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ABSTRACT 

In the modern era, there has been a growing focus among researchers on the transition from fossil fuels to renewable 

energy sources, particularly photovoltaic (PV) energy, which is gaining popularity worldwide. As the development and 

installation of PV systems accelerate globally, it is essential to address the various faults and failures these systems may 

encounter. Consequently, fault diagnosis and evaluation have emerged as critical areas of study aimed at enhancing 

performance, improving system efficiency, and reducing maintenance costs and repair times. This paper proposes the use 

of a Random Forest classifier (RF) for diagnosing short circuit and open circuit faults in PV systems. The classifier is 

trained using machine learning algorithms to accurately identify different fault types based on real measured data from 

an experimental PV setup. This data encompasses weather conditions such as cell temperature and solar irradiation, as 

well as system parameters like current and voltage at the maximum power point, alongside performance metrics. The 

Random Forest classifier serves as a proactive tool for maintenance and fault diagnosis in PV systems, contributing to 

better overall performance and reliability. Testing on real-world data from a PV system demonstrates that this approach 

achieves remarkable accuracy in fault diagnosis, with a precision of 100% for current classification and around 97% for 

voltage classification, all within a few seconds for each parameter. 
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1. Introduction 

The increasing focus on renewable energies, particularly 

photovoltaic energy, necessitates that researchers and industry 

stakeholders prioritize maintaining the quality and longevity of these 

installations to ensure their performance, stability, efficiency, and 

reliability. Consequently, advanced fault diagnosis has become an 

indispensable trend in photovoltaic (PV) systems. In the realm of PV 

system diagnosis, numerous machine learning algorithms have been 

employed, including various types of artificial neural networks 

(ANN)[1-8], fuzzy logic (FL)[9], k-nearest neighbors (kNN)[10-11], and 

particle swarm optimization (PSO)[12]. Additionally, decision trees and 
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random forest classification algorithms are widely utilized for fault diagnosis in PV systems[13-16]. 

Random Forest (RF) classification algorithms are particularly effective in identifying and diagnosing 

faults such as short circuits, open circuits, shading, or module degradation. These algorithms can analyze data 

from real PV power plants, including current, voltage, solar irradiation, and temperature readings, to detect 

faults affecting system performance. Their ability to provide recommendations for troubleshooting and 

maintenance, combined with ease of interpretation and the capacity to handle both numerical and categorical 

data, makes them a valuable tool for fault diagnosis in PV systems. 

In our earlier research[1], we created a new smart fault detection system (called Intelligent Fault Diagnosis 

or IFD) designed specifically for solar power systems connected to the electrical grid. This system proved 

highly effective at spotting problems, achieving impressive accuracy.  

This paper utilizes the Random Forest classification algorithm for diagnosing open circuit faults, short 

circuit faults, and normal condition cases in PV systems. The discussion will cover the benefits and challenges 

of using this algorithm, as well as potential improvements and future research directions in this area.  

The paper is structured as follows: Section 2 outlines the methodology, Section 3 details the experimental 

design and data, Section 4 presents the results and discussion, and Section 5 concludes with future perspectives 

on this approach. 

2. Methodology 

In this paper, the fault diagnosis approach is structured into three primary phases and illustrated as follow 

in the Figure 1. 

2.1. Data collection phase 

This initial phase involves gathering essential data from the photovoltaic (PV) array. The input data 

include PV temperature and solar irradiance, while the output data comprise voltage and current at the 

maximum power point (MPP), collected from the Maximum Power Point Tracking (MPPT) system of the PV 

setup. These data are crucial for initiating the subsequent phase, where machine learning (ML) algorithms are 

applied. 

2.2. Isolation phase 

This phase focuses on isolating faults using two Random Forest classifiers. The purpose is to classify 

cases of normal operating conditions and three distinct fault scenarios. The first Random Forest (RF) classifier 

is dedicated to current classification, requiring solar irradiance and current at the MPP as input data. 

Conversely, the second RF classifier is used for voltage classification, utilizing temperature and voltage at the 

MPP as inputs. Both ML algorithms have been pre-trained to classify current and voltage at the MPP separately, 

enabling them to categorize fault information based on detected residual data. 

2.3. Identification phase  

In this final phase, the outputs from both Random Forest classifiers are analyzed to locate and diagnose 

the specific fault within the PV array. This comprehensive analysis ensures accurate fault detection and 

diagnosis, facilitating targeted maintenance and repair efforts. 
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Figure 1. An overview of how the Machine Learning fault diagnosis methodology works[1]. 

3. Experimental plan and data  

The actual approach has been focused on an experimental PV plan located in the capital Algiers, Algeria. 

This small grid connected PV plan is placed on the roof. As illustrated in Figure 2, this PV array contains 90 

monocrystalline modules. The experimental PV plan contains three sub arrays and has been built to meet the 

needs of different research subjects. The employed data used in this study are issued from a sub array which 

comes from a global PV array that includes 30 PV modules linked within two parallel strings that each one 

string is composed by 15 modules interconnected in series[1,2]. Figure 3 illustrates the one diode model of PV 

cell used in this study.  

 

Figure 2. Roof small grid connected PV plant in Algiers, Algeria.[3] 

The modeling of the GCPV to DC system requires a parameter model, defined by the Newton-Raphson 

Eq.1[3]: 
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(1) 

Where: 

Iph: photo generated current at STC, 

Rs: cell series resistance, 

Rp: cell parallel resistance, 

Tc: Temperature of the cell, 

K: constant of Boltzmann (1.38 x 10-23 J/°K), 

q: charge of the electron (1.6 x 10-19 C), 

I0: saturation current at STC. 

N: the diode ideality factor. 

 

Figure 3. One diode model of the PV module. 

The characteristics of the PV module as well as the electrical properties of the PV array used in this work 

are summarized in Table 1 and Table 2 respectively. 

Table 1. Electrical properties of the isofoton 106-12 PV module[2]. 

Solar Panel electrical characteristics Value 

Peak power 106 W 

Short circuit current (Isc) 6.54 A 

Open circuit voltage (Voc) 21.6 V 

Voltage at Maximum Power Point (Vmpp) 17.4 V 

Current at Maximum Power Point (Impp) 6.10 A 

Number of cells connected in Series 36 

Number of cells connected in Parallel 2 

Cell Short circuit current 3.27 A 

Cell Open circuit Voltage 0.6 V 

Table 2. Components and characteristics of PV installation[3,6]. 

Components Characteristics 

Global PV array 90 PV modules with monocrystalline technology 

PV Sub array studied 30 PV modules divided in two strings: 15 x 15 

Sunlight apparatus Thermoelectric Pyranometer 

Temperature apparatus K-type thermocouple Pilot PV cell 
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Components Characteristics 

Data logger Agilent 34970A 

Inverter IG30 Fronius 

Table 2. (Continued) 

The collected data obtained from the PV array are integrated in the two random forest classifiers as 

explained in section 2 (Methodology). 

4. Random forest classifier 

A Random Forest classifier (RD) is considered as a predictive Machine Learning (ML) model employed 

for classification and regression. As demonstrated in Figure 4, this ML classifier builds multiple decision trees 

during training and outputs the class that is the mode of the classes (i.e., the most common class) of the 

individual trees[14,16]. It enhances the performance of decision trees by averaging the results of multiple trees 

and introducing randomness into the model-building process to ensure robustness and reduce variance. Each 

decision tree in the Random Forest is a binary tree where each node represents a feature (attribute) and a 

threshold for splitting the data. The trees are constructed by recursively splitting the data to maximize some 

criterion, typically Gini impurity or information gain that is a measure employed especially in decision tree 

algorithms to measure the impurity or purity of a dataset. For classification, each tree in the Random Forest 

outputs a class label. The final prediction is determined by the majority vote among all the trees. 

  
Figure 4. General flowchart of the classification of PV systems based random forest algorithm. 

In Eq.2, if T is the number of trees and fi(x) is the prediction of the i-th tree for input x, then the Random 

Forest prediction  is[17,15]: 

 (2) 

  
where the mode function returns the most frequently occurring class label among the trees. 

Random Forests can also provide insights into feature importance, which measures the contribution of 

each feature to the prediction accuracy[16]. A common method to estimate feature importance is to use the 
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decrease in node impurity attributed to a feature. In Eq.3, if Impurity(T) is the impurity of the tree before the 

split, and Impurity(T′) is the impurity after the split, the importance of a feature can be computed as: 

 
(3) 

where the sum is over all nodes where the feature was used to split, and N is the number of trees or the number 

of times the feature is used across all trees. 

For a node with class distribution p1, p2, …, pk, the Gini impurity IG  is calculated as: 

 

(4) 

  

Where k represents the total number of classes, while pi denotes the proportion of instances belonging to the 

i-th class. Then, calculating the Gini gain for each attribute in the overall dataset and selecting the attribute to 

provide the highest value along with creating a node for that attribute is completely necessary. The formula 

used to calculate the Gini gain for each attribute is as follow[16]: 

 

(5) 

Where A represents an attribute, while S refers to the dataset. Sv represents the subset of instances in S where 

attribute A has a value of v. Repeat steps 2 recursively for each subset of data generated by the division until 

all instances in a subset are classified into the same class or there are no more attributes left to divide the data. 

5. Impact of random forest classifier on the quality of photovoltaic systems 

Integrating a Random Forest classifier into the monitoring systems of photovoltaic (PV) installations 

offers a practical and powerful way to improve how faults are detected and diagnosed. By using machine 

learning, these systems can analyze large amounts of operational data and quickly identify issues that might 

otherwise go unnoticed. This approach is especially valuable because it works well with existing monitoring 

infrastructure, meaning operators do not need to invest in expensive new hardware or overhaul their current 

setups. 

A key advantage of Random Forest classifiers is their ability to handle complex and varied fault conditions, 

such as line-to-line faults, partial shading, and temperature fluctuations. These algorithms are trained on 

historical and real-time data, allowing them to distinguish between different types of faults with high 

accuracy—recent studies have shown detection rates as high as 100% and classification accuracy near 95% 

when properly optimized. 

The process typically involves extracting crucial parameters from the PV system, preprocessing the data 

to ensure quality, and tuning the classifier to maximize performance. 

Moreover, integrating these models enables real-time diagnostics, so operators are alerted to problems as 

soon as they arise. This rapid response helps prevent minor issues from escalating into major failures, 

ultimately reducing downtime and maintenance costs. The use of user-friendly interfaces further ensures that 

the insights provided by the classifier are accessible to operators, regardless of their technical background. 

Overall, embedding Random Forest classifiers into PV monitoring frameworks not only streamlines fault 

detection but also helps maximize energy output and operational efficiency. By leveraging advanced data 

analysis and existing resources, PV operators can ensure their systems remain reliable, productive, and cost-

effective. 
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6. Effectiveness evaluation of the PV Systems diagnosis based on random 

forest 

In order to evaluate the effectiveness of the Random Forest classifier algorithms, their results are analyzed 

using the most frequently used diagnosis performance indicators in science and engineering fields[2]: 

a. Accuracy: implies how nearest is the results to the real value. 

 
(6) 

b. Sensivity: measures in what way the positive samples are correctly classified. 

 
(7) 

c. Specificity: measures in what way the negative samples are correctly classified. 

  
(8) 

Where: 

TP: true positive, signifies that the samples contain characteristics of a specific class and indeed they are 

classified in this class.  

TN: true negative, signifies that the samples does not contain characteristics of a specific class and indeed 

they are not classified in this class. 

FP: false positive, signifies that the samples does not contain characteristics of a specific class and they 

are classified in this class. 

FN: false negative, signifies that the samples contain characteristics of a specific class and indeed they 

are not classified in this class. 

Table 3 summarizes the four major categories as result of binary classification containing two rows and 

two columns into confusion matrix called confusion table in the intension to confirm the performance 

evaluation related to the classifier. The number of rows and columns depends on the number of classes. The 

terms true and false refer to whether the prediction corresponds to the external criticism conversely to the terms 

positive and negative that refer to the prediction of the classifiers.   

Table 3. Confusion matrix under intermittent classification troubles[2]. 

Classification outcome from RFs 

 

Classification outcome from experimental data Real label 

 

True Class False Class 

Predicted Label 
True Class TP FP 

False Class FN TN 

7. Results and discussions 

In this approach as demonstrated in Figure 5, global samples used are 16000 samples divided in three 

phases, 2000 samples are used in training phase for each attribute each attribute (PV temperature, solar 

irradiance, current and voltage at maximum power point) means (2000 x 4) where 400 samples are consecrated 

for each case, 1200 samples are employed in validation phase for each attribute (240 samples are utilized for 

each case) and 160 samples for each treated case that means 800 samples are turned to account in test phase 
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for each attribute. Table 4 resumes all classes treated in this approach, either for current or for voltage at 

Maximum power point. Figures 6 and 7 illustrate the classification results for the first and the second Random 

Forest classifiers algorithms respectively. This reveals the ability of the existed Random Forest to bring the 

incoming samples within their true classes, where all samples for the current classification in Figure 6 are in 

their right classes without any misclassification between healthy case and open circuit fault in PV array, while 

for the voltage classification in Figure 7 most samples are in their correct classes with few less 

misclassification data between healthy case and one PV module short circuited and between one PV module 

short circuited and three PV modules short circuited that is due to the temperature’s variations. This excellent 

classification with a best precision is due to its high accuracy through entirety learning, robustness overfitting 

as well as is due to its flexibility with data types and missing values.  

  
Figure 5. Measured and predicted current classification. 

Table 4. Global Classes treated in fault diagnosis of PV systems. 

 Classes 

Electrical Parameters Current Voltage 

Codes 1 2 3 4 5 

Identification Healthy Open circuit Healthy 
1 PV module 

Short-Circuit 

3 PV modules 

Short-Circuit 

 

 

Figure 6. Measured and predicted current classification. 
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Figure 7. Measured and predicted voltage classification. 

High accuracies are represented in Figures 8 and 9 consequently displaying 100% for both classes of 

current classification and around 97 % for all classes of voltage classification. Current and voltage 

classifications represent excellent accuracy for both algorithms from the first stage of diagnosis on which the 

identification of fault class depends. 

 

  

Figure 8. Current multi-classification results of RF-based PV systems. 

  
Figure 9. Voltage multi-classification results of RF-based PV systems. 
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The obtained results about current and voltage classification employing the Random Forest classifier 

display an impressive percentage accuracy which mean that this machine learning algorithm offers a robust, 

versatile, and user-friendly approach for diagnosing faults in photovoltaic systems. Its strengths in handling 

high-dimensional data, evaluating feature importance, and resisting overfitting are contributed significantly to 

improving the reliability and efficiency of solar photovoltaic energy systems while facilitating timely 

maintenance interventions. 

Table 5. Effectiveness evaluation results of current and voltage in validation and test phases. 

  Validation Test 

Precision (%) 
Impp 99 97 

Vmpp 89 91 

Sensivity (%) 
Impp 100 97 

Vmpp 86 92 

Specificity (%) 
Impp 98 97 

Vmpp 96 97 

According to the obtained results illustrated on the Table 5, the random forest classifiers algorithms reveal 

a very good outcome with high accuracy displaying from 89 to 97 % for the three key statistical concepts citing: 

precision, sensivity and specificity respectively. The response time of this approach is very fast according to 

the dataset as it requires just 30 seconds for the global diagnosis. 

8. Conclusion 

To enhance the performance and reliability of photovoltaic (PV) systems, fault detection and diagnosis 

are essential. Random Forest classifier algorithms provide a robust framework for data analysis, enabling the 

identification of potential faults within these systems. By leveraging Random Forest models, researchers and 

engineers can effectively classify and diagnose faults, thereby informing maintenance strategies and 

optimizing overall system efficiency. This study examines the application of Randon Forest classifier 

algorithms in PV fault detection and diagnosis, highlighting both their benefits and challenges. Notably, the 

Random Forest classifier has demonstrated exceptional precision in fault classification, achieving an accuracy 

of 100% for current classification and approximately 96% for voltage classification, with response times of 

just a few seconds for each parameter. These results are attributed to the inherent advantages of Random Forest 

classifiers in PV fault diagnosis, including their ability to handle complex datasets and provide rapid, accurate 

assessments. 
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