
Applied Chemical Engineering (2025) Volume 8 Issue 2

doi: 10.59429/ace.v8i2.5644

1

ISSN: 2578-2010 (O)

Research article

The Law of mass action: Mathematical modelling and python

implementation for chemical kinetics

Choon Kit chan1, Pankaj Dumka2,*, Rishika Chauhan3, Altafhussain G Momin4, Rajashree Bhokare5,

Neelashetty K6 , Subhav Singh7,8, Deekshant Varshaney9,10, Feroz Shaik11

1 Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, Negeri Sembilan, 71800,

Malaysia

2 Department of Mechanical Engineering, Jaypee University of Engineering and Technology, A.B. Road, Raghogarh-

473226, Guna, Madhya Pradesh, India

3 Department of Electronics and Communication Engineering, Jaypee University of Engineering and Technology, A.B.

Road, Raghogarh-473226, Guna, Madhya Pradesh, India

4 Department of Mechanical Engineering, L D College of Engineering, Ahmedabad, Gujarat, India

5 Department of Electrical Engineering, Dr. D. Y. Patil Institute of Technology, Pimpri, Pune, Maharashtra, 411018,

India

6 Professor, EEE department, Guru Nanak Dev Engg College, Bidar, Karnataka, 585403, India

7 Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh-174103, India

8 Division of research and development, Lovely Professional University, Phagwara, Punjab, India

9 Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140417, Punjab, India

10 Centre for Promotion of Research, Graphic Era (Deemed to be University), Uttarakhand, Dehradun, India

11 Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar

31952, Saudi, Arabia

*Corresponding author: Pankaj Dumka, p.dumka.ipec@gmail.com

ABSTRACT

This article explores the mathematical framework and computational

implementation of the “Law of Mass Action” to model the kinetics of

chemical reaction. The study begins with a detailed explanation of the

governing equations, emphasizing the role of stoichiometry and reaction

orders in dynamic systems. Using Python, a generalized computational

framework was developed to solve systems of ordinary differential equations

(ODEs) that describe concentration changes over time. The function solve_ivp

has been used from the SciPy module to perform the task of solving ODEs.

The solver is capable of handling complex reaction networks by incorporating

a stoichiometric matrix, reaction rate constants, and reaction orders as inputs.

The results are plotted and tabulated with the help of Matplotlib.pylab and

Pandas modules. Two representative examples, including real-world chemical

reactions, were solved to demonstrate the versatility and accuracy of the

approach. Results show that this generalized methodology provides an

efficient and adaptable tool for chemical reaction modelling. This work

highlights the power of combining mathematics with modern programming to

solve practical chemical engineering problems.

Keywords: chemical kinetics; law of mass action; python programming; SciPy;

NumPy; pandas; process innovation

ARTICLE INFO

Received: 26 March 2025

Accepted: 25 June 2025

Available online: 30 June 2025

COPYRIGHT

Copyright © 2025 by author(s).

Applied Chemical Engineering is published by

Arts and Science Press Pte. Ltd. This work is

licensed under the Creative Commons

Attribution-NonCommercial 4.0 International

License (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/

2

1. Introduction

The “Law of Mass Action”, a foundation of chemical kinetics which describes the relationship between

the reactant concentrations and the reaction rates in a dynamic chemical system[1]. Python has widely variety

applications in engineering sciences.[2]. Its mathematical formulation forms the foundation for modelling and

understanding a wide range of chemical reactions in industries such as pharmaceuticals, petrochemicals, and

environmental engineering[3]. However, solving these equations for complex reaction networks with multiple

reactions and species can be computationally intensive[4–6].

With the increasing demand for accurate and efficient modelling tools, Python programming has emerged

as a robust solution[7–10]. Python's extensive library ecosystem, including NumPy[11–13] and SciPy[11,14–16],

enables rapid development and solving of nonlinear ODEs that govern reaction kinetics. Also, the modules

like Matplotlib[17–20] and Pandas[15,21] are very handy when it comes to data plotting and file handling. This

article presents a systematic methodology for modelling the “Law of Mass Action”, combining theoretical

derivations with computational implementation. Patel et al.[22] carried out drying analysis and it reflects

underlying chemical kinetics, where moisture diffusion and evaporation rates are influenced by temperature-

dependent reactions. It also enabling accurate modeling of drying behavior and effective moisture transport

mechanisms. Mahesh kumar et al.[23] evaluated thin-layer drying kinetics of vermicelli. They carried out

moisture removal rates to temperature-driven diffusion and evaporation processes governed by fundamental

principles of chemical kinetics in greenhouse conditions.

In this work, first a detailed explanation of the “Law of Mass Action” mathematics is given, including its

relationship to stoichiometric matrices and reaction orders. A generalized Python framework is then introduced

which can solve systems of chemical reactions of arbitrary complexity. To demonstrate the effectiveness of

this approach, two example problems were solved: one involving two reactions and another with multiple

interconnected reactions, reflecting real-world complexity. This study bridges the gap between chemical theory

and practical computation, offering a tool that can be easily adapted for diverse applications in chemical

engineering, research, and education.

The novelty of this work lies in the development of a generalized and modular Python-based solver that

systematically integrates the stoichiometric matrix, reaction orders, and rate constants to model chemical

kinetics based on the Law of Mass Action. Unlike existing studies that often focus on specific reaction

mechanisms or use hard-coded equations, this study offers a flexible and reusable framework capable of

handling arbitrary reaction networks. Moreover, the solver emphasizes clarity, educational transparency, and

expandability, making it particularly suitable for both academic instruction and research. The two diverse case

studies further demonstrate its robustness across different chemical systems, showcasing its practical utility

and versatility.

2. Mathematical background

The “Law of mass action” explains that how the chemical reaction rate is proportional to the reactants

concentration products raised to their respective stoichiometric coefficients. Below is a step-by-step derivation

of the law of mass action.

Consider a general chemical reaction:

𝑎1𝐴1 + 𝑎2𝐴2 + ⋯ → 𝑏1𝐵1 + 𝑏2𝐵2 + ⋯ (1)

Here, 𝐴’s are the reactants, 𝐵’s are the products and, 𝑎’s &𝑏’s are the stoichiometric coefficients of the

reactants and products, respectively. For example, in a reaction like:

2𝐻2 + 𝑂2 → 2𝐻2𝑂 (2)

Here in this reaction, 𝑎1 = 2, 𝑎2 = 1, and 𝑏1 = 2

3

The “Law of mass action”expresses that the rate of this reaction depends on the concentrations of the

reactants, raised to their stoichiometric powers. If 𝑟𝑗&𝑘𝑗 are the rate and rate constant for the 𝑗th reaction, 𝑐𝑙 is

the concentration of the 𝑙th reactant, and 𝑅𝑙 is the stoichiometric coefficient of the 𝑙th reactant and 𝑗the reaction

then the 𝑟𝑗 can be mathematically expressed as[24]:

𝑟𝑗 = 𝑘𝑗 ∏ 𝑐𝑙
𝑅𝑙

𝑙 (3)

Eqn. (2) tells that the 𝑟𝑗 is proportional to the reactant concentrationsproduct. Let’s take the same reaction

of water formation, then the reaction depends on the concentration of [𝐻2] and [𝑂2]. So, to write the reaction

rate the concentrations of their reactants are raised to their respective stoichiometric coefficients, as shown in

Eqn. (4). It is important to note that in this study, the reaction orders are assumed to be equal to the

stoichiometric coefficients, which is a valid assumption only for elementary reactions. For more complex

reactions involving intermediate steps or catalytic pathways, the reaction order may deviate from stoichiometry

and should be derived experimentally or mechanistically. The generalized solver, however, allows manual

input of reaction orders, enabling flexibility beyond this assumption.

𝑟𝑗 = 𝑘𝑗[H2]2[𝑂2]1 (4)

In general, for n reactions, the rate expression includes all reactant concentrations. Therefore, Eqn. (3)

can also be understood as follows:

𝑟𝑗 = 𝑘𝑗 × 𝑐1
𝑅1 × 𝑐2

𝑅2 … × 𝑐𝑛
𝑅𝑛 (5)

Each chemical species has a concentration 𝑐𝑖, which changes with time as the reaction proceeds. The rate

of change of 𝑐𝑖 is governed by the stoichiometry of the reaction[24,25]:

𝑑𝑐𝑖

𝑑𝑡
= ∑ 𝑆𝑖𝑗𝑗 𝑟𝑗 (6)

where,
𝑑𝑐𝑖

𝑑𝑡
 is the concentration rate change for the 𝑖th specie and 𝑆𝑖𝑗 is the stoichiometric coefficient for 𝑖th

species in the 𝑗th reaction. The expression for the 𝑟𝑗 is taken from Eqn. (3). The properties of 𝑆𝑖𝑗 tensor are

mentioned in Table 1.

Table 1. 𝑆𝑖𝑗 tensor properties.

𝑺𝒊𝒋 Explanation

> 0 𝑖th species is a product of the 𝑗th reaction (produced)

< 0 𝑖th species is a reactant of the 𝑗th reaction (consumed)

= 0 𝑖th species is not involved in the 𝑗th reaction

Consider Eqn. (2), the stoichiometric coefficients for 𝐻2, 𝑂2, and 𝐻2𝑂 can be arranged in 𝑆 as: 𝑆 =

[−2, −1, +2]

And the rate of concentration change for reactants and products can be written as:

𝑑[𝐻2]

𝑑𝑡
= −2𝑟𝑗,

𝑑[𝑂2]

𝑑𝑡
= −𝑟𝑗, and

𝑑[𝐻2𝑂]

𝑑𝑡
= +2𝑟𝑗

The relationship between the rates of change and the stoichiometry of the reactions can be represented in

matrix form as shown in Eqn. (7)[28].

𝑑𝒄

𝑑𝑡
= 𝑺 . 𝒓 (7)

4

Here, 𝒄is the species concentrations vector ([
𝑐1

𝑐2

…
]), 𝑺 si the stoichiometric matrix with entries 𝑆𝑖𝑗 (where

each row corresponds to a species and the column corresponds to a reaction), and 𝒓 is the reaction rates vector

([
𝑟1

𝑟2

…
]). Let us clear this with the help of following reactions:

{
2𝐻2 + 𝑂2 → 2𝐻2𝑂

𝐶𝑂 +
1

2
𝑂2 → 𝐶𝑂2

 (8)

For these reactions the stoichiometric matrix 𝑺will be as shown in Figure 1. Negative sign represent that

these are reactants whose concentration is going to be reduced with time.

Figure 1. Formation of 𝑺matrix.

And the reaction rates are as shown in vector r in Eqn. (9):

𝒓 = [
𝑟1

𝑟2
] (9)

Key Assumptions in the Law of Mass Action formulation explained above are as follows:

 Reactants are uniformly distributed, so their concentrations are well-defined and do not vary spatially.

 The reaction proceeds in a single step, with no intermediate steps or complex mechanisms.

 The rate of reaction is proportional to the product of the reactant concentrations.

3. Python modelling

Following is the algorithm to model the above mathematics in Python:

i. Define the Inputs:

○ Stoichiometric Matrix (𝑺): Describes how each species participates in each reaction. Rows

represent species, columns represent reactions.

○ Reaction Orders (𝑅): Specifies the order of each reactant in each reaction. Typically derived

from the reaction mechanism.

○ ReactionRate Constants (𝑘𝑗): Define how fast each reaction occurs.

○ Initial concentrations (𝑐𝑜): starting concentration of all the species.

ii. Define the Rate Equation:

○ For each reaction 𝑗, calculate the reaction rate 𝑟𝑗 for Eqn. 3. For the sake of programming use

the following version of Eqn. 3:

𝑟𝑗 = 𝑘𝑗 ∏ 𝑐
𝑖

𝑅𝑖𝑗
𝑖 (10)

5

○ For every reaction, iterate over all species, multiply their concentrations raised to their

respective reaction orders.

iii. System of ODEs:

○ The rate of change of species concentrations is computed using Eqn. 7.
iv. Simulate the Reaction:

○ The ODE system is solved using solve_ivp for high accuracy.
v. Plot Results:

○ The concentrations of all species are plotted over time to observe their dynamics.
Based on the above algorithm the following function is developed:

def mass_action_solver(S, κ, co, R, time_span, time_points):

"""

Solver for systems of chemical reactions using the law of mass action.

Inputs:

 - S (2D array): Matrix where rows represent species and columns represent reactions.

 - κ (1D array): Array of reaction rate constants (k_j) for each reaction.

 - co (1D array): Initial concentrations of all species.

 - R (2D array): Matrix with orders of reactants for each reaction.

 - time_span (tuple): Start and end times for the simulation (t0, tf).

 - time_points (1D array): Array of time points to evaluate the solution.

 Returns:

 - solution (object): Solution object from "solve_ivp".

 """

Step 1: Define the reaction rate equations

def reaction_rates(c):

"""

 Compute the rate of each reaction based on the law of mass action.

 Parameters:

 - concentrations (1D array): Current concentrations of all species.

 Returns:

 - rates (1D array): Reaction rates for all reactions.

 """

 r = empty(len(κ))

for j in range(len(κ)): # For each reaction

 r[j] = κ[j] # Start with k_j

for i in range(len(c)): # For each species

Multiply by c_i raised to the power of its reaction order

 r[j] *= c[i] ** R[i, j]

return array(r)

Step 2: Define the system of ODEs

def odes(t, c):

"""

 Compute the rate of change of concentrations for all species.

 Parameters:

 - t (float): Current time (not used here but required by ODE solver).

 - concentrations (1D array): Current concentrations of all species.

 Returns:

6

 - dCdt (1D array): Rate of change of concentrations.

 """

 r = reaction_rates(c) # Compute reaction rates

return S @ r # Matrix multiplication S * r

Step 3: Solve the ODE system

 soln = solve_ivp(odes, time_span, co, t_eval=time_points, method='RK45')

return soln

The function call solve_ivp(odes, time_span, co, t_eval=time_points, method='RK45') is part of the SciPy

library's integrate module. It is used to solve systems of ordinary differential equations (ODEs). The

solve_ivp function numerically integrates a system of first-order ODEs over a specified time range. It produces

the solution for each species at discrete time points based on the defined ODE system and initial conditions.

The segmented explanation of the functions arguments is as follows:

 odes (Function): This is the function that defines the system of ODEs to solve.

 time_span (Tuple): Specifies the start and end times for the integration.

 co (Initial Conditions): An array representing the initial concentrations of all chemical species in the

system.

 t_eval=time_points:Specifies the specific time points at which the solution is desired.

 method='RK45': Defines the numerical integration method to be used. RK45 stands for Runge-

Kutta method of order 4(5). It is an adaptive step-size method, meaning the solver dynamically

adjusts the time step to balance accuracy and computational efficiency.It is suitable for non-stiff

systems of ODEs and is the default method for solve_ivp.

The above input arguments are also tabulated in Table 2. for better understanding of coding aspects.

Table 2. Description of Inputs to mass_action_solver() Function.

Parameter Description Data Type / Shape Units

S
Stoichiometric matrix: rows = species,

columns = reactions
2D NumPy array (m×n) Dimensionless

κ (kappa) Reaction rate constants for each reaction 1D NumPy array (n,)
Depends on reaction

order

co Initial concentrations of each species 1D NumPy array (m,)
mol/L or any

consistent unit

R
Reaction order matrix: order of each

species in each reaction
2D NumPy array (m×n) Dimensionless

time_span Start and end times of simulation Tuple (t0, tf)
seconds (s) or

consistent unit

time_points
Discrete time points to evaluate the

solution
1D NumPy array (k,) seconds (s)

The result of solve_ivp is a solution object which primarily contain:

 soln.t:The data points in the time at which the concentrations are computed.

 soln.y:A 2-D array where each row corresponds to a species, and each column corresponds to the

concentration at a specific time.

4. Code implementation

Now let’s understand how to create the inputs for the function (mass_action_solver) with the help

of chemical reactions given in Eqn. (8). The species present in all the reaction, along with the bifurcation of

reaction, Reactant, and product is given in Table. 2.

7

Table 2. Species classification.

Species Reaction Is it a Reactant Is it a Product

𝐻2 1 Yes No

𝑂2 1 and 2 Yes No

𝐻2𝑂 1 No Yes

𝐶𝑂 2 Yes No

𝐶𝑂2 2 No Yes

Once this is finalized, the array for S has to be created by keeping the order of the species same as shown

in Table 2 (so that the programming remains flawless). The first column of the matrix is the first reaction, and

the second column is the second equation. The reactant stoichiometric coefficients are negative, and products

will be positive. The NumPy array for 𝑺 is shown below:

S = array([

 [-2, 0], # 𝐻2

 [-1, 0], # 𝑂2

 [1, -1], # 𝐻2𝑂

 [0, -1], # 𝐶𝑂

 [0, 1] # 𝐶𝑂2

])

Then the array for the reaction rate constant (𝑘𝑗) is to be created, which is a 1-D array having the same

number of elements as the number of reactions. Let say that the rate of first reaction is 1.0 and that of second

one is 0.5 units, respectively. The array will look like as follows:

Reaction rate constants (k_j)

κ = array([1.0, 0.5])

After this the initial concentration array (𝑐𝑜) has to be created. This is again a 1-D array with the number

of elements as the number of species. The array will look like as follows:

Initial concentrations (c₀) of species [𝐻2, 𝑂2, 𝐻2𝑂, 𝐶𝑂, 𝐶𝑂2]

co = array([1.0, 1.0, 0.0, 1.0, 0.0])

Once this is over then the array for reaction order (𝑅𝑖𝑗) has to be created. This going to be a 2-D array as

two equations are involved in it. First column for the first reaction and the second column will be the second

reaction. Only the reactant stoichiometric coefficient (with positive sign) to be written for both the reactions

and the products will be zero. The array will look very similar to the array for 𝑺, as shown below:

S = array([

 [2, 0], # 𝐻2

 [1, 0], # 𝑂2

 [0, 1], # 𝐻2𝑂

 [0, 1], # 𝐶𝑂

 [0, 0] # 𝐶𝑂2

])

Once this is over, the time span of the reaction i.e. the starting and the ending time has to be supplied to

the reaction along with the number of data points in between the time span. The time span will be a tuple and

the data points will be created with the help of inbuilt NumPy array function linspace.The program statements

will be as follows:

Time span and time points

time_span = (0, 10) # Start and end times

time_points = linspace(0, 10, 10) # Data Points

8

After this, call the function which will solve for the concentration of species at each time step and then

the solution can be plotted as well as tabulated (using Pandas DataFrame) by using the following code:

Callin the function to solve the system

#---------------------------

soln = mass_action_solver(S, κ, co,R, time_span, time_points)

Data Plotting

#---------------------------

figure(1, dpi =300)

species_labels = ['H2', 'O2', 'H2O', 'CO', 'CO2']

marker = ['h','s','d','o','>','*','<']

for i inrange(len(co)):

 plot(soln.t, soln.y[i],f'-{marker[i]}', label=species_labels[i])

xlabel('Time')

ylabel('Concentration')

legend()

grid()

show()

Saving result in CSV

#------------------------

data = {'Time': soln.t}

for i, label inenumerate(species_labels):

 data[label] = soln.y[i]

df = DataFrame(data)

Save to CSV

df.to_csv('species_concentrations.csv', index=False)

A proper care has to be taken to create the labels for the species, otherwise the wrong result will be

reflected for them. The species labels in the list should be in the same order as in the concentration array. The

plot and the data in the data fill will look as shown in the Figure 2.

(a)Concentration vs Time graph (b)Data saved in Excel

Figure 2. Plot and Excel file created by the code.

Now let us take one more example to demonstrate the strength of code. Consider the system of chemical

reactions which are typically seen a combustion reaction (Ref. Eqn. 8).

9

{

2𝐶𝐻4 + 𝑂2 → 𝐶𝑂2 + 2𝐻2𝑂
𝐶𝑂2 + 𝐻2 → 𝐶𝐻4 + 𝑂2

𝐶𝐻4 + 𝐻2𝑂 → 𝐶𝑂 + 3𝐻2

𝐶𝑂 + 𝐻2 → 𝐶𝐻3𝑂𝐻

 (8)

Consider the rate constants (for equations) along with the initial concentrations (of species) as given below:

𝑘 = [1.0, 0.5, 0.3, 0.8]

𝑐𝑜[𝐶𝐻4, 𝑂2, 𝐶𝑂2, 𝐻2𝑂, 𝐻2, 𝐶𝑂, 𝐶𝐻3𝑂𝐻] = [1.0, 0.5, 0.0, 1.0, 0.0, 0.0, 0.0]

Then the main program to handle this problem will be as follows:

Example 2

Define the stoichiometric matrix (S)

S = array([

 [-2, 1, -1, 0], # CH4

 [-1, 1, 0, 0], # O2

 [1, -1, 0, 0], # CO2

 [2, 0, -1, 0], # H2O

 [0, 1, 3,-1], # H2

 [0, 0, 1,-1], # CO

 [0, 0, 0, 1] # CH3OH

])

(k_j) for reactions

κ = array([1.0,0.5,0.3,0.8])

(c₀) [CH4, O2, CO2, H2O, H2, CO, CH3OH]

co = array([1.0,0.5,0.0,1.0,0.0,0.0,0.0])

Reaction orders (R)

R = array([

 [2, 0, 1, 0], # CH4

 [1, 0, 0, 0], # O2

 [0, 1, 0, 0], # CO2

 [0, 0, 1, 0], # H2O

 [0, 1, 0, 1], # H2

 [0, 0, 0, 1], # CO

 [0, 0, 0, 0] # CH3OH

])

Time span and time points

time_span = (0, 10) # Start and end times

time_points = linspace(0, 10, 20) #Data Points

Solve the system

soln = mass_action_solver(S, κ, co,R, time_span, time_points)

Plot the results

figure(1, dpi =300)

species_labels = ['CH4', 'O2', 'CO2', 'H2O', 'H2', 'CO', 'CH3OH']

marker = ['h','s','d','o','>','*','<','P']

for i inrange(len(co)):

 plot(soln.t, soln.y[i],f'-{marker[i]}', label=species_labels[i])

plt.title('Concentration of Species Over Time')

xlabel('Time')

ylabel('Concentration')

legend()

show()

10

The plot along with the output data table is shown in Figure 3.

Concentration vs Time graph Data saved in Excel

Figure 3. Concentration plot and output excel file created by the code for combustion reaction.

5. Model validation and comparison with analytical results

To validate the accuracy of the proposed Python model, its results were compared against analytical

solutions for a simple first-order irreversible reaction:

𝐴 → 𝐵 (9)

governed by the rate law:

𝑑[𝐴]

𝑑𝑡
= −𝑘[𝐴] ⇒ [𝐴](𝑡) = [𝐴]0𝑒−𝑘𝑡 (10)

Using the mass_action_solver(), the numerical solution was computed with 𝑘 = 1.0 and [𝐴]0 = 1.0. The

concentrations of A over time matched the analytical expression closely, with relative error under 0.5% across

all time points. This agreement confirms that the solver accurately captures the kinetics for systems where

analytical benchmarks are available. Additional confidence is gained from consistency with trends reported in

literature studies on combustion and biochemical systems[27,28]. For better understanding one can also view

Figure 4.

Figure 4. Validation of the python model using a first-order irreversible reaction A→B.

11

6. Conclusion

This article presents a comprehensive methodology for modelling chemical reaction kinetics using the

“Law of Mass Action”. By deriving the governing equations and implementing them in Python, a flexible and

generalized structure was developed. This structure simplifies the computational modelling of chemical

systems thereby allowing the users to solve the reaction networks of varying complexity with slight changes.

The two example problems demonstrated the solver's flexibility while solving both simple and complex

reaction systems. Also, providing the insights into the temporal behaviour of species concentrations. The

approach not only emphasizes the precision of computational tools in chemical engineering but also

emphasizes the importance of integrating mathematical modelling with the modern programming techniques.

The generalized model developed in this study can be practically applied across a wide spectrum of chemical

processes. In combustion systems, it can be used to simulate fuel oxidation mechanisms involving multiple

intermediate species. In the pharmaceutical industry, it is useful for modelling drug synthesis reactions, enzyme

kinetics, and metabolic pathways. Environmental engineers can employ this model to understand pollutant

degradation or atmospheric chemistry. Additionally, it can serve as a pedagogical tool in academic settings,

helping students grasp the dynamic behaviour of multi-species reactions through code-based simulations. The

flexibility to customize reaction networks, rate constants, and reaction orders makes this solver a valuable asset

for both industrial applications and educational curricula. Future work could expand this Python function to

include additional complexities, such as temperature-dependent rate constants, equilibrium constraints, and

stochastic simulations. This study will serve as a foundational reference for researchers and engineers aiming

to influence the computational methods for chemical reaction modelling.

Conflict of interest

The authors declare no conflict of interest.

References

1. F. Horn, R. Jackson, General mass action kinetics, Arch. Ration. Mech. Anal. 47 (1972) 81–116.

https://doi.org/10.1007/BF00251225.

2. Vasudevan, A., Aanisha, A. C., Mohammad, S. I., Manoharan, R., Raja, N., Oqilat, O., & Alshurideh, M. T.

(2025). Divided square divisor cordial and Fibonacci prime labeling of theta graphs in Python. Applied

Mathematics and Information Sciences, 19(1), 149–159. https://doi.org/10.18576/amis/190113.

3. M. Järvinen, V.V. Visuri, E.P. Heikkinen, A. Kärnä, P. Sulasalmi, C. De Blasio, T. Fabritius, Law of mass action

based kinetic approach for the modelling of parallel mass transfer limited reactions: Application to metallurgical

systems, ISIJ Int. 56 (2016) 1543–1552. https://doi.org/10.2355/isijinternational.ISIJINT-2016-241.

4. L.P. De Oliveira, D. Hudebine, D. Guillaume, J.J. Verstraete, A Review of Kinetic Modeling Methodologies for

Complex Processes, Oil Gas Sci. Technol. 71 (2016). https://doi.org/10.2516/ogst/2016011.

5. W. Ji, F. Richter, M.J. Gollner, S. Deng, Autonomous kinetic modeling of biomass pyrolysis using chemical

reaction neural networks, Combust. Flame 240 (2022) 111992.

https://doi.org/https://doi.org/10.1016/j.combustflame.2022.111992.

6. J. Bauermann, S. Laha, P.M. McCall, F. Jülicher, C.A. Weber, Chemical Kinetics and Mass Action in Coexisting

Phases, J. Am. Chem. Soc. 144 (2022) 19294–19304. https://doi.org/10.1021/jacs.2c06265.

7. J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, T. Sherwood, A pythonic approach for rapid hardware

prototyping and instrumentation, 2017 27th Int. Conf. F. Program. Log. Appl. FPL 2017 (2017).

https://doi.org/10.23919/FPL.2017.8056860.

8. G. Van Rossum, others, Python Programming Language., in: USENIX Annu. Tech. Conf., 2007: pp. 1–36.

9. Y.C. Huei, Benefits and introduction to python programming for freshmore students using inexpensive robots, in:

Proc. IEEE Int. Conf. Teaching, Assess. Learn. Eng. Learn. Futur. Now, TALE 2014, 2015: pp. 12–17.

https://doi.org/10.1109/TALE.2014.7062611.

10. A. Holkner, J. Harland, Evaluating the dynamic behaviour of Python applications, Conf. Res. Pract. Inf. Technol.

Ser. 91 (2009) 19–27.

11. C. Bauckhage, NumPy / SciPy Recipes for Data Science: Subset-Constrained Vector Quantization via Mean

Discrepancy Minimization, (2020) 1–4.

12. S. Van Der Walt, S.C. Colbert, G. Varoquaux, The NumPy array: A structure for efficient numerical computation,

Comput. Sci. Eng. 13 (2011) 22–30. https://doi.org/10.1109/MCSE.2011.37.

12

13. K. Gajula, V. Sharma, B. Sharma, D.R. Mishra, P. Dumka, Modelling of Energy in Transit Using Python, Int. J.

Innov. Sci. Res. Technol. 7 (2022) 1152–1156.

14. R. Johansson, Numerical python: Scientific computing and data science applications with numpy, SciPy and

matplotlib, Second edition, Apress, Berkeley, CA, 2018. https://doi.org/10.1007/978-1-4842-4246-9.

15. C. Fuhrer, O. Verdier, J.E. Solem, C. Führer, O. Verdier, J.E. Solem, Scientific Computing with Python. High-

performance scientific computing with NumPy, SciPy, and pandas, Packt Publishing Ltd, 2021.

16. J. Ranjani, A. Sheela, K. Pandi Meena, Combination of NumPy, SciPy and Matplotlib/Pylab-A good alternative

methodology to MATLAB-A Comparative analysis, in: Proc. 1st Int. Conf. Innov. Inf. Commun. Technol. ICIICT

2019, 2019: pp. 1–5. https://doi.org/10.1109/ICIICT1.2019.8741475.

17. G.R. Kanagachidambaresan, G. Manohar Vinoothna, Visualizations, in: K.B. Prakash, G.R. Kanagachidambaresan

(Eds.), EAI/Springer Innov. Commun. Comput., Springer International Publishing, Cham, 2021: pp. 15–21.

https://doi.org/10.1007/978-3-030-57077-4_3.

18. V. Porcu, Matplotlib, in: Python Data Min. Quick Syntax Ref., Apress, Berkeley, CA, 2018: pp. 201–234.

https://doi.org/10.1007/978-1-4842-4113-4_10.

19. E. Bisong, Matplotlib and Seaborn, in: Build. Mach. Learn. Deep Learn. Model. Google Cloud Platf., Apress,

Berkeley, CA, 2019: pp. 151–165. https://doi.org/10.1007/978-1-4842-4470-8_12.

20. J.D. Hunter, Matplotlib: A 2D graphics environment Computing in Science & Engineering 9 (3): 90-95, (2007).

21. W. McKinney, Python for data analysis: Data wrangling with Pandas, NumPy, and IPython, “ O’Reilly Media,

Inc.,” 2012.

22. Patel, V., Judal, K. B., Panchal, H., Singh, B., Jomde, A., Kumar, A., Patel, A., Jain, R., & Sadasivuni, K. K.

(2023). Investigation on drying kinetics analysis of gooseberry slices dried under open sun. Environmental

Challenges, 13, 100778. https://doi.org/10.1016/j.envc.2023.100778

23. Kumar, M., Sahdev, R. K., Tiwari, S., Manchanda, H., Chhabra, D., Panchal, H., & Sadasivuni, K. K. (2021).

Thermal performance and kinetic analysis of vermicelli drying inside a greenhouse for sustainable development.

Sustainable Energy Technologies and Assessments, 44, 101082. https://doi.org/10.1016/j.seta.2021.101082

24. L. Adleman, M. Gopalkrishnan, M.D. Huang, P. Moisset, D. Reishus, On the mathematics of the law of mass

action, A Syst. Theor. Approach to Syst. Synth. Biol. I Model. Syst. Charact. (2014) 3–46.

https://doi.org/10.1007/978-94-017-9041-3_1.

25. E.O. Voit, H.A. Martens, S.W. Omholt, 150 Years of the Mass Action Law, PLoS Comput. Biol. 11 (2015) 1–7.

https://doi.org/10.1371/journal.pcbi.1004012.

26. A. Van Der Schaft, S. Rao, B. Jayawardhana, On the mathematical structure of balanced chemical reaction

networks governed by mass action kinetics, SIAM J. Appl. Math. 73 (2013) 953–973.

https://doi.org/10.1137/11085431X.

27. M. Balat, Biomass Energy and Biochemical Conversion Processing for Fuels and Chemicals, Energy Sources, Part

A Recover. Util. Environ. Eff. 28 (2006) 517–525. https://doi.org/10.1080/009083190927994.

28. N. Adi Sasongko, N. Gunadi Putra, M.L. Donna Wardani, Review of types of biomass as a fuel-combustion

feedstock and their characteristics, Adv. Food Sci. Sustain. Agric. Agroindustrial Eng. 6 (2023) 170–184.

https://doi.org/10.21776/ub.afssaae.2023.006.02.8.

