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ABSTRACT 

This study details the synthesis of a bioactive nanocomposite material designed for drug delivery. It was synthesized 

using chitosan (CS), multi-walled carbon nanotubes (MWCNTs), acrylic acid (AA), and garlic powder (GAR) through 

free radical polymerization. The primary goal was to assess its effectiveness in removing the anticancer drug Doxorubicin 

hydrochloride (DOX-HCl) from aqueous solutions. The resulting nanocomposite, (CS-co-PAA-GAR/MWCNTs), was 

thoroughly characterized using FTIR, XRD, FESEM, TEM, BET, BJH, and AFM techniques. The adsorption of DOX-

HCl onto the nanocomposite was evaluated using the Langmuir, Freundlich, and Temkin isotherm models. Results 

showed strong and desirable adsorption, indicated by a Freundlich isotherm constant (KF) of 1.08 (mg g-1 (mg L-1)-1/n) 

and a separation factor of 0.9904. Optimal adsorption occurred at a DOX-HCl concentration of 100 mg/L, a temperature 

of 293 K, and a pH of 6. A significant finding was that increasing the pH level reduced DOX-HCl adsorption and caused 

dehydrogenation. Furthermore, the Van't Hoff equation revealed that DOX-HCl adsorption exhibited fast kinetics, with a 

negative thermodynamic ΔH of -9.0381 kJ/mol. This was confirmed by the excellent fit to pseudo-second-order kinetic 

model (R2 = 0.9997). These findings collectively demonstrate that synthesized nanocomposite effectively removes DOX-

HCl from aqueous solutions. 
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1. Introduction 

Researchers are looking into a new technical strategy that uses 

intracellular agents, like nanoparticles, to get around problems with the 

current radiation and chemotherapy treatments for cancer. 

Nanocomposites are used in many different applications and are 

growing in popularity. In the meantime, the use of nanocomposites in 

medical procedures has increased. The use of nanocomposites as a drug 

delivery system for cancer treatment is one of the real-world uses of 

nanotechnology currently being explored. These systems, which 

usually include a drug, a coating or carrier, and targeting factors, are 

made to guarantee that the drug is released under controlled 

circumstances, that its concentration stays within a therapeutic range 

for the necessary duration, and that the drug is delivered precisely to 

the target tissue [1-3]. Chemo-drugs have recently been incorporated into 

a variety of nanoparticle-based drug delivery systems [4-7]. Numerous 

nanomedicines, including inorganic nanoparticles and viral 

nanoparticles [8], as well as lipid-based, natural, or synthetic polymer-

based nanocarriers, are currently being studied in clinic for cancer 

therapy [9]. Solid tumors, transplantable leukemia, and lymphomas are 
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among the cancers that can be treated with doxorubicin hydrochloride (DOX), a naturally occurring ring 

anthracycline derivative [10]. Usually used in combination with cyclophosphamide, vincristine, bleomycin, or 

prednisone, it is an essential part of multi-chemotherapeutic drug regimens [10, 11].  

In daily life, garlic (Allium sativum L.) is used as an herbal remedy and flavoring ingredient. Among the 

many benefits of garlic are its anti-tumor, antioxidant, immune-boosting, and cardiovascular disease 

prevention and treatment properties [12]. Sulphides (allicin), amino acids, polysaccharides, polyphenols, 

vitamins, and minerals are among the many nutrients and useful ingredients found in garlic [13]. Related 

products include pickled garlic, black garlic, preserved garlic, aged garlic extract, garlic powder, and garlic 

essential oil [14-16]. A large portion of these products is dried garlic. Garlic is widely known for its antiseptic, 

antifungal, and anti-inflammatory properties [17]. The potential medical benefits of garlic have been 

demonstrated in contemporary medicine, including lowering blood pressure, preventing cardiovascular and 

cerebrovascular diseases, promoting liver function, improving glucose metabolism, antibacterial activity, 

antioxidant and anti-aging, antitumor, and antiviral properties [18-24]. Researchers also suggested that thio-

sulfinate molecules, particularly diallyl thio-sulfonate (allicin) and S-allyl-cysteine sulfoxide (alliin), are the 

main bioactive components of garlic [25]. Additionally, about 70 % of active ingredients in garlic are allicin, 

which may have an antioxidant effect on the body because of its sulfonyl [26-28]. The inherent antioxidant and 

anti-tumor properties of garlic, particularly through compounds like allicin, present a compelling opportunity 

to synergize with conventional chemotherapeutics like doxorubicin. By incorporating garlic-derived 

components, it is hypothesized that the overall therapeutic efficacy of DOX can be enhanced, potentially 

reducing its toxic side effects through the attenuation of oxidative stress, and even overcoming drug resistance 

mechanisms. This combinatorial approach leverages the strengths of both synthetic drugs and natural 

bioactives within a targeted delivery system. In this study, we worked on the synthesis of MWCNTs/hydrogel 

nanocomposite, stabilized it with rosemary to increase adoption efficiency, and used in the form of 

nanocomposite of CS-co-pAA-GAR and MWCNTs to deliver the anticancer drug DOX-HCl to target area.  

2. Materials and methods  

2.1. Materials  

The Garlic came from one of Iraq's herbal factories. All starting materials and solvents that were used in 

the synthesis of the target compounds were supplied from available sources and were directly used without 

further purification. Multi-walled carbon nanotubes (MWCNTs) powder (5 g, outer diameter (OD) = 40 to 60 

nm, 5–10 μm, 99.0% purity, surface area > 200 m2/g, layers = 7, density = 2.1 g/cm3) was obtained from VCN 

Materials, Co., Ltd, Iran. chitosan (CS) (medium molecular weight, 96%) was purchased from HIMEDIA. 

MACLIN from China provides OFL. Acrylic acid was purchased from Merck, Germany. Acetic acid 99.5% 

and N, N' methylenebisacrylamide (MBA, 99.0%) as cross-linkers were purchased from CDH, India. The 

initiator is potassium persulfate (KPS, 99.0%), supplied by Thomas Baker, India. Calcium chloride, sodium 

chloride, sodium hydroxide, potassium chloride, and hydrochloric acid were supplied from Fluka, Germany. 

All solutions were prepared by using deionized water (DI).   

2.2. Preparation of CS-co-pAA-GAR/ MWCNTs nanocomposite  

The preparation process (Figure 1) began by mixing 0.5 g of chitosan (CS) with 20 mL of 1% acetic acid 

to prepare a 2.5 weight percent chitosan solution. This solution was then agitated for 15 minutes at 60 °C to 

ensure complete chitosan polymer dispersion. Subsequently, a 0.1% MWCNT solution, pre-treated with an 

ultrasonic field for 10 minutes, was introduced to the CS solution. Grafting was completed by swirling the 

CS/MWCNTs mixture at 70 °C. During this step, CS macromolecules adsorbed onto the surface of the 

MWCNTs, effectively acting as a polymeric cationic surfactant and stabilizing them [29]. Ten milliliters of 

acrylic acid (AA) were then added to the preceding solution, which served as a monomer. Following this, 0.02 
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g of KPS (in 2 mL deionized water) and 0.02 g of the cross-linker MBA (in 2 mL deionized water) were 

introduced. The solution was continuously stirred and bubbled with nitrogen for 15 minutes to eliminate 

oxygen. Next, the mixture was combined with garlic plant powder (GAR). This involved dissolving 0.1 g of 

garlic powder in 20 mL of deionized water and stirring on a magnetic stirrer for 30 minutes. The solution was 

then subjected to an ultrasonic apparatus for further dissolution. The plant extract was subsequently added 

dropwise, and the entire combination was finally transferred to a water bath. The resulting nanocomposite was 

cut into 5 mm pieces and rinsed repeatedly with deionized water, with water changes every hour for 24 hours, 

to remove any unreacted monomers. After thorough washing, the nanocomposite was dried to a consistent 

weight at 60 °C. The synthesized (CS-co-pAA-GAR/MWCNTs) nanocomposite was then crushed, sieved, and 

stored in airtight containers for later usage [30, 31]. Deionized water served as the solvent throughout the 

preparation process.  

 

Figure 1. Graphical synthetic route of CS-co-PAA-GAR/MWCNTs nanocomposite 

2.3. Characterization  

Various analytical techniques were employed to characterize the materials before and after loading with 

doxorubicin hydrochloride (DOX-HCl). Fourier Transform Infrared (FTIR) spectroscopy was performed using 

a Bruker Equinox 55, Tensor 27 instrument (Germany) with KBr pellets, capturing spectra in the range of 

400−4000 cm-1. X-ray diffraction (XRD) patterns were collected using a Philips PW1730 diffractometer 

(USA). For microscopic examination, Field Emission Scanning Electron Microscopy (FESEM) was conducted 

using a Tescan Mira3 instrument (Czech Republic), while Transmission Electron Microscopy (TEM) images 

were obtained with a Philips EM208S (Netherlands). Nitrogen adsorption-desorption isotherms were measured 

using a BEL Belsorp mini II device (Japan) to determine surface area via the Brunauer-Emmett-Teller (BET) 

method. Finally, Atomic Force Microscopy (AFM) was carried out with an Ntegra NT-MDT instrument 

(Ireland).  

2.4. Adsorption isotherms  

Batch adsorption studies were conducted to gather preliminary data and establish optimal parameters for 

drug removal effectiveness. Key variables investigated included drug concentration, equilibrium time, 

temperature, ionic strength, and pH. For these experiments, 10 mL of a 100 mg/L DOX-HCl solution and 0.05 

g of the nanocomposite were used in separate conical flasks. The mixtures were then shaken at 140 rpm until 

equilibrium was reached, after which they were centrifuged at 4000 rpm for 10 minutes. The drug's adsorption 

capacity was calculated using a specific equation, and calibration curves were employed to determine the 

equilibrium concentration using Equation 1 [32-35]: 
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Qe or 
x

m
= 

V(Co-Ce)

m
                                                                       (1) 

The efficiency of drug adsorption (E%) is determined using the Equation 2 [36-39]:   

E%=
(Co-Ce)

Co
 ×100                                                                      (2) 

Where: Co (mg.L-1) and Ce (mg.L-1) stand for the starting and equilibrium drug concentrations, respectively, 

and x is the amount of drug adsorbed, whereas m (g) is the mass of the adsorbent material. Qe (mg.g-1) is the 

amount of drug adsorbed at equilibrium.  

3. Results and discussion  

3.1. Characterization of CS-co-pAA-GAR/ MWCNTs nanocomposite 

Figure 2 depicts FTIR spectra of nanocomposite (CS-co-PAA-GAR/MWCNTs) before (a) and after (b) 

loading Doxorubicin hydrochloride (DOX-HCl). Spectrum (a) shows peaks for hydroxyl and amine groups at 

3400-3500 cm⁻¹, carbonyl (C=O) at 1716 cm⁻¹, and C-H and C-O vibrations. The band near 2600 cm⁻¹ may 

correspond to overtone or combination vibrations often related to carboxylic acid dimers or absorbed moisture, 

while the broad signal near 3750 cm⁻¹ can be associated with free –OH stretching vibrations, typically arising 

from non-hydrogen bonded hydroxyl groups or residual water [40-42]. As demonstrated in spectrum (b), loading 

DOX-HCl causes many spectral changes, including the loss or shift of some peaks, particularly carbonyl group, 

and the development or strengthening of additional peaks. These alterations show that DOX-HCl was 

successfully loaded onto the nanocomposite via hydrogen bonding or ionic interactions with functional groups 

in the hydrogel matrix [31,41,43,44].   

  

Figure 2. FTIR of CS-co-PAA-GAR/MWCNTs nanocomposite (a) before (b) after loading DOX-HCl 

As depicted in Figure 3a-b, the X-ray diffraction (XRD) pattern of CS-co-PAA-GAR/MWCNTs 

nanocomposite, both before (a) and after (b) doxorubicin hydrochloride (DOX-HCl) loading, revealed a 

prominent peak at 19.542°, indicating its amorphous nature [36, 45]. The significant diffraction observed at 

36.592° is attributable to the presence of polyacrylic acid. Upon DOX-HCl loading, the primary peak subtly 

shifted to 18.792°, and a new broad band appeared at 35.942°. This suggests that the drug is well-dispersed 

within the polymeric matrix without inducing significant crystallinity [31, 39, 40, 42].  
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Figure 3. XRD of nanocomposite (CS-co-PAA-GAR/MWCNTs) (a) before (b) after loading DOX-HCl 

Figure 4 (a-d) depicts SEM images of CS-co-PAA-GAR/MWCNTs nanocomposite before and after 

Doxorubicin hydrochloride loading. The surface of composite has a rough, non-smooth texture, which 

enhances its specific surface area. Additionally, porosity is visible on surface of CS-co-pAA-GAR/MWCNTs 

nanocomposite, resulting in better adsorption properties [45, 46].   

 

Figure 4. FESEM micrographs of CS-co-PAA-GAR/MWCNTs nanocomposite (a,b) before and (c,d) after DOX-HCl loading 
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Transmission Electron Microscopy (TEM) micrographs of CS-co-pAA-GAR/MWCNTs nanocomposite, 

both before and after DOX-HCl loading, are presented in Figure 5 (a-d). Notably, individual MWCNTs are 

not distinctly discernible in these images, suggesting a high degree of homogeneity and a significant impact of 

chitosan on the carbon nanotubes. The micrographs clearly depict a porous, hollow structure with irregularly 

shaped particles and distinct lines of aligned pores. This morphology indicates a highly porous architecture 

and a large specific surface area for the composite. Both SEM and TEM analyses collectively reveal the 

composite's amorphous nature and provide crucial insights into its overall structure [47].   

 

Figure 5. TEM micrographs of CS-co-PAA-GAR/MWCNTs nanocomposite (a,b) before and (c,d) after DOX-HCl loading.  

The BET surface area of CS-co-pAA-GAR/MWCNTs (Figure 6a-d) was found to be 19.349 m2/g and 

an average pore diameter of 9.9992 nm (BJH model). The surface area and average pore diameter of DOX-

HCl were reported to be 7.0771 m2/g and 52.986 nm, respectively. Compared to CS-co-pAA-GAR/MWCNTs 

before loading drug, the pore size was lower and surface area were large of DOX-HCl, including the drug 

within the composite matrix, which was likely responsible for this result. Table 1 shows the result of BET 

analysis [31].  
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Figure 6. The BET, BJH (a,c) and (b,d) for (CS-co-pAA-GAR/MWCNTs) before and after loading DOX-HCl respectively 

Table 1. The BET, BJH for CS-co-pAA-GAR/MWCNTs before and after loading DOX-HCl 

(CS-co-pAA-GAR/MWCNTs) Surface area (m2/g) 
Average pore volume 

(cm3/g) 

Average pore diameter 

(nm) 

Before loading 19.349 0.048369 9.9992 

After loading 7.0771 0.093747 52.986 

Figure 7 and Table 2 show three-dimensional AFM images before (a) and after (b) loading of the DOX-

HCl on CS-g-PAA-GAR/MWCNTs nanocomposite. The AFM images reveal two main components; one 

exhibits numerous peaks extending to tips of carbon nanotubes. This observation indicates a difference in the 

arrangement of the carbon nanotubes within the relatively rougher nanocomposite matrix due to the addition 

of garlic powder in the hydrogel formulation [31, 44].    
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 Figure 7. AFM topography of CS-co-PAA-GAR/MWCNTs (a) before and (b) after loading of DOX-HCl 

Table 2. The AFM topography for CS-co-pAA-GAR/MWCNTs before and after loading of DOX-HCl 

CS-co-PAA-GAR/MWCNTs Sa Sq Ssk Sku Sp Sv Sz 

Before loading 7.784 10.32 0.998 6.292 74.55 32.36 106.9 

After loading 11.12 13.92 0.888 3.593 87.13 28.14 115.3 

3.2. Adsorption study  

3.2.1. Calibration curve of doxorubicin-hydrochloride (DOX-HCl) drug  

The DOX-HCl medication was serially diluted to prepare solutions with varying drug concentrations. The 

absorbance of these DOX-HCl solutions was then measured at 497 nm (λmax) using a sophisticated Shimadzu 

PC 1800 ultraviolet-visible spectrophotometer. As depicted in Figure 8, a strong linear relationship was 

observed between these absorption values and their corresponding DOX-HCl concentrations. This linearity 

not only illustrates the direct relationship between concentration and absorption but also confirms the 

applicability of Beer-Lambert's law within this concentration range. Consequently, a robust DOX-HCl 

calibration curve can be reliably generated.  



9 

  

Figure 8. Calibration curve of DOX-HCl drug  

3.2.2. Effect of time  

Figure 9 illustrates the influence of contact time on the adsorption of medicine by CS-co-pAA-

GAR/MWCNTs nanocomposite. During the initial 10 minutes, amount of adsorbed drug rapidly increases, 

indicating swift utilization of all active sites on adsorbent material. Following this initial period, adsorption 

rate gradually rises until it reaches a plateau. Based on these observations, optimal adsorption time for drug 

with CS-co-pAA-GAR/MWCNTs nanocomposite was determined to be 90 minutes, as only a minimal change 

in amount of adsorbed drug was observed beyond this point [48]. d 

 

Figure 9. The effect of contact time on DOX-HCl adsorption 

3.2.3. Effect of temperature  

The impact of temperature on drug adsorption was investigated using DOX-HCl concentrations from 10 

to 100 mg/L, with a contact time of 90 minutes, across a temperature range of 15 to 30 °C. As illustrated in 

Figure 10, the results indicate that the adsorption process is exothermic. Specifically, a decrease in temperature 

led to an increase in the amount of DOX-HCl adsorbed. This suggests that at lower temperatures, the molecules 

may have less kinetic energy, thereby increasing their likelihood of interacting with the adsorbent. Notably, 

the amount of DOX-HCl adsorbed remained reasonable when compared to ambient temperatures, with no 

discernible decrease in adsorption observed from 15 to 30 °C [31, 49, 50].    
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Figure 10. Temperature-related effects on adsorption of DOX-HCl 

3.2.4. Effect of pH  

The CS-co-pAA-GAR)/MWCNTs nanocomposite demonstrated efficient removal of DOX-HCl across a 

pH range of 2 to 12, using solutions containing 0.1 mol/L HCl and 0.1 mol/L NaOH. The results are presented 

in Figure 11. DOX-HCl removal efficiency increased from pH 2 to pH 7, peaking at pH 6. This optimal 

removal at pH 6 is attributed to the ionization of the adsorbate, leading to a negative charge. The combined 

positive charges of polyacrylic acid and chitosan contribute to electrostatic interactions with drug. Polyacrylic 

acid contains carboxyl groups (−COOH), while chitosan possesses amino groups (−NH2). Under acidic 

conditions, the amino groups (−NH₂) of chitosan become protonated to form −NH₃⁺, and the carboxyl groups 

(−COO⁻) of poly (acrylic acid) may also become protonated to form −COOH or, under highly acidic conditions, 

−COOH₂⁺. These protonated groups remain associated with the polymer backbone and contribute to 

electrostatic interactions with the negatively charged drug molecules. The relevant equilibria are:  

−NH₂ + H⁺ ⇌ −NH₃⁺ ; −COO⁻ + H⁺ ⇌ −COOH  

Furthermore, the pKa of primary amine group in DOX-HCl is approximately 8.3 to 9.9, depending on 

environment. As pH increases above this value, the protonated amine (–NH₃⁺) begins to deprotonate, reducing 

electrostatic attraction with adsorbent [31, 33, 51, 52].   

  

Figure 11. Effect of pH in DOX-HCl adsorption 
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3.2.5. Effect of ionic strength  

Figure 12 illustrates that an increase in salt concentration leads to a decrease in amount of adsorbed 

material. One explanation for this phenomenon is competition between cationic drug molecules and salt ions 

for active sites on adsorbent. During adsorption, electrostatic forces typically draw the adsorbent and adsorbate 

closer; however, with increased salt concentration, this interaction becomes less effective. Additionally, the 

presence of salt can create a secondary layer that hinders the drug from adhering to the surface [53]. Among the 

ions tested, the calcium ion exhibits less of an effect compared to others, likely due to its smaller ionic radius. 

Furthermore, the electrostatic attraction between potassium and sodium ions and nanocomposite's surface can 

slow down the overall adsorption process.  

  

Figure 12. Effect of ionic strength on DOX-HCl adsorption 

3.3. Adsorption isotherm models  

Adsorption isotherms illustrate the relationship between the adsorbate concentration in a solution and the 

amount of material adsorbed at a constant temperature [72]. To analyze the adsorption equilibrium data, the 

Langmuir, Temkin, and Freundlich isotherm models are typically employed. A linear relationship is usually 

sought, and the applicability of each isotherm equation is assessed using its correlation coefficient. The 

Freundlich isotherm demonstrates a direct linear relationship between logCe and logQe. As shown by the 

correlation coefficient in Figure 13a-c and Table 3, the ions of the DOX-HCl medication follow the 

Freundlich isotherm. This finding suggests that the adsorption active sites on the nanocomposite's surface are 

heterogeneous, exhibiting different energy levels and indicating multilayer adsorption. In contrast, the 

Langmuir adsorption isotherm describes the formation of a monolayer of adsorbate molecules on a surface 

with an equal number of available adsorption sites [29, 54-58].  
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Figure 13. Adsorption isotherms (a) Langmuir, (b)Freundlich and (c)Temkin models 

Table 3. The Langmuir Freundlich and Temkin correlation coefficients and constants of DOX-HCl adsorption 

Langmuir  Freundlich  Temkin  

KL (L/mg)  qmax (mg/g)  R2 
KF (mg g-1 (mg 

L-1)-1/n)  
n  R2 

KT 

(L/mg)  
B (J/mol)  R2 

 

46.84146 

 

 

121.9512 

 

 

0.6022 

 

 

1.08 

 

 

29.7619 

 

 

0.9904 

 

 

0.386 

 

 

17.243 

 

 

0.9016 

 

3.4. Adsorption thermodynamics  

The fundamental thermodynamic properties of DOX-HCl drug adsorption onto CS-co-pAA-

GAR)/MWCNTs nanocomposite were estimated by calculating Xm values at various solution temperatures. As 

depicted in Figure 14 (plot of ln Kd and reciprocal absolute temperature), the enthalpy (ΔH), entropy (ΔS), 

and Gibbs free energy (ΔG) changes were determined using Equations (3-5) as [59-61]:  

ΔG = ΔH-T.ΔS                                                                        (3)  

ΔG = – RT ln Keq            (4)  

        (5) 

Table 4 presents parameters for surface adsorption of DOX-HCl drug as a function of temperature. The 

negative Gibbs free energy (ΔG) for CS-co-pAA-GAR/MWCNTs nanocomposite confirm that adsorption is 

spontaneous [62]. Furthermore, the enthalpy value is less than 40 kJ/mol, and since the adsorption process is 

exothermic, this strongly suggests that DOX-HCl primarily adsorbs onto the nanocomposite surface through 
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physical means. The negative decrease in entropy (ΔS) indicates that the adsorbed particles on the polymer 

adsorbent surface become less mobile and more organized after the adsorption process [31, 63].  

  
Figure 14. Plot showing the relationship between Ln Kd and reciprocal absolute temperature for DOX-HCl drug adsorption 

 Table 4. Thermal values for DOX-HCl drug adsorption 

T (K) 
ΔG 

(kJ/mol) 

ΔH 

(kJ/mol) 

ΔS 

(J/mol.K) 

288 -2.759 

 

-9.0381 

 

 

-21.7993 

 

293 -2.650 

298 -2.541 

303 -2.432 

3.5. Adsorption kinetics  

Analyzing the kinetic process of adsorption necessitates understanding the reaction dynamics and 

investigating the specific adsorption conditions. Various kinetic models have been employed to evaluate 

experimental data, aiming to elucidate the adsorption mechanism and identify the rate-controlling step. To 

determine the kinetic equation governing the adsorption process, several models were utilized, including 

pseudo-first-order, and pseudo-second-order kinetic models. The pseudo-first-order kinetic model, for instance, 

is represented by Equation 6 [64, 65] as:  

Ln (qe − qt) = ln(qe) − kl · t.             (6) 

The ln (qe - qt) linear plot is shown as a function of time (t). Table 5 and Figure 15a contain pertinent 

data about DOX-HCl. The rate at which adsorbent's active participants are filled is directly proportional to 

quantity of vacant spaces, as per pseudo-first-order kinetic model. According to the pseudo-second-order 

model, the sharing or exchange of electrons between the adsorbent and adsorbate controls the rate of surface 

adsorption. The Equation (7) represents pseudo-second-order model [52, 56].  

                    (7) 

The constant k2 is defined as a pseudo-second-order rate constant (g.mg⁻¹ min⁻¹) (56, 59-61).  

The calculated values for equilibrium adsorption capacity (qe) and the pseudo-second-order rate constant 

(k2) for DOX-HCl adsorption onto CS-co-pAA-GAR/MWCNTs nanocomposite are presented in Table 5 and 

Figure 15b. These values were estimated from intercept and slope of plotted lines at various DOX-HCl 

concentrations. The kinetics of DOX-HCl adsorption by CS-co-pAA-GAR/MWCNTs nanocomposite appear 
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to be well-described by pseudo-second-order equation. This is evident from close agreement between 

calculated adsorption capacity (qcal) and the experimentally observed adsorption capacity (qexp). Consequently, 

this model consistently provides a higher correlation coefficient compared to other kinetic models [66-68].  

 

Figure 15. (a) Pseudo first order and (b) pseudo second order of DOX-HCl drug adsorption  

Table 5. Pseudo first and pseudo second order model of DOX-HCl drug adsorption 

Pseudo-first order Pseudo-second order 

K1 (1/min)  
qe (cal) 

(mg/g)  
R2 K2 qe (cal) (mg/g)  h R2 

 

8.03302 

 

 

1.057 

 

 

0.6648 

 

 

0.346 

 

 

20.96436 

 

 

152.1 

 

 

0.9997 

 

4. Conclusion 

Incorporating garlic powder into (CS-co-pAA-GAR/MWCNTs) nanocomposite significantly enhanced 

its biological performance, particularly its antibacterial and antioxidant properties. This beneficial effect is 

attributed to the presence of active compounds like Allicin. Previous studies have consistently shown that 

garlic possesses broad-spectrum antimicrobial activity, further supporting the potential of this composite for 

various medical and environmental applications[69-71]. The successful synthesis of CS-co-pAA-

GAR/MWCNTs nanocomposite was demonstrated, along with its efficient use for the adsorption of DOX-HCl 

from aqueous solutions. The Freundlich and pseudo second order adsorption models effectively described this 

process indicating the nanocomposite's high capacity and favorable adsorption characteristics for DOX-HCl. 

Optimal adsorption conditions were determined to be a contact time of 90 minutes, an initial adsorbate 

concentration of 100 mg/L, and a pH of 6 at 293 K. Furthermore, the thermodynamic parameters, with negative 

values for Gibbs free energy (ΔG = −2.650 kJ/mol), enthalpy (ΔH = −9.0381 kJ/mol), and entropy (ΔS = 

−21.7993 J/mol⋅K), collectively confirm that the adsorption process is exothermic and spontaneous.  
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