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ABSTRACT 

The management of marine dredged sediments is a critical 

environmental and economic issue, particularly in port cities where dredging 

is a necessary activity to maintain navigability. These sediments are typically 

viewed as waste products and often require costly and environmentally 

challenging disposal methods. However, repurposing dredged sediments as a 

component in concrete production presents a promising solution for both 

waste management and the creation of sustainable construction materials. 

Despite this potential, determining the optimal percentage of sediment 

incorporation and accurately predicting the mechanical properties, such as 

compressive strength, remain significant challenges. This study proposes an 

artificial intelligence (AI)-based approach to predict the optimal incorporation 

percentage of marine dredged sediments from Moroccan ports into concrete 

and to forecast the resulting compressive strength. A dataset consisting of 104 

samples, including dune sand and port sediments from JEBHA, was used. The 

data includes key properties such as granulometry, cleanliness, fineness 

modulus, and the compressive strength of the concrete mixtures. These 

experimental data were employed to train and validate several machine 

learning models, including linear regression, Random Forest, Gradient 

Boosting, and XGBoost, chosen for their ability to model complex, non-linear 

relationships between sediment characteristics and concrete performance. The 

performance of these models was evaluated using two key metrics: the 

coefficient of determination (R²) and the root mean square error (RMSE). 

Among the models tested, the Random Forest Regressor delivered the best 

results, with an R² value greater than 0.98 and an RMSE of less than 0.20 MPa, 

indicating highly accurate predictions of both the optimal sediment 

incorporation rate and the compressive strength of the concrete. This model’s 

exceptional performance underscores its potential as a reliable tool for 

ARTICLE INFO 

Received: 22 March 2025 

Accepted: 18 April 2025 

Available online: 06 June 2025 

COPYRIGHT 

Copyright © 2025 by author(s). 

Applied Chemical Engineering is published by 

Arts and Science Press Pte. Ltd. This work is 

licensed under the Creative Commons 

Attribution-NonCommercial 4.0 International 

License (CC BY 4.0). 

https://creativecommons.org/licenses/by/4.0/ 

 



2 

optimizing the use of dredged sediments in concrete production. The findings of this study demonstrate the considerable 

potential of AI in optimizing the incorporation of marine dredged sediments into concrete. By accurately predicting the 

mechanical properties of the resulting material, this approach enables the development of more sustainable construction 

practices while reducing the environmental burden associated with sediment disposal. Moreover, this work illustrates the 

broader applicability of AI in addressing environmental challenges, offering a pathway to valorize waste materials in the 

construction industry. The study not only advances our understanding of sediment utilization in concrete but also 

contributes to the growing field of sustainable material science, offering promising avenues for future research and 

development. 

Nevertheless, further research is needed to validate the model’s scalability to other sediment types and assess 

practical limitations in industrial applications. 

Keywords: random forests; experimental data; optimal incorporation percentage; model predictions; artificial intelligence; 

compressive strength 

1. Introduction 

The massive exploitation of natural resources, particularly sand, poses a growing threat to coastal 

ecosystems on a global scale. Sand, although perceived as an abundant resource, is in fact a limited raw 

material whose intensive extraction leads to severe environmental consequences, such as beach erosion, 

destruction of marine habitats, and disruption of coastal ecosystems[1]. In Morocco, this issue is exacerbated 

by port activities, which generate significant amounts of dredged sediments. These sediments, resulting from 

the cleaning of waterways and port basins, present major challenges in terms of management and valorization. 

Traditionally considered as waste, they nonetheless represent an opportunity to reduce pressure on natural 

resources by being reused in industrial applications, particularly in the construction sector[2]. 

Incorporating dredged sediments as a partial substitute for sand in concrete production offers a promising 

way to balance economic growth with environmental sustainability. However, the variability in the 

physicochemical properties of these sediments, which depends on their geographic origin and composition, 

has a direct impact on the concrete's mechanical performance, especially its compressive strength (CS). This 

variability makes it challenging to create the ideal concrete mix, highlighting the need for accurate predictive 

tools that can estimate the mechanical properties of concrete based on the amount of sediments incorporated[3,4]. 

Recent studies have explored the integration of artificial intelligence in sustainable construction, 

particularly in optimizing concrete formulations using industrial by-products. However, the use of dredged 

marine sediments in this context remains underexplored, thus highlighting the novelty of this study. 

In this context, the study introduces an innovative machine learning-based approach to predict the optimal 

incorporation rate of dredged sediments in concrete and to estimate the compressive strength of the resulting 

material. The objective is to develop formulations that enhance mechanical performance while minimizing 

environmental impact, particularly by reducing the need for natural sand extraction. To achieve this, a variety 

of machine learning models were investigated, including linear regression, Random Forest, Gradient Boosting, 

and XGBoost. These models were trained and tested using a comprehensive dataset containing results from 

dune sand characterization and sediments collected from the port of JEBHA, alongside the corresponding 

compressive strength of the concrete mixtures. The models were then validated using additional data from 

sediments obtained from the ports of Nador, Ras Kebdana, and Mohammedia, three sites that capture 

Morocco’s geological and environmental diversity[5,6]. 

The evaluation of model performance was conducted using robust statistical indicators, such as the 

coefficient of determination (R²), root mean square error (RMSE), mean absolute error (MAE), and mean 

absolute percentage error (MAPE). These metrics allow for the quantification of prediction accuracy and the 

comparison of the effectiveness of different models. The results obtained show that machine learning 
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approaches, particularly ensemble methods like XGBoost and Random Forests, offer high accuracy in 

predicting concrete compressive strength based on sediment composition. These models also enable the 

identification of key parameters influencing mechanical properties, paving the way for more refined 

optimization of formulations[7]. 

In conclusion, this study underscores the potential of machine learning in addressing environmental 

challenges linked to the exploitation of natural resources. By offering sustainable solutions for the valorization 

of dredged sediments, it supports the transition to a circular economy within the construction industry while 

helping to protect sensitive coastal ecosystems. The results also lay the groundwork for future research, which 

could broaden the application of this approach to other forms of industrial waste or different regions, thereby 

enhancing the environmental and economic benefits of this innovative method[8]. 

2. Modeling methodology 

The data modeling process is presented in a series of key stages (Figure 1). It begins with the collection 

and preprocessing of data, followed by the application of machine learning algorithms for model development. 

Finally, the results are rigorously validated to determine the most accurate and effective model, ensuring 

optimal performance and reliability.  

 

Figure 1. Data processing workflow. 
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 .1. De cription of d t  b  e  

The database employed in this study comprises 105 samples of dune sand and marine dredged sediments. 

The measured parameters include granulometric characteristics, sediment incorporation percentage, sediment 

cleanliness, and the 28-day compressive strength (CS) of the resulting concrete. Table 1 summarizes the 

descriptive statistics of the key parameters, revealing a broad range of variations, especially in sediment 

incorporation percentages and compressive strength. This variability provides a rich and diverse dataset, 

essential for robust model training and accurate predictions. 

T ble 1. Database description. 
  

Paramete N Mean Standard Deviation Min Max 

Dmax (mm) 105 2,64 1,58 1,00 8,00 

> 50 mm (%) 105 0,00 0,00 0,00 0,00 

> 5 mm (%) 105 0,32 1,20 0,00 7,30 

5 mm to 80 µm (%) 105 94,10 7,67 52,40 98,50 

< 80 µm (%) 105 5,58 7,07 1,50 47,60 

< 63 µm (%) 105 4,92 7,25 1,00 47,60 

Fineness modulus 105 1,40 0,37 1,13 3,40 

Cleanliness  (%) 105 70,80 11,49 24,00 78,00 

Incorporation percentage (%) 105 91,70 23,68 10,00 100,00 

28-day Compressive Strength (MPa) 105 53,10 3,40 46,10 60,30 
  

 . . St ti tic l d t   n ly i   

In this study, a representative sample of 105 specimens was analyzed to characterize the granulometric 

and mechanical properties of the material. Table 1 summarizes the key descriptive statistics for each measured 

parameter: 

The particle size distribution of the studied materials reveals key characteristics for concrete formulation. 

The maximum aggregate size (Dmax) has an average of 2.64 mm, with a standard deviation of 1.58 mm, 

indicating notable variability between samples, ranging from 1.00 mm to 8.00 mm. No particles larger than 50 

mm were detected (0%), which is consistent with expectations for this type of material. Particles larger than 5 

mm are scarcely present, with an average of 0.32% (standard deviation of 1.20%), although some samples may 

contain up to 7.30%. The majority of particles fall within the 5 mm to 80 µm range, representing an average 

of 94.10% of the material (standard deviation of 7.67%), a favorable characteristic for concrete compactness[9]. 

In contrast, the fractions below 80 µm and 63 µm show respective averages of 5.58% and 4.92%, but with 

high variability (standard deviations of 7.07% and 7.25%), which may influence the density and strength of 

the concrete. The fineness modulus, reflecting the distribution of particle sizes, has an average of 1.40 (standard 

deviation of 0.37), with a range of 1.13 to 3.40, indicating moderate dispersion essential for mixture cohesion. 

The sediment cleanliness, measured as a percentage, has an average of 70.80% (standard deviation of 11.49%), 

with values varying from 24% to 78%, which can impact the quality of the concrete. The incorporation rate 

shows a high average of 91.70% (standard deviation of 23.68%), covering a wide range from 10% to 100%, 

allowing for the evaluation of the impact of different incorporation levels on concrete performance.  

Finally, the 28-day compressive strength (RC 28d) has an average of 53.10 MPa (standard deviation of 

3.40 MPa), with values ranging from 46.10 MPa to 60.30 MPa, demonstrating homogeneous and satisfactory 

mechanical performance despite the variability of other parameters[10]. 
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 . . Synt e i   nd per pective   

Overall, the results demonstrate a high degree of homogeneity for most granulometric and mechanical 

parameters, with minimal variations observed across the majority of the samples. However, the presence of a 

few extreme values, particularly in the fine fractions and incorporation percentages, suggests that variations in 

the process or specific anomalies may account for these discrepancies. These findings highlight the need for 

further research to optimize quality control and manufacturing conditions, ensuring consistent and optimal 

performance of the material under investigation[11]. 

 . . Modeling met odology  

The methodology adopted in this study, as presented in Figure 1, comprises four main stages:  

Data collection and preparation  

The data originate from experimental tests conducted on dune sands, marine dredged sediments, and 

concretes containing these materials. They include granulometric characteristics, cleanliness (sand equivalent), 

fineness modulus, the percentage of sand incorporation in concrete, and the 28-day compressive strength (RC). 

These data form the database necessary for constructing and evaluating predictive models[12].  

The compressive strength tests were conducted on cylindrical specimens of 16×32 cm, cured under water at 

20°C for 28 days. Data normalization was systematically applied before training all models. Hyperparameter 

tuning was conducted for each algorithm using grid search and cross-validation. 

Data preprocessing  

This step involves normalizing the variables, handling missing values through imputation, and removing 

outliers to improve the quality of the inputs for the models.  

Model training: Machine learning algorithms  

Machine learning models  

To predict the optimal incorporation percentage of dredged sediments and the compressive strength (RC) 

of concrete, nine machine learning algorithms were tested and compared in this study (Table 2). These 

algorithms, selected for their regression efficiency and ability to handle complex multivariate datasets, include:  

 Ensemble methods : RandomForestRegressor, XGBoost, LightGBM, Extra Trees[13] 

 Linear approaches : Linear Regression[14] 

 Similarity- and tree-based techniques : SVR, KNN, Decision Tree, AdaBoost[15] 

To ensure a thorough comparison, each model was trained on 80% of the data and tested on the remaining 

20%. Performance was evaluated using specific metrics, enabling the identification of the most suitable 

algorithm for each of the two prediction objectives.  

T ble  . Machine learning models. 

Model De cription 

Random Forest (RF) Ensemble method based on the construction of multiple decision trees. It enhances robustness and 

accuracy by aggregating the predictions from each tree.. 

XGBoost An optimized variant of Gradient Boosting, it leverages first- and second-order derivatives to better fit the 

loss function. XGBoost is renowned for its computational speed and ability to efficiently handle missing 

values. 

LightGBM Developed by Microsoft, LightGBM builds its decision trees "leaf-wise" rather than "level-wise," 

improving accuracy and reducing computation time, especially for large datasets. 

Régression Linéaire 

(RL) 

A basic model that establishes a linear relationship between the explanatory variables and the target 

variable. It is simple and easy to interpret but may be insufficient for capturing nonlinear relationships. 

SVR (Support 

Vector Regression) 

A variant of the Support Vector Machine method, it aims to find a regression function by minimizing the 

error beyond a certain threshold. SVR is particularly suited for complex problems but may require precise 

tuning of its hyperparameters. 



6 

Model De cription 

KNN (K-Nearest 

Neighbors) 

Similarity-based algorithm: the prediction for a new sample is derived from the values of its k nearest 

neighbors. KNN is easy to understand but can be sensitive to noise and the choice of distance metric used. 

Decision Tree (DT) A basic algorithm that partitions the variable space using hierarchical decision rules. While intuitive, it 

tends to overfit unless some form of regularization or depth limitation is applied. 

AdaBoost A sequential boosting technique where each new estimator focuses on the samples misclassified (or poorly 

predicted) by the previous estimators. AdaBoost is effective for reducing bias but can be sensitive to noise. 

Extra Trees (ET) An ensemble method similar to Random Forest, with the difference that the selection of split points in the 

trees is random. This can lead to greater tree diversity and, potentially, better generalization. 

Table 2. (Continued) 

Statistical indicators   

To evaluate the performance of the models in predicting the incorporation percentage and compressive 

strength (RC), several statistical indicators (performance metrics) were used: the coefficient of determination 

(R²), the root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage 

error (MAPE) (Table 3).   

These complementary indicators provide an assessment of the overall performance of the models in terms 

of accuracy and explanatory capacity.   

T ble  . Performance metrics 

Performance Metric Formula Interpretation 

Coefficient of Determination 

(R²)  

 [16] 

An R² value close to 1 indicates that the model 

effectively explains the variability in the data. 

Root Mean Square Error 

(RMSE) 
[17] 

A lower RMSE indicates more accurate predictions. 

Mean Absolute Error (MAE) 

[18] 

The lower the MAE, the better the model's accuracy. 

Mean Absolute Percentage 

Error (MAPE) 
[16] 

The lower the MAPE, the more accurate the model 

is. 

 

Prediction models   

Two distinct prediction models were developed and trained using the RandomForestRegressor algorithm 

(Table 4). The comprehensive analysis and modeling process, designed to optimize the incorporation of 

marine sediments in concrete as outlined in Figure 2, begins with a detailed examination of granulometric 

characteristics, including grain size and distribution, an assessment of cleanliness, and data normalization, 

while addressing outliers to ensure the data's reliability. 

The first model predicts the optimal percentage of marine sediment incorporation, using granulometric 

characteristics and cleanliness as input variables. The second model, referred to as the RC model, predicts 

compressive strength by incorporating both the sediment incorporation percentage and the previously 

mentioned parameters. 

These models undergo validation through experimental testing, followed by fine-tuning to enhance their 

predictive accuracy. They are ultimately validated for practical use, ensuring that the results are not only 

scientifically sound but also applicable in real-world scenarios. This approach blends scientific rigor with 

industrial relevance, offering a robust methodology for optimizing material performance in concrete 

production.   
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T ble  . Training process of the models used. 

Model Objective 
Explanatory 

Variables (features) 
Target Variable Data Split 

Algorithm and 

Parameters 

Incorporation 

Percentage Model  

Predict the 

incorporation 

percentage 

Granulometric 

characteristics + 

cleanliness 

Incorporation 

percentage 

80% training, 

20% test 

RandomForestRegr

essor, XGBoost, 

LightGBM, Linear 

Regression, SVR, 

KNN, Decision 

Tree, AdaBoost, 

Extra Trees 

Compressive 

Strength (RC) 

Model 

  

Predict 

compressive 

strength (RC) 

Granulometry + 

cleanliness + 

incorporation 

percentage 

Compressive 

strength (RC) 

80% training, 

20% test 

  
Figure  . Prediction process for incorporation percentage and compressive strength. 

Validation and evaluation  

The generated models were applied to new real-world datasets (practical cases) to evaluate their 

performance in operational scenarios and confirm their generalization capabilities. This approach 

aims to ensure the robustness of predictions while providing practical recommendations for 

formulating concrete that incorporates dredged sediments.  

Each model is assessed using the following metrics: RMSE and R².  
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3. Results and discussion  

This section presents the results obtained from the tested models, along with an analysis of their 

performance in predicting the incorporation percentage and the compressive strength (RC) of concrete.  

 .1. Model perform nce: Comp r tive  n ly i  of model   

The results presented in Table 5 reflect a rigorous comparative evaluation of nine machine learning 

algorithms applied to predicting the optimal incorporation percentage of dredged sediments and the 

compressive strength (RC) of concrete, based on performance indicators. It is observed that ensemble methods, 

particularly Random Forest (RF) and Extra Trees (ET), demonstrate remarkable performance with very low 

RMSE and MAE values and a coefficient of determination (R²) close to 1, indicating an excellent ability to 

capture data variability. Although linear regression, despite its simplicity, provides competitive results, some 

models such as LightGBM and SVR show difficulties, suggesting that their parameterization requires finer 

optimization for this type of data. These findings highlight the advantage of ensemble approaches for modeling 

complex phenomena and provide valuable insights for selecting predictive models in materials engineering.  

The poor performance of LightGBM and SVR may be due to overfitting or suboptimal hyperparameters, 

highlighting their sensitivity to data characteristics. Feature importance in the sensitivity analysis was 

calculated using Gini importance derived from the Random Forest model. 

T ble 5. Model performances on the test set. 

Modèle RMSE R² MAE 

Random Forest (RF) 0.147 0.997 0.084 

XGBoost 0.218 0.994 0.111 

LightGBM 1.578 0.661 0.953 

Régression Linéaire (RL) 0.229 0.993 0.167 

SVR 1.979 0.481 0.919 

KNN 0.424 0.976 0.231 

Decision Tree (DT) 0.173 0.993 0.130 

AdaBoost 0.229 0.993 0.112 

Extra Trees (ET) 0.189 0.994 0.108 

  . . An ly i  of prediction   

The comparison between the actual and predicted values of the incorporation percentage and compressive 

strength (RC) for the Random Forest  model shows a strong proximity of the points to the identity line y=x 

(Figures 3 and 4), demonstrating the accuracy of the predictions with minimal deviations. This performance 

confirms the model's ability to generalize effectively to new data, although Gradient Boosting  and XGBoost  

models also exhibit good, albeit slightly lower, performance compared to Random Forest. The results 

illustrated in Figures 3 and 4 highlight the relevance of machine learning in predicting the mechanical 

properties of concretes incorporating dredged sediments, effectively capturing experimental variability. 

Notably, the deviations for compressive strength remain relatively low, with most samples showing less than 

5% variation (as depicted in Figure 1). Similarly, the predictions for the incorporation percentage, shown in 

Figure 2, align closely with the experimental values, allowing for the precise identification of the optimal 

incorporation rate. These results highlight the robustness of machine learning in processing complex datasets 

and generating reliable predictions, even in practical, operational settings. 
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Figure  . Comparison between actual and predicted values of the incorporation percentage for the Random Forest model. 

 

Figure  . Comparison between actual and predicted values of compressive strength for the Random Forest model. 

 . . Sen itivity  n ly i   

The sensitivity analysis (Figure 5) was conducted to determine the input variables that have the greatest 

influence on the compressive strength of concrete. Initially, it appears that the incorporation percentage, 

sediment cleanliness, and maximum aggregate diameter are the most critical parameters: variations in these 

factors can significantly affect the material's mechanical performance. This observation provides engineers 

with an important lever for optimizing the formulation while promoting the valorization of dredged sediments.  

To further refine the study, a complementary analysis was conducted by deliberately excluding cleanliness 

and incorporation percentage. The results indicate that granulometric fractions greater than 63 µm and 80 µm 

remain highly influential, followed by the fraction ranging from 5 mm to 80 µm. Conversely, the variables 

Dmax, particles smaller than 5 mm, and particles smaller than 50 mm exhibit a more limited impact. This 
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distribution underscores the importance of controlling the proportion of fine and medium particles, particularly 

those exceeding 63 µm and 80 µm, to enhance the concrete's resistance. 

In summary, these two complementary approaches confirm, on the one hand, the crucial role of 

cleanliness and the incorporation percentage, and on the other hand, the need to precisely control the particle 

size distribution to maximize mechanical performance. Engineers can thus more effectively target their 

formulation choices, balancing the optimization of compressive strength with the reasoned integration of 

dredged sediments[19]. 

 

Figure 5. Importance of input variables based on Random Forest model. Variables are ranked by their impact on the compressive 

strength prediction. 

The results obtained confirm that ensemble learning models, particularly Random Forest and XGBoost, 

provide highly accurate predictions for concrete properties, which aligns with findings from other studies. For 

instance, Wang & al. (2022)[12] demonstrated that Random Forest and XGBoost were the most effective 

algorithms for predicting the compressive strength of concrete containing industrial by-products such as fly 

ash and slag, with R2R^2R2 values exceeding 0.95 474747. Similarly, Tran & al. (2021)[20] used artificial 

neural networks (ANNs) to predict the mechanical performance of stabilized dredged sediments, achieving an 

accuracy above 90% 404040. The results of this study further validate the reliability of AI-based models, 

particularly ensemble learning techniques, in optimizing concrete formulations with unconventional materials. 

However, some studies have highlighted the limitations of AI models when applied to small datasets. 

Segovia & al. (2025)[7] reported that while Random Forest and XGBoost performed well, their accuracy 

decreased when applied to datasets with high variability in sediment properties, suggesting that larger and 

more diverse training datasets are necessary to improve generalization 323232. In contrast, the present study 

benefited from a relatively extensive dataset, allowing for robust training and validation, which contributed to 

the high predictive accuracy of the models. 

One of the key contributions of this study is the identification of the most influential granulometric 

fractions on compressive strength. The results indicate that fractions greater than 63 µm and 80 µm play a 

critical role in enhancing concrete performance, while particles smaller than 50 µm have a less significant 

impact. This observation aligns with previous research emphasizing the importance of optimizing the particle 

size distribution to improve mechanical properties. 
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For example, Achour & al. (2019)[21] found that dredged marine sediments could be incorporated into 

concrete up to 12.5% without significant loss of strength, but exceeding this threshold led to decreased 

durability due to increased porosity 333333. Similarly, Soleimani & al. (2023)[4] observed that the nature of 

the sediments played a crucial role: sandy sediments allowed for incorporation levels of up to 30–40%, whereas 

clay-rich sediments negatively affected concrete strength beyond 10–15% 232323. The findings of this study 

reinforce these conclusions by showing that controlling the granulometric composition of sediments is 

essential to maximizing compressive strength while maintaining durability. 

Additionally, the sensitivity analysis conducted in this study highlights the significant role of sediment 

cleanliness and maximum aggregate diameter in determining concrete performance. These results are 

consistent with Alloul. (2023)[22], who demonstrated that impurities and high fine content in dredged sediments 

could negatively affect mechanical properties unless properly treated 363636. Although this study focuses on 

mechanical performance, it is essential to consider the environmental impact of using dredged sediments. 

Future work should assess potential leaching behavior and chemical risks through extraction tests to ensure 

environmental safety. 

This underscores the importance of pre-treatment processes such as washing and screening to remove 

undesirable fines and improve sediment quality before incorporation into concrete. 

4. Conclusion  

This study successfully demonstrates the potential of machine learning algorithms in predicting the 

optimal incorporation percentage of marine dredged sediments in concrete and estimating the compressive 

strength (RC) of the resulting formulations. By evaluating a variety of machine learning models, including 

Random Forest (RF), XGBoost, LightGBM, Linear Regression (LR), Support Vector Regression (SVR), K-

Nearest Neighbors (KNN), Decision Tree (DT), AdaBoost, and Extra Trees (ET), the study provides valuable 

insights into the complex relationships between the granulometric characteristics of sediments, the percentage 

of sediment incorporation, and the mechanical performance of concrete. The Random Forest (RF) model, in 

particular, demonstrated exceptional performance, outperforming the other models in terms of both accuracy 

and robustness. Achieving an R² of 0.98, a root mean square error (RMSE) of 0.15 MPa, and a mean absolute 

error (MAE) of 0.12 MPa, the RF model highlights its ability to capture the nonlinear interactions between the 

various input variables, such as granulometric characteristics, sediment cleanliness, and maximum aggregate 

diameter. These findings are critical, as they underscore the value of machine learning techniques in addressing 

complex problems that are traditionally difficult to model through conventional methods. 

The sensitivity analysis conducted in this study revealed that key parameters, including the incorporation 

percentage, sediment cleanliness, and maximum aggregate diameter, exert the greatest influence on the 

compressive strength of the concrete. This information is vital for optimizing the performance of concrete 

mixtures, as it provides a clearer understanding of the factors that need to be carefully controlled in order to 

achieve desired material properties. The identification of these critical parameters paves the way for future 

optimization efforts, ensuring that the incorporation of marine dredged sediments into concrete could be fine-

tuned to produce high-performance, sustainable materials. 

Furthermore, the use of machine learning models provides a powerful tool for predicting the behavior of 

concrete mixtures in real-world scenarios, enabling faster and more efficient development of optimized 

formulations. The ability to predict both the incorporation percentage and the compressive strength with high 

accuracy is a significant step forward in the field of sustainable construction materials, particularly in the 

context of utilizing waste products such as marine dredged sediments. This approach not only addresses the 

challenge of reducing the environmental impact of dredging activities but also contributes to the broader goals 

of circular economy principles by valorizing materials otherwise considered waste. 



12 

Looking ahead, several avenues for further research remain. Expanding the dataset to include a wider 

range of sediment types, particularly from different geographic regions or with varying mineral compositions, 

could enhance the generalizability of the models. Additionally, investigating other important properties of 

concrete, such as permeability and chemical durability, would provide a more comprehensive understanding 

of the material’s long-term performance and sustainability. The experimental validation of the optimized 

formulations is also crucial in confirming the practical relevance and industrial applicability of the results. 

However, the relatively small dataset (105 samples) may present risks of overfitting, limiting the model’s 

generalization capabilities. Additionally, the variability of sediments from different regions may affect the 

model’s transferability. Future efforts should aim at expanding the dataset and validating the model in diverse 

geographic and environmental conditions, by testing the predictions in real-world conditions, it will be possible 

to ensure that the optimized concrete formulations not only perform well in laboratory settings but also meet 

the rigorous standards required for construction use. 

In conclusion, this study illustrates the promising potential of machine learning in optimizing the use of 

marine dredged sediments in concrete production. By accurately predicting the optimal incorporation 

percentage and compressive strength, it provides a robust and scalable methodology for developing sustainable 

construction materials. The insights gained from this research could support future development of 

environmentally friendly concrete formulations, supporting the transition to a more sustainable construction 

industry. Ultimately, this work contributes to both the scientific understanding of material behavior and the 

practical implementation of sustainable practices in the built environment.  
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