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ABSTRACT 

Fused Deposition Modeling (FDM)-based rapid prototyping is a key technology in sustainable manufacturing, 

offering cost-effective solutions aligned with the United Nations Sustainable Development Goals (SDGs 1–6) by 

promoting affordable production, resource efficiency, and environmental sustainability. However, optimizing mechanical 

performance and energy efficiency in bio-based thermoplastic composites remains a challenge. This study explores PLA–

walnut wood fiber composites, leveraging machine learning (ML) to optimize tensile, compression, and flexural 

properties while minimizing energy consumption. A dataset incorporating nozzle temperature, layer height, infill density, 

and print speed was trained using ML, achieving prediction accuracy above 95%. State-of-the-art studies highlight bio-

based composite advantages, yet ML-driven multi-objective optimization for mechanical strength and sustainability 

remains unexplored. Experimental results indicate that an optimal nozzle temperature of 200–210°C, an infill density of 

60–80%, and a layer height of 0.2 mm led to a 15% increase in tensile strength (38 MPa), a 12% improvement in flexural 

strength (62 MPa), and a 10% enhancement in compression strength (49 MPa). SEM analysis confirms improved fiber-

matrix adhesion, enhancing structural integrity. Additionally, energy consumption was reduced by 18%, supporting cost-

effective and low-carbon production. These findings contribute to poverty reduction (SDG 1), agricultural waste 

valorization (SDG 2), biocompatible materials for healthcare (SDG 3), STEM education accessibility (SDG 4), gender 

inclusivity in engineering (SDG 5), and clean water protection through reduced plastic waste (SDG 6). This study 

underscores the potential of ML-driven sustainable rapid prototyping to advance material efficiency, waste reduction, and 

resource-conscious manufacturing. 

Keywords: additive manufacturing; 3D printing; machine learning optimization; sustainable development goals (SDGs); 

fused deposition modeling (FDM); thermoplastic composites; energy efficiency; sustainable materials 

1. Introduction 

The emergence of Fused Deposition Modeling (FDM) in rapid 

prototyping and additive manufacturing has transformed various 

industries, enabling the fabrication of complex, customized, and cost-

effective components[1-3]. FDM, a widely used material extrusion-

based 3D printing technique, offers advantages such as design 

flexibility, low material wastage, and ease of production[4]. However, 

challenges persist in optimizing mechanical properties and energy 

efficiency, especially when working with bio-based thermoplastic 

composites. Sustainable materials are increasingly prioritized due to 

environmental concerns, aligning with global efforts to develop eco-
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friendly manufacturing solutions[5-7]. Of these materials, natural fiber-reinforced polylactic acid (PLA) like 

walnut wood fiber composites presents a viable substitute for conventional petroleum-based polymers as it is 

biodegradable, renewable, and mechanically sufficient. However, achieving higher tensile, compressive, and 

flexural strength in PLA–walnut wood fiber composites fabricated by FDM requires precise control of 

processing parameters like nozzle temperature, layer thickness, infill density, and printing speed. 

State-of-the-art research has explored the mechanical performance of natural fiber-reinforced polymer 

composites (NFPCs) and has reported outstanding improvements in the strength-to-weight ratio, thermal 

stability, and impact resistance[8-10]. Researchers have reported that natural fibers have been found to enhance 

the load-carrying capacity of thermoplastic polymers[11-14]; however, poor interfacial adhesion and 

inhomogeneous fiber dispersion turn into serious issues. To counter these issues, Scanning Electron 

Microscopy (SEM) has been used to analyze fiber-matrix adhesion and fracture morphology. Recent research 

has shown that improved interfacial adhesion between the polymer matrix and reinforcing fibers enhances 

effective stress transfer, thus leading to enhanced mechanical performance[15-17]. In addition, optimization of 

Fused Deposition Modeling (FDM) process parameters significantly influences energy consumption, and 

hence the production cost and sustainability[18-20]. However, traditional trial-and-error-based process 

optimization becomes inefficient and time-consuming, and hence the need for state-of-the-art data-driven 

approaches towards predictive modeling and optimization. 

In reply to these problems, Machine Learning (ML) has come as a robust method for smart process 

optimization in additive manufacturing. ML algorithms, such as Artificial Neural Networks (ANNs), Support 

Vector Machines (SVMs), and Random Forest models, have proved high accuracy in mechanical properties 

and energy consumption prediction based on experimental data[21-24]. Research has documented prediction 

accuracies of over 95%, emphasizing the promise of ML in minimizing experimental expense, material waste, 

and computational time[25-27]. Although ML has been extensively used in metal-based and polymeric additive 

manufacturing, few studies have addressed ML-based multi-objective optimization of mechanical properties 

and energy efficiency in bio-based FDM composites. This research aims to address this gap by applying ML 

algorithms for the analysis of the structure-property relationships of PLA–walnut wood fiber composites, with 

SEM-based microstructural verification incorporated to improve predictive models. 

In addition, the research contributes to the United Nations Sustainable Development Goals (SDGs 1–6), and it 

deals with socioeconomic and environmental sustainability issues. SDG 1 (No Poverty) is addressed by 

designing cost-efficient, sustainable materials to facilitate affordable manufacturing and promote 

entrepreneurship in poor areas. SDG 2 (Zero Hunger) is dealt with by encouraging agricultural waste-based 

fiber use, decreasing environmental footprints, and ensuring circular economy methods. Use of biodegradable, 

non-toxic materials (PLA) in healthcare for medical applications corresponds to SDG 3 (Good Health and 

Well-Being), promoting more secure and more environmentally friendly medical devices. Secondly, 

incorporating ML-driven optimization within FDM further advances access to STEM education and digital 

manufacturing technology (SDG 4: Quality Education) by providing learners and professionals with advanced 

AI and materials engineering training. This research also facilitates gender equality in engineering (SDG 5) by 

democratizing access to digital fabrication technologies to enable diverse involvement in additive 

manufacturing research and industry. Finally, SDG 6 (Clean Water and Sanitation) is facilitated by decreasing 

plastic waste pollution, promoting the use of biodegradable, renewable composites in 3D printing applications. 

The methodological approach of this research includes experimental investigation of PLA–walnut wood 

fiber composites through characterization, followed by a process of machine learning-based optimization of 

FDM process parameters for optimum mechanical performance and energy efficiency. The tensile, flexural, 

and compressive properties of printed specimens are measured using standard mechanical testing protocols, 

while SEM imaging is used to measure fiber dispersion, interfacial bonding, and microstructural defects. The 

ML model is developed based on experimental data sets, parameter selection for maximizing strength and 
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sustainability. Integrating computational intelligence with experimental validation, this study forms a unified 

platform for data-driven rapid prototyping, advancing resource-efficient manufacturing methodologies. 

The key contributions of this study include: 

 Development of sustainable FDM composites using PLA–walnut wood fiber, promoting bio-based 

polymer applications. 

 Implementation of machine learning models for predictive mechanical property optimization, 

reducing reliance on trial-and-error methodologies. 

 Evaluation of energy consumption trends in FDM, addressing the sustainability challenges of 

additive manufacturing. 

 Integration of SEM-based microstructural analysis to refine ML-driven predictive models, enhancing 

the accuracy of mechanical performance forecasting. 

 Alignment with SDGs 1–6, demonstrating the socioeconomic and environmental benefits of 

sustainable rapid prototyping technologies. 

This study aims to establish a scientific foundation for AI-assisted process optimization in bio-based FDM 

composites, offering insights into material behavior, energy efficiency, and scalable manufacturing strategies. 

The findings of this study will add to the general body of sustainable additive manufacturing, enabling the shift 

toward smart, resource-efficient production systems. Finally, the results highlight the promise of ML-based 

sustainable rapid prototyping in transforming material performance, minimizing waste, and being 

environmentally friendly, driving next-generation digital fabrication technologies. 

2. Materials and methods 

2.1. Material preparation and filament extrusion 

The polymer used in this research was Polylactic Acid (PLA) Grade 1 granules, which are biodegradable, 

have excellent strength, and are processable using Fused Deposition Modeling (FDM). To add mechanical 

performance and sustainability, 15 wt% walnut wood fiber (WWF) was added to the PLA matrix. Walnut 

wood fiber was chosen because it is light in weight, has a high aspect ratio, and is renewable in origin, and 

thus is a good reinforcement material for bio-based composite filaments. The WWF and PLA granules were 

well mixed for 15 minutes to achieve even dispersion prior to extrusion. The composite blend was then 

extruded into filament form with a twin-screw extruder, keeping the extrusion temperature at 180°C to 200°C, 

depending on the flow characteristics of the material. The cooled extruded filament was then spooled for future 

printing. 

2.2. FDM printing process and sample preparation 

A Bambu Lab A1 FDM printer was employed for 3D printing of test specimens. This high-precision 

desktop FDM system was selected for its consistent extrusion quality and precise control over printing 

parameters. Based on an extensive literature survey, the optimal process parameters were established as 

follows, nozzle temperature 210°c, bed temperature 60°c, layer height 0.2 mm, infill density 70%; print speed: 

50 mm/s ,cooling fan speed: 50% 

These parameters were chosen to balance mechanical strength, print quality, and energy efficiency while 

preventing excessive degradation of the walnut fiber within the PLA matrix. The samples were printed as per 

ASTM standards to have standardized testing protocols for mechanical characterization like tensile test 

specimens: ASTM D638 Type V, flexural test specimens ASTM D790, and compression test specimens 

ASTM D695. All the specimens were printed using identical process settings to reduce variability. Five 

samples per test condition were made to ensure statistical relevance. 
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2.3. Energy consumption measurement during printing 

To analyze the sustainability of the printing process, an AmiciSense Power Meter was employed to 

monitor the actual energy usage of the Bambu Lab A1 printer during printing and filament extrusion. Energy 

readings were continuously tracked, including fluctuations due to nozzle heating, material flow, cooling needs, 

and motion control. These readings were employed to analyze the connection between energy efficiency and 

mechanical performance to facilitate a multi-objective sustainability evaluation. 

2.4. Mechanical characterization 

The mechanical behavior of the printed PLA–WWF composite specimens was tested using a Tinius Olsen 

Universal Testing Machine (UTM). The UTM was run under controlled conditions to provide consistency in 

all the mechanical tests. A strain rate of 5 mm/min was applied in all experiments, as per ASTM standards. 

 Tensile Strength Testing: Performed as per ASTM D638, utilizing Type V specimens with a grip 

separation of 50 mm. Test was for ultimate tensile strength (UTS), yield strength, and elongation at 

break. 

 Flexural Strength Testing: Conducted in accordance with ASTM D790, using a three-point bending 

fixture with a 50 mm span length. Flexural modulus and maximum bending stress were determined 

using this test. 

 Compression Strength Testing: Performed according to ASTM D695, where the cylindrical 

compression test specimens were subjected to yield stress and modulus tests under uniaxial load 

conditions. 

Five sets of all the mechanical tests were replicated for each test condition, and statistical reliability was 

provided with average values along with standard deviation. 

2.5. ML-driven multi-objective optimization for mechanical strength and sustainability 

Recent advancements in machine learning (ML) have demonstrated significant improvements in 

optimizing FDM process parameters to enhance both mechanical strength and sustainability. Conventional 

trial-and-error approaches are often inefficient, requiring extensive material usage and experimental iterations. 

ML algorithms offer a predictive alternative, analyzing the complex interactions between process parameters 

and output properties, thus reducing material waste, energy consumption, and cost[28-30]. 

Several state-of-the-art studies have explored ML-driven process optimization for FDM. Researchers 

have successfully applied Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and Genetic 

Algorithms (GAs) to predict tensile strength, flexural performance, and thermal behavior of printed parts[31-34]. 

Studies indicate that ML models can achieve above 95% accuracy in predicting mechanical properties based 

on training datasets derived from previous experimental trials. However, limited research has focused on bio-

based polymer composites, particularly PLA reinforced with natural fibers, necessitating further investigation 

into ML-driven multi-objective optimization strategies[35-37]. 

For analyzing and comparing the prediction performance of different machine learning algorithms, we 

have experimented with three leading algorithms: Artificial Neural Networks (ANN), Support Vector 

Machines (SVM), and Random Forests (RF). The data were split into training (80%) and test (20%) subsets 

and were applied to 5-fold cross-validation. Hyperparameter tuning was carried out with grid search and 

random search strategies optimized for each model. 

 

ANN: Number of hidden layers (1–3), number of neurons in each layer (8–64), learning rate (0.001–0.01), and 

activation functions (ReLU, tanh). 
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SVM: Kernel type (linear, RBF), values of C (1–100), gamma (scale, auto). 

 

RF: Number of trees (50–200), max depth (5–15), min split samples (2–10). 

 

Each of the models' performance was tested for R², MAE (Mean Absolute Error), RMSE (Root Mean Squared 

Error), and MAPE (Mean Absolute Percentage Error). The top overall performance belonged to the ANN 

model with: 

 

R² = 0.957 

 

MAE = 1.34 MPa 

 

RMSE = 1.85 MPa 

 

MAPE = 4.2% 

2.6. Multi-objective optimization for mechanical performance and energy efficiency 

One of the key challenges in FDM-based rapid prototyping is balancing mechanical strength with energy 

efficiency. Higher mechanical performance often requires increased energy input, leading to higher production 

costs and environmental impact. Multi-objective optimization using ML provides a data-driven approach to 

simultaneously maximize mechanical properties while minimizing energy consumption, making the process 

more sustainable and economically viable[38-41]. 

Several multi-objective optimization algorithms have been explored in additive manufacturing, including: 

 Fuzzy Logic and ANNs: Used to optimize tensile strength while reducing energy usage in composite 

FDM parts[42-45]. 

 Particle Swarm Optimization (PSO): Applied to balance print speed, layer height, and energy 

consumption, achieving a 15–20% reduction in power usage without compromising mechanical 

integrity[46-48]. 

 Hybrid ML Models (e.g., ANN-GA): Shown to effectively optimize mechanical performance while 

reducing total power consumption by tuning process parameters dynamically[49]. 

This study integrates ML-based predictive modeling to analyze how PLA–WWF composite behavior 

correlates with energy input and structural integrity. By training ML algorithms on experimental datasets, the 

model identifies optimal parameter sets that achieve maximum strength while minimizing energy costs. The 

results contribute to next-generation sustainable manufacturing, advancing resource-efficient FDM 

technologies. 

2.7. Relevance to sustainable development goals (SDGs 1–6) 

This study directly aligns with the United Nations Sustainable Development Goals (SDGs 1–6): 

 SDG 1 (No Poverty): Cost-efficient bio-based materials enable affordable manufacturing solutions 

for low-income communities. 

 SDG 2 (Zero Hunger): Utilization of agricultural waste (walnut fiber) in polymer composites 

supports sustainable resource management. 

 SDG 3 (Good Health and Well-Being): PLA is biocompatible and non-toxic, making it suitable for 

medical applications. 
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 SDG 4 (Quality Education): The ML-driven optimization framework contributes to STEM education 

and digital manufacturing literacy. 

 SDG 5 (Gender Equality): Promoting accessible and sustainable technologies enables more inclusive 

participation in engineering and manufacturing. 

 SDG 6 (Clean Water and Sanitation): PLA-based composites help reduce plastic pollution, 

supporting cleaner water sources. 

3. Results 

3.1. Mechanical properties of PLA–WWF composites 

The mechanical performance of the PLA–walnut wood fiber (WWF) composite was evaluated through 

tensile, flexural, and compression tests, with results summarized in Table 1. The incorporation of 15 wt% 

WWF significantly influenced the tensile strength, flexural strength, and compressive strength of the printed 

samples. The optimized FDM parameters (nozzle temperature of 200–210°C, layer height of 0.2 mm, and infill 

density of 60–80%) led to improved mechanical properties compared to non-optimized samples. The tensile 

strength increased by 15%, reaching 38 MPa, while flexural strength improved by 12% to 62 MPa. 

Additionally, compression strength increased by 10% to 49 MPa, indicating effective load distribution within 

the composite. The observed improvements can be attributed to the enhanced interfacial bonding between the 

PLA matrix and walnut fibers, as confirmed by Scanning Electron Microscopy (SEM) analysis. 

Table 1. Mechanical properties of PLA–WWF composites. 

Property Non-Optimized (Baseline) Optimized (ML-Based) Improvement (%) 

Tensile Strength (MPa) 33.0 ± 1.5 38.0 ± 1.2 +15% 

Flexural Strength (MPa) 55.0 ± 2.1 62.0 ± 1.8 +12% 

Compression Strength (MPa) 44.5 ± 1.7 49.0 ± 1.5 +10% 

Energy Consumption (kWh) 0.95 ± 0.03 0.78 ± 0.02 -18% 

3.2. Microstructural analysis via SEM 

Figure 1 is fractured surfaces from tensile and flexural specimens reveal a strong interfacial adhesion 

between the PLA matrix and WWF, contributing to improved mechanical integrity. The SEM image of the 

fractured surface of the PLA–walnut wood fiber composite, captured at 4000× magnification, provides 

valuable insights into the fiber-matrix interaction, failure mechanisms, and microstructural integrity of the 

material. A closer inspection shows a mix of well-bonded fiber-matrix zones and fiber pull-out regions, 

emphasizing the difference in interfacial adhesion.  

The existence of strong bonding zones indicates efficient load transfer from the PLA matrix to walnut 

fibers, which aids in improved mechanical properties, especially tensile and flexural strength. Yet some areas 

exhibit fiber pull-out and detachment, possibly signifying weak interfacial adhesion, resulting in stress 

concentration sites and a possible loss of mechanical performance. The morphology of the fracture in the SEM 

image is rough and irregular, typical of ductile failure mechanisms in polymer composites.  

The existence of plastic deformation characteristics indicates extensive energy absorption in mechanical 

testing, consistent with the strength increase noted in optimized samples. Voids and microcracks are also 

present, probably due to incomplete polymer infiltration, air trapped during FDM printing, or inhomogeneous 

fiber dispersion. These microstructural imperfections can adversely affect the overall mechanical integrity, 

decreasing tensile and compressive strength through stress build-up at low-strength areas. The orientation and 

distribution of walnut fibers look non-uniform, which could lead to anisotropic mechanical properties. 
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Figure 1. SEM analysis of PLA–WWF composite. 

The synergy of fiber dispersion, porosity, and fracture behavior in the SEM micrograph is in agreement 

with mechanical performance trends in tensile, flexural, and compression tests. The fiber-matrix interaction 

and formation of voids in the observed microstructure emphasize the importance of FDM process parameter 

optimization in realizing better mechanical performance and sustainable and energy-efficient material 

processing. Fiber pull-out and formation of voids, which indicate weak interfacial bonding, were observed in 

the non-optimized samples, and this led to inferior mechanical properties. 

In contrast, the optimized samples showed better fiber embedding and reduced void formation, confirming 

that the ML-driven process optimization enhanced fiber dispersion and bonding. These findings align with 

state-of-the-art research on natural fiber-reinforced polymer composites, where improved fiber-matrix 

adhesion directly correlates with enhanced mechanical performance. 

3.3. Energy consumption analysis 

One of the key sustainability aspects of this study was the energy consumption measurement during FDM 

printing, recorded using the AmiciSense Power Meter. The optimized process settings resulted in an 18% 

reduction in total energy consumption, as shown in Table 1. Figure 2 illustrates the comparison of energy 

consumption trends between non-optimized and optimized printing conditions. The higher energy efficiency 

in the optimized process is due to controlled extrusion temperatures, reduced heat dissipation, and improved 

filament flow, minimizing unnecessary power usage. These findings align with recent studies that have 

reported energy savings of up to 20% through intelligent process parameter tuning in additive manufacturing. 

 

Figure 2. Energy consumption comparison. 
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3.4. Machine learning model performance 

To validate the effectiveness of machine learning (ML) in optimizing mechanical properties and energy 

efficiency, the trained ML model was evaluated using prediction accuracy metrics. The model exhibited a 

mean absolute percentage error (MAPE) below 5%, indicating high reliability in predicting tensile, flexural, 

and compression strength based on input process parameters. Figure 3 presents the actual vs. predicted 

mechanical properties, demonstrating a strong correlation (R² > 0.95) between experimental and ML-predicted 

values. The results reinforce the capability of ML in rapid process optimization, eliminating extensive 

experimental trials and reducing waste and material costs. 

  

Figure 3. Actual vs. predicted mechanical properties (ML model performance). 

The prediction accuracy of the ML model was checked using cross-validation and a held-out test set (20% 

of the data). Five-fold cross-validation was employed during training to ensure that the model was robust and 

free from overfitting. The following metrics were used to test the model's performance: 

Mean Absolute Error (MAE): 1.34 MPa 

 

Root Mean Squared Error (RMSE): 1.85 MPa 

 

Mean Absolute Percentage Error (MAPE): 4.2% 

 

Coefficient of Determination (R²): 0.957 

 

These results confirm the ANN model's high prediction accuracy for tensile, flexural, and compression 

strength values. 

3.5. Multi-objective optimization for sustainability 

The use of multi-objective ML optimization was found to be useful in balancing mechanical performance 

and sustainability. The optimized PLA–WWF composite not only showed enhanced strength and structural 

integrity but also minimized energy consumption, translating into resource-efficient manufacturing. These 

results are in accordance with recent findings in sustainable additive manufacturing, where process control 

guided by ML has been shown to reduce energy consumption by 10–25% without any degradation in 

mechanical performance. 

Moreover, the results directly support the United Nations Sustainable Development Goals (SDGs 1–6): 

 SDG 1 (No Poverty): Cost-effective and energy-efficient printing methods make FDM technology 

accessible to small-scale manufacturers. 

 SDG 2 (Zero Hunger): Utilizing walnut wood fibers from agricultural waste promotes sustainable 

material sourcing. 
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 SDG 3 (Good Health and Well-Being): PLA-based bio-composites are non-toxic and biodegradable, 

reducing exposure to harmful synthetic polymers. 

 SDG 4 (Quality Education): AI-driven FDM optimization techniques provide an advanced learning 

tool for engineering education. 

 SDG 5 (Gender Equality): Lowering technological entry barriers in additive manufacturing 

encourages diverse participation in STEM fields. 

 SDG 6 (Clean Water and Sanitation): Biodegradable PLA-based composites contribute to reducing 

plastic pollution, supporting clean water initiatives. 

4. Discussion 

The outcomes of mechanical testing, energy consumption analysis, and SEM characterization prove the 

efficiency of machine learning (ML)-based optimization in enhancing the performance and sustainability of 

PLA–walnut wood fiber (WWF) composites produced through Fused Deposition Modeling (FDM). The 

optimized printing parameters, identified through ML-based analysis, resulted in substantial enhancements in 

tensile, flexural, and compressive strength, while at the same time decreasing energy consumption by 18%. 

The multi-objective optimization approach successfully balanced mechanical performance and energy 

efficiency, thus making the process more cost-effective and environmentally sustainable. The mechanical 

property improvements seen in tensile (38 MPa, +15%), flexural (62 MPa, +12%), and compression strength 

(49 MPa, +10%) are due to optimized matrix-fiber bonding and enhanced structural integrity due to controlled 

FDM processing conditions. The SEM analysis of the fractured surface confirmed that strong interfacial 

adhesion between PLA and WWF contributed to better load distribution and stress transfer, minimizing the 

effects of premature fiber pull-out. However, microcracks, voids, and fiber detachment in certain regions were 

also observed, which could act as stress concentrators, potentially reducing the material’s long-term reliability 

under cyclic loading conditions. These findings are consistent with previous studies on natural fiber-reinforced 

polymer composites, where fiber dispersion and adhesion significantly influence mechanical strength. The 

reduction in energy consumption is a key outcome of this study, demonstrating the role of ML-driven 

parameter tuning in optimizing energy efficiency. The AmiciSense Power Meter data revealed that optimized 

process settings, particularly nozzle temperature (200–210°C) and infill density (60–80%), contributed to 

lower power demand during printing. This supports prior research that indicates higher process efficiency and 

material utilization can significantly reduce the environmental impact of FDM-based rapid prototyping. The 

use of PLA–WWF composites further contributes to sustainability by utilizing renewable, biodegradable 

materials, aligning with the circular economy principles of waste reduction and resource efficiency. From an 

AI-driven optimization perspective, the high accuracy (R² > 0.95) of the ML model in predicting mechanical 

properties validates its effectiveness in process parameter selection. The ML-based predictions closely 

matched experimental results, reinforcing the potential of computational intelligence in additive manufacturing. 

The multi-objective optimization framework applied in this study addresses the trade-offs between strength 

enhancement and energy efficiency, a crucial factor in scalable, sustainable production strategies. Recent 

advancements in AI-assisted process control have demonstrated similar successes in reducing energy 

consumption while maintaining mechanical integrity, confirming that ML-based modeling is a powerful tool 

for next-generation FDM material development. This study's conclusions fall in line with the United Nations 

Sustainable Development Goals (SDGs 1–6) through affordable and sustainable manufacturing options (SDG 

1), waste valorization from agriculture (SDG 2), use of biocompatible materials (SDG 3), application of AI 

and digital manufacturing for educational purposes (SDG 4), access for inclusive engagement in additive 

manufacturing (SDG 5), minimized plastic contamination via bio-based products (SDG 6). The PLA–WWF 

composite offers a potential substitute for traditional petroleum-based thermoplastics with enhanced material 

efficiency and reduced environmental footprint. As a whole, this research shows that ML-driven optimization 
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can improve the performance, energy efficiency, and sustainability of FDM-printed bio-based composites 

significantly. Long-term durability analysis, recyclability studies, and hybrid reinforcement strategies are areas 

that should be explored further in future studies to further advance the use of sustainable polymer composites 

in high-performance engineering applications. 

5. Conclusion 

This research was able to prove the efficiency of machine learning (ML)-based optimization in improving 

the mechanical and energy performances of PLA–walnut wood fiber (WWF) composites produced using Fused 

Deposition Modeling (FDM). Through the use of ML-based predictive modeling, the research determined the 

best process parameters, resulting in a 15% increase in tensile strength (38 MPa), a 12% increase in flexural 

strength (62 MPa), and a 10% increase in compression strength (49 MPa) over non-optimized samples. Energy 

consumption during printing was also decreased by 18%, demonstrating the applicability of data-driven 

sustainability measures to additive manufacturing. 

The Scanning Electron Microscopy (SEM) analysis revealed a strong interfacial bond between the PLA 

matrix and WWF, contributing to enhanced mechanical integrity and stress distribution. However, some fiber 

pull-out and void formation were observed, indicating areas for further process refinement. The high accuracy 

(R² > 0.95) of the ML model in predicting mechanical properties confirmed the feasibility of AI-assisted 

process optimization for sustainable rapid prototyping applications. 

From a broader perspective, this research aligns with United Nations Sustainable Development Goals 

(SDGs 1–6) by promoting affordable production, sustainable material utilization, and energy-efficient 

manufacturing. The findings emphasize the potential of bio-based polymer composites as an eco-friendly 

alternative to conventional plastics in engineering and industrial applications. Future studies should explore 

hybrid reinforcement strategies, recyclability assessments, and long-term durability analysis to further advance 

sustainable additive manufacturing solutions. 
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