
growing. This protects their ecological niche [48].

Plants use the phenylpropanoid pathway (Figure 2), a metabolic process that starts with phenylalanine,
to make coumarins. This pathway leads to the formation of umbelliferone, a key precursor in the synthesis of
various coumarin derivatives. Changes made by enzymes, like hydroxylation, methylation, and glycosylation,
make the variety of coumarin compounds found in nature even wider[49]. These derivatives have many
biological properties, such as the ability to stop blood clots, kill microbes, and protect cells from damage.
This has made people interested in how they could be used in medicine[50].
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Figure 2. Schematic representation of plant-based phenylpropanoid pathway for synthesizing natural substituted coumarins.

The study of coumarins from natural sources continues to be a dynamic field, driven by their ecological
significance and therapeutic potential. Improvements in analytical methods have made it possible to identify
and describe new coumarin derivatives from species that had not been studied before[51]. Furthermore, these
discoveries have paved the way for biotechnological approaches to enhance coumarin production in plants or
microbial systems. This ongoing research shows how important coumarins are as a link between natural
product chemistry and medicinal science. It also shows how important they are for both human and animal
health[52].

9. Analytical methods for coumarin detection and quantification
The high frequency of pharmaceutical and commercial uses fulfills the necessity of accurate

quantification methods. The development and validation of analytical methods suitable for this task is a
pressing demand[53]. These examples illustrate their known applications in high-performance liquid
chromatography, gas chromatography, mass spectrometry, nuclear magnetic resonance, fluorescence
detection, refractive index, and electrochemical techniques[54]. Because many coumarin derivatives are stable
at low temperatures, unstable at high temperatures, and sensitive to light, more effective instrumental
techniques are needed[55]. These issues also need to be addressed for environmental purposes, and in this
effort, solid-phase micro-extraction and high-performance liquid chromatography/mass spectrometry
techniques seem to stand out[56].

The extensive research on the pharmaceutical and commercial applications of coumarins, coupled with
an understanding of their chemical and biological properties, clearly underscores the necessity for the
development and validation of analytical methods that can accurately determine these molecules across
various matrices[57]. A number of methods have already been created, but there are still a lot of questions
about their accuracy, precision, repeatability, sensitivity, and the ability to resolve and separate coumarin and
its derivatives[58]. Creating these protocols is necessary not only for analyzing drugs, but also for finding
coumarin and its derivatives in environmental, food, hygiene, and personal care products. These are often
tested because they pose serious health risks[59]. In addition, the existence of standardized methods and the
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development of new efficient instrumental techniques, which are amenable and easily available for their
intended use, provide significant advantages due to the upsurge in coumarin structural types in recent years
and their relatively low volatility, thermal instability, and light sensitivity[60].

For the effective detection and quantification of coumarins, one can employ quantitative analysis using
spectroscopic techniques. For instance, the coumarin scaffold's excellent light absorption makes ultraviolet-
visible spectroscopy a popular tool[61,62]. A simple and inexpensive way to measure amounts is with this type
of spectroscopy, especially for chemicals like coumarins that have unique chromophoric properties[63].
Furthermore, one can employ high-performance liquid chromatography in conjunction with ultraviolet
detection to enhance sensitivity and selectivity[64].

10. Computational approaches in coumarin research
All modern computational methods that predict chemical and biological activity use the fact that all

experiments, even at their basic levels, are essentially computations. In recent years, modern methods of
computational chemistry and computer-based 3D QSAR studies have played a crucial role in the outcomes
of molecular modeling. The "dry lab" computers facilitate various inherent activities of the "wet" one[65]. It's
easy to see in this computer view how to model ligands and proteins, small and large molecules, computer-
aided drug design, 2D and 3D QSAR studies, structure-based drug design, pharmacophore modeling, and
ADMET prediction work. Experts have discussed quantum mechanics, molecular mechanics, and molecular
dynamics with proficiency. Modern supercomputers can effectively study withanolides, flavonoids, and
calmodulin-like proteins. Experts have referred to this as a significant advancement in the field of coumarin
scaffold science[66].

Examples include the study of theory, implementation, abstract computation roadmaps, successful
functionalities, limitations, validations, and applications. Critical thinking philosophy helps in the selection
of the most appropriate method and its best use. Scientists have also highlighted the new role of interpretable
machine learning[67]. It's important to note that model selection, compared to its point in time, and decision-
making based on context from dynamically constructed model libraries are all very essential. They also
talked about how important it is to measure uncertainty, the range of applications, robust-tolerant QSAR
models, and the difference between having many molecules and many conformations[68]. Finally, the experts
have talked about how to find new drugs using computers, how proteins can act as pharmacophores, and
some new publications in computational QSAR.

11. Coumarins in medicinal chemistry
Beyond their anticoagulant properties, coumarin-based derivatives exhibit promising anticancer activity.

Studies have shown that they can induce apoptosis, inhibit angiogenesis, and modulate key signaling
pathways involved in tumor progression. For example, some coumarins have been shown to be able to target
enzymes like topoisomerases, which are needed for cancer cells to copy their DNA[69]. Also, their antioxidant
properties help mitigate oxidative stress, a factor implicated in cancer and other chronic diseases like
diabetes mellitus[70]. Moreover, coumarins are excellent candidates for developing anticancer drugs because
they can kill cells directly and change the levels of oxidative stress[71].

Because derivatives based on coumarin can change their structure, they are also great for chemical
changes that let medicinal chemists change their properties for specific medical uses[72]. Researchers can
make them more effective, selective, and bioavailable by adding different functional groups or combining
them with other bioactive molecules[73]. Because it is so flexible, many coumarin-based derivatives with
better pharmacokinetic profiles have been made. As research progresses, coumarins continue to serve as a
rich source of inspiration for novel drug development, bridging the gap between natural product chemistry
and modern pharmacotherapy[74].
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11.1. Coumarin in cancer research
Different heterocyclic families have recrystallized coumarin, a special heterocyclic moiety, as their

basic structure. It has the power to significantly change the biological behavior of these compounds for a
wider range of diseases[75]. Besides biochemical signaling and infectious agents, other areas of coumarin
engineering that show a lot of promise are the extreme pharmacology of natural immune modulators, cancer
theranostics, alpha-glucosidase inhibitors for diabetes, and peptidases that are involved with changes in
homeostasis[76]. For example, coumarin compounds have been known for a long time to play a part in some
steps of cancer cell proliferation and metastasis[77,78]. This is because they can change different signaling
pathways and stop some protein enzymes from working in the nucleus of cancer cells[79]. It stands out that
the search for novel and more effective anticancer compounds is of paramount importance since numerous
current treatments are still very aggressive or ineffective[80]. The chemical toxicity of many classical
treatments due to the non-specificity of their use is a challenge for health sciences, which can only be
overcome by increasing the specificity of chemotherapy towards tumoral tissues[81,82]. In addition to the
promising results obtained for some modified compounds with this important pharmacophore, the latest
advances in chemical functionalization techniques favor it[83]. Table 2 provides examples of some
investigated coumarins as anticancer prospects, along with their targets of action.

Table 2. Mapping coumarin derivatives to their anticancer targets.

Coumarin derivative Target Ref.

7-Hydroxycoumarin Cyclin D1 inhibition [84]

Umbelliprenin NF-κB and Akt signaling pathways [85]

4-Hydroxycoumarin Topoisomerase II inhibition [86]

Auraptene PI3K/Akt/mTOR signaling pathways [87]

Scopoletin Cell cycle arrest and apoptosis induction [88]

Esculetin Cell cycle arrest and apoptosis induction [89]

Osthole STAT3 and mTOR signaling pathways [90]

Dicoumarol NAD(P)H:quinone oxidoreductase (NQO1) inhibition [91]

Psoralen DNA intercalation [92]

Xanthotoxin Inhibition of the reactive oxygen species (ROS) generation [93]

Coumarin-3-carboxylic acid Inhibition of angiogenesis [94]

6,7-Dimethoxycoumarin MAPK pathway inhibition [95]

Fraxetin Apoptosis induction via caspase activation [96]

Daphnetin Inhibition of tyrosine kinases [97]

Coumarin-3-thiosemicarbazone DNA damage induction [98]

Bergapten Cell cycle arrest [99]

Isopimpinellin Cyclooxygenase inhibition [100]

Imperatorin Apoptosis via mitochondrial pathway [101]

Pyranocoumarin Topoisomerase I inhibition [102]

Suberosin Inhibition of tumor metastasis [103]

8-Methoxypsoralen CYP450 enzyme inhibition [104]

Coumarin-3,6-diols Anti-angiogenic activity [105]

Hydroxycoumarin-aldehydes DNA polymerase inhibition [106]

Methoxycoumarin derivatives Pro-apoptotic activity [105]

Coumarin-acetate hybrids PI3K pathway inhibition [107]



9

Coumarin derivative Target Ref.

Coumarin-amino acid conjugates Caspase-mediated apoptosis [108]

Coumarin-oxime derivatives DNA fragmentation [109]

Coumarin-benzyl derivatives ROS-mediated apoptosis [110]

Nitrocoumarins NF-κB pathway inhibition [111]

Coumarin-imidazole hybrids Dual kinase inhibition [112]

Table 2. (Continued)

11.2. Coumarin in antimicrobial activity
There is a general idea that coumarins kill bacteria, viruses, and fungi by stopping the biosynthesis of

nucleic acids and proteins. They do this by attaching covalently to DNA, nucleotides, thiols, and amino
groups[113–115]. Because there are a lot of drug-resistant microorganisms and a lot of interest in antibiotics, it
makes sense to look for new structures that can kill microbes and find new uses for the coumarin derivatives
that are already known[116–119]. Table 3 lists the antimicrobial effects of several coumarin derivatives,
including the type of action they have and the pathogens they kill.

Table 3. Mapping coumarin derivatives to their antimicrobial targeted effects.

Coumarin derivative Pathogen Pathogen type Ref.

7-Hydroxycoumarin Escherichia coli Bacteria [120]

Umbelliprenin Staphylococcus aureus Bacteria [121]

4-Hydroxycoumarin Candida albicans Fungus [122]

Auraptene Aspergillus niger Fungus [123]

Scopoletin Pseudomonas aeruginosa Bacteria [124]

Esculetin Helicobacter pylori Bacteria [125]

Osthole Mycobacterium tuberculosis Bacteria [126]

Dicoumarol Cryptococcus neoformans Fungus [127]

Psoralen Salmonella typhimurium Bacteria [128]

Xanthotoxin Trichophyton rubrum Fungus [129]

Fraxetin Klebsiella pneumoniae Bacteria [130]

Daphnetin Streptococcus pyogenes Bacteria [131]

Bergapten Candida tropicalis Fungus [132]

Isopimpinellin Aspergillus fumigatus Fungus [133]

Imperatorin Vibrio cholerae Bacteria [134]

Suberosin Fusarium solani Fungus [135]

8-Methoxypsoralen Rhizopus oryzae Fungus [136]

Coumarin-3-thiosemicarbazone Clostridium difficile Bacteria [137]

6,7-Dimethoxycoumarin Plasmodium falciparum Parasite [138]

Coumarin-acetate hybrids Leishmania donovani Parasite [139]

Coumarin-aldehyde hybrids Trypanosoma cruzi Parasite [140]

Hydroxycoumarin derivatives Schistosoma mansoni Parasite [141]

Coumarin-quinoline hybrids Toxoplasma gondii Parasite [142]

Coumarin-chalcone conjugates HIV-1 Virus [143]

Coumarin-imidazole hybrids Herpes simplex virus-1 Virus [144]
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Coumarin derivative Pathogen Pathogen type Ref.

Coumarin-pyrimidine derivatives Hepatitis C virus Virus [145]

Coumarin-flavonoid hybrids Zika virus Virus [146]

Coumarin-salicylate hybrids Dengue virus Virus [147]

Coumarin-azole derivatives Influenza A virus Virus [148]

Table 3. (Continued)

11.3. Coumarin in antioxidant properties
Coumarins are considered among the most researched classes of molecules in terms of biological

activities due to their noticeably diverse pharmacological properties[149]. Traditionally, coumarins are well-
known for their extensive and wide-ranging biological activities, such as hepatoprotective, anti-inflammatory,
anticoagulant, and anticancer effects[150]. Coumarins can protect the liver and regulate liver function through
their antioxidant action and ROS-scavenging properties[151]. They work as antioxidants in a number of ways,
such as by chelating transition metal ions, removing ROS, increasing the activity of antioxidant enzymes in
cells, and stopping the activity of pro-oxidant enzymes in cells[152]. Numerous studies have clearly
demonstrated their anticancer effect through antioxidant and metal ion chelation.

The main way that coumarins work as antioxidants is by neutralizing reactive oxygen or nitrogen
species. However, because they are thiols or metal-chelating, they may also work in other ways[153]. The
thiobarbituric acid reactive substances assay is the most common way to find out if coumarins can act as
antioxidants. Some may increase the total antioxidant capacity in a cellular system, increase the expression
and activity of endogenous antioxidant enzymes, or even modulate the redox status of the cell[154].
Researchers have intensively studied the relationship between new derivatives of coumarin and antioxidant
properties. There is a lot of proof that natural phenolic compounds, like coumarin, can protect cells from
cancer by getting rid of ROS, binding to transition metal ions, and changing the activity of antioxidant
enzymes[155]. In vivo models show that a lot of coumarin-based compounds are strong antioxidants that can
make more antioxidant enzymes work[156]. This means that they can change the redox status of cells in
animal models. Despite several models being available to predict the antioxidant capacity of this natural
compound, there is limited knowledge regarding their activity in the brain[157].

Coumarin and its derivatives belong to the group of phenolic antioxidants. The main reason these
compounds are antioxidants is that they have a phenolic structure, which lets them give up hydrogen atoms
or electrons to neutralize ROS and free radicals[158]. Also, coumarins are antioxidants because their aromatic
rings are full of electrons. Adding substituents, such as hydroxyl or methoxy groups, to the coumarin
scaffold can make it even better at getting rid of free radicals[159]. Flavonoids, stilbenes, and lignans are also
with coumarins in this group, and they are all known for reducing ROS. Furthermore, coumarins help the
body's antioxidant defenses by binding to transition metal ions that assist with make harmful radicals[160].
This prevents oxidative stress from damaging cells and tissues. As both free radical scavengers and metal
chelators, coumarins are very useful members of the phenolic antioxidant family [161].

11.4. Coumarin in anti-inflammatory effects
The coumarin framework has sometimes been associated with anti-inflammatory effects. In studies

administering the bioactive compound in various cellular or acellular assays, the coumarin moiety
demonstrates positive results in inflammation models[162]. With their lipophilic character, an efficient amount
of oxygen atoms in the bioactive coumarins may also be postulated in order to interact with inflammation-
relevant molecular targets. This section presents the anti-inflammatory potential of structure-modified
coumarins and highlights the main targets[163].
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The information talks about how coumarins can help lower inflammation and how these effects can be
changed by adding or removing hydrogen bond donor and acceptor pairs or by altering the way some
chemicals function in the aromatic rings. The discussion also revealed intriguing results, and the compound
was considered a prototype for potential anti-inflammatory coumarins[164]. All the reported examples concern
oxidative stress-related inflammation in cell-based assays. We present the relationship between the
coumarins's anti-inflammatory activity and their molecular targets, as listed in Table 4. Finally, we present a
list of bioactive compounds with intriguing properties, derived either from the coumarin framework or from
structural modifications[165]. There are some chemical functions and physical properties that are more
important in this method because they are pharmacophoric and biologically relevant. It also helps with the
design of coumarin and warfarin derivatives that might have anti-inflammatory effects[166].

Table 4. Mapping coumarin derivatives to their anti-inflammatory targets.

Coumarin derivative Anti-inflammatory target Ref.

7-Hydroxycoumarin COX-2 inhibition [167]

Esculetin NF-κB pathway inhibition [168]

Scopoletin IL-6 suppression [169]

Umbelliferone TNF-α suppression [170]

Osthole iNOS downregulation [171]

Dicoumarol ROS scavenging [172]

Bergapten LOX inhibition [173]

Imperatorin Cytokine modulation [174]

Auraptene MAPK pathway inhibition [175]

Psoralen NF-κB pathway inhibition [176]

Xanthotoxin IL-1β suppression [177]

Fraxetin COX-1/2 dual inhibition [178]

Daphnetin PGE2 production inhibition [179]

8-Methoxypsoralen NF-κB pathway inhibition [180]

Coumarin-3-carboxylic acid TNF-α and IL-8 suppression [181]

6,7-Dimethoxycoumarin iNOS and COX-2 inhibition [182]

Suberosin IL-1β and TNF-α suppression [183]

Coumarin-aldehyde hybrids ROS scavenging [184]

Hydroxycoumarin derivatives COX-2 and iNOS inhibition [185]

Coumarin-salicylate hybrids NF-κB and IL-6 suppression [136]

11.5. Coumarin in neuroprotective activities
Present-day research focuses on neurodegenerative-related disorders, such as Alzheimer’s disease,

Parkinson’s disease, multiple sclerosis, and other sporadic diseases, which undoubtedly evidence the
importance of this field[186]. Neural regenerative activities refer to a great and challenging process due to the
crucial associated pathways, like the ubiquitin-proteasome system, as well as the role of other signaling
mechanisms, since these have a damage-repair focus[187]. Most neurological disorders have no current
therapeutic solution. The development of new drugs for the treatment of the highly complex human central
nervous system pathologies has proved to be a great challenge[188]. The most well-known effect of coumarins
is to stop the activity of acetylcholinesterase and monoamine oxidases A and B enzymes. This shows that
they protect the brain and spinal cord. Besides the repression of inflammation, such as the inhibition of nitric
oxide and ROS, activation of the nuclear receptor system, or modulation of mitochondrial function,
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contributes to their neuroprotective role[189]. Neuroprotection products with more than one use are important
because neurodegenerative and sporadic diseases usually involve more than one system, and it is often
necessary to use a pharmacological combinatorial approach to slow or stop their progression[190].

11.6. Coumarin in cardiovascular health
Cardiovascular diseases are a class of diseases that involve the heart and blood vessels. These diseases

are a leading cause of human death, killing 17.9 million people every year, accounting for an estimated 31%
of all deaths worldwide. In recent decades, the use of natural compounds has gained interest due to their
generally reduced toxicity and low cost[191]. Over the years, many coumarin derivatives have been shown to
have a number of positive effects. These effects are directly linked to protecting the heart and blood vessels,
which lowers the risk of cardiovascular diseases[192]. The cell-protective and antioxidant effect of coumarin
derivatives often mediates this activity, preventing damage from various pathological conditions in
cardiovascular diseases[193]. Consequently, the development of novel therapeutic agents against
cardiovascular diseases often proposes coumarin-based derivatives as a template[194].

11.7. Coumarin in antidiabetic potential
Diabetes has emerged as a major health threat worldwide that affects approximately 285 million people,

whereas this number is assumed to be 438 million within two to three decades[195]. The large increase in
children with diabetes and the problems linked to antidiabetic drugs, such as problems with the adrenal
glands, pancreas, and heart, led to the creation of antidiabetic drugs[196]. Insulin accelerates glucose uptake,
and peroxisome proliferator-activated receptor agonists upregulate this process. PPARγ and α work by
making insulin more effective and lowering the flow of free fatty acids, respectively[197]. Coumarin has the
potential to treat type 2 diabetes mellitus because it activates both PPARγ and PPARα and lowers blood
sugar levels[198]. Researchers have synthesized numerous derivatives using Pechmann synthetic reaction,
following general principles to exhibit maximum biological activity [199]. The related studies show that it is
possible to create multidimensional scaffolds for type 2 diabetes mellitus from both a chemical and a
pharmacological point of view[200].

12. Coumarin in cosmeceutical formulations
More and more people are interested in the pharmacological activity of natural and synthetic coumarin

derivatives these days, especially how they can be used in different bioactive formulations. Sunlight is
known to damage living skin by causing redness, hyperpigmentation, edema, skin aging, and skin cancers in
humans[201]. To protect skin from these harmful effects, UV radiation protection formulas are a beneficial
bioactive idea, as shown by the growing interest in researching and developing cosmetics and skin care
products that contain photoactive compounds[202]. Currently, the type of hazardous radiation to human skin is
categorized into UVA (320–400 nm) and UVB (280–320 nm), in a ratio of almost 10:1. However, the
influence of the latter is equally more harmful, as UVB is biologically 100 times more active than UVA[203].
For that reason, the longer wavelengths of UVA radiation reach deeper into the skin because the skin tissue
absorbs these two types of harmful solar radiation differently[204].

The ability of coumarins to absorb ultraviolet radiation, especially UVA and UVB radiation, makes
them useful for increasing the Sun Protection Factor (SPF) in cosmetics[205]. Studies have shown that some
coumarins, like 7-hydroxycoumarin and esculetin, can increase SPF values by 2 to 5 units per percentage
concentration[206]. This depends on the base ingredient and other active ingredients. They protect skin cells
from photodamage by absorbing the harmful light and sending it away as harmless energy[207]. Additionally,
their antioxidant properties help get rid of ROS, which is another way they work[208]. Often, skincare
products combine coumarins with other ultraviolet filters to broaden protection and improve formulation
stability, making them valuable photoprotective agents[209].



13

13. Challenges and future perspectives in coumarin research
The bioactivities and potentials of coumarin and its derivatives received significant attention in the

previous sections. Along with the benefits, there are a lot of problems with synthesizing, purifying, and
adding functions to the coumarin scaffold. These problems make it harder for their therapeutic uses to grow
and develop[210]. One of the major challenges is the efficient synthesis of structurally diverse and complex
modified coumarins[211]. Classical coumarin chemical synthesis is mostly based on condensation methods,
among others. These include several inherent limitations, such as harsh reaction conditions, high-cost
operation, and the unwanted generation of by-products[212]. Aromatic hydrocarbons and carbonyl compounds
are complex and wasteful due to their low nucleophilicity and electrophilicity rates[213]. Researchers have
proposed a novel set of synthetic methods for designing a range of coumarin derivatives[214]. These showed
different kinds of substituted coumarins, and the experimental part of the text gives detailed information on
how to make them along with short descriptions of common reactions and compounds[215].

14. Conclusion and summary
Because of their impressive pharmacological properties, coumarin-based chemical entities constitute hot

topics in the domain. We think that our most recent critical and in-depth study of the hidden contributions
and illustrative examples is a good summary of the possibilities and promises that bioactive molecules
designed using the coumarin scaffold can bring. On the other hand, it shows how important bioactive
substances with coumarin scaffolds are and what their main target classes are in the research field. To be
more specific, each group of molecules was treated and shown not as a detailed description of how they work,
but as an engineering necessity for a strong and effective structure that aims for the desired activity profile.
This newly acquired structural information is important for future drug-enzyme or drug-receptor interaction
studies. Finally, we emphasize the advances, considering that the accelerated progress made in the field of
coumarin scaffold-containing bioactive molecules reflects a significant contribution to the correlation
between biological activity and chemical structure. Therefore, this enrichment of knowledge generates
original insights further aimed at deeper and more profound developments for science and wellness.
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