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ABSTRACT
The global shift toward sustainable manufacturing has intensified

interest in eco-friendly materials and optimized processing strategies for
additive manufacturing technologies such as Fused Deposition Modeling
(FDM). Polylactic acid (PLA)-based green composites have emerged as
promising candidates due to their biodegradability, low environmental
impact, and compatibility with FDM systems. However, the optimization of
FDM process parameters for such composites remains a significant
challenge due to the inherent trade-offs between mechanical performance,
energy consumption, and material sustainability. This study addresses this
gap by employing an integrated multi-criteria decision-making (MCDM)
framework—Fuzzy Analytic Hierarchy Process (Fuzzy AHP) combined
with Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS)—to identify optimal FDM parameter settings for PLA-based
green composites. Key process parameters, including layer thickness, print
speed, infill density, and nozzle temperature, are evaluated against
performance criteria such as tensile strength, surface finish, material
utilization, and energy efficiency. Literature reports suggest optimal ranges
such as 0.1–0.2 mm for layer thickness, 40–60 mm/s for print speed, and 80–
100% for infill density to enhance part strength and minimize waste. The
Fuzzy AHP–TOPSIS approach enables robust decision-making under
uncertainty, providing a sustainable design methodology aligned with SDGs
4 (Quality Education), 7 (Affordable and Clean Energy), 9 (Industry,
Innovation and Infrastructure), and 12 (Responsible Consumption and
Production). This study establishes a foundational framework for future
experimental validation and promotes informed parameter selection for
sustainable, high-performance FDM manufacturing of PLA-based green
composites.
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1. Introduction
Additive Manufacturing (AM), commonly referred to as 3D printing, is defined by ASTM F2792 as the

process of joining materials layer by layer to create three-dimensional objects directly from digital models.
Unlike subtractive methods, which remove material through machining [1-5], AM offers advantages such as
design freedom, reduced material waste, and rapid prototyping. AM technologies are generally classified into
seven categories: vat photopolymerization, material extrusion, powder bed fusion, material jetting, binder
jetting, sheet lamination, and directed energy deposition [6-10]. Among these, material extrusion represented
primarily by Fused Deposition Modeling (FDM) is the most widely used due to its low cost, operational
simplicity, and compatibility with thermoplastics and composites [11-13]. In FDM, a thermoplastic filament is
heated, extruded through a nozzle, and deposited layer by layer to form a part. Its effectiveness depends
heavily on process parameters such as nozzle temperature, layer height, infill density, and print speed, which
control part accuracy, mechanical strength, and energy efficiency [14-17].

In the recent decade, PLA-based green composites have gained prominence for their promising
mechanical performance, biodegradability, and compatibility with FDM processes. Studies have
incorporated reinforcements such as wood flour, bamboo fiber, hemp, kenaf, and rice husk into PLA
matrices to produce eco-conscious filaments suitable for a wide range of structural and functional
applications [18-20]. While these composites offer significant environmental and mechanical benefits, their
printability remains highly sensitive to FDM process parameters, including layer thickness, nozzle
temperature, infill density, and print speed. Improper selection of these parameters can lead to poor interlayer
adhesion, increased porosity, surface defects, and compromised mechanical strength [21-24]. Therefore, an
optimized process window is essential to fully leverage the advantages of PLA-based composites in FDM
without compromising their sustainability goals.

Despite the growing body of literature on the use of PLA and its composites in additive manufacturing,
most studies focus predominantly on experimental trial-and-error approaches for parameter tuning. While
these methods provide valuable empirical insights, they are often time-consuming, costly, and lack
generalizability across different material systems and printing conditions. Moreover, sustainability-oriented
criteria such as energy consumption, material utilization, and environmental impact are frequently
overlooked in favor of purely mechanical or aesthetic metrics [25-28]. This is especially problematic given the
increasing importance of aligning research and industrial practices with the United Nations Sustainable
Development Goals (SDGs), particularly SDG 4 (Quality Education), SDG 7 (Affordable and Clean Energy),
SDG 9 (Industry, Innovation and Infrastructure), and SDG 12 (Responsible Consumption and Production).

To address these limitations, recent research has explored the use of multi-criteria decision-making
(MCDM) techniques to aid in the systematic selection and optimization of FDM parameters. MCDM
frameworks such as AHP, Fuzzy AHP, TOPSIS, VIKOR, and PROMETHEE have shown potential in
handling complex trade-offs among conflicting objectives like strength, cost, energy efficiency, and surface
finish. The integration of fuzzy logic, in particular, allows decision-makers to incorporate expert judgment
and uncertainty into the evaluation process, making the analysis more robust and adaptable [29-32]. However,
despite these methodological advances, the combined use of Fuzzy AHP and TOPSIS specifically for PLA-
based green composites in FDM remains sparsely explored. Most existing studies either apply these methods
to synthetic polymers or do not incorporate sustainability indicators explicitly into their decision models.
Recent studies have demonstrated the effectiveness of MCDM frameworks in optimizing additive
manufacturing processes. For example, Raja et al. [33] applied AHP–TOPSIS to determine optimal FDM
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settings for PLA parts, while Bigliardi et al. [34] utilized fuzzy AHP and VIKOR for sustainability-oriented
optimization in 3D printing. Similarly, Rahman [35] reported that hybrid AHP–TOPSIS approaches can
successfully rank parameter settings for natural fiber–reinforced PLA composites. Comprehensive reviews
(Xu et al., [36]; Mutambik, [37]) also highlight the growing adoption of MCDM methods such as AHP,
TOPSIS, and PROMETHEE in additive manufacturing, reinforcing the relevance of integrating these
frameworks in sustainability-driven studies.

The current study aims to fill this research gap by proposing a systematic, sustainability-oriented
optimization framework using a hybrid Fuzzy AHP–TOPSIS approach for PLA-based green composites in
FDM. The novelty of this work lies in the integration of sustainability metrics alongside traditional
mechanical performance parameters within a fuzzy MCDM environment, providing a more holistic and
environmentally aligned decision-making tool. By doing so, the study not only advances the technical
knowledge of parameter optimization in FDM but also contributes toward the global agenda of sustainable
manufacturing. The use of Fuzzy AHP allows for the determination of the relative importance of each
criterion based on expert input and linguistic variables, accounting for uncertainty and subjective preferences.
Subsequently, the TOPSIS method is employed to rank different parameter combinations based on their
closeness to the ideal solution, ensuring a balanced trade-off among performance, cost, and sustainability.

The objectives of this research are fourfold: (i) to identify and prioritize key FDM process parameters
and evaluation criteria relevant to PLA-based green composites; (ii) to develop a fuzzy AHP hierarchy for
assessing the relative importance of these criteria based on sustainability and technical performance; (iii) to
apply the TOPSIS method to rank parameter settings and identify optimal configurations; and (iv) to
demonstrate the applicability of the proposed MCDM approach as a decision-support tool for sustainable
additive manufacturing. Although no experimental validation is performed in this phase, the methodology is
constructed using literature-backed data and parameter ranges, ensuring practical relevance and replicability
in future empirical studies.

The proposed framework aligns with the pressing need for sustainable design methodologies in
advanced manufacturing, as emphasized in recent literature. According to Wang et al. [38], incorporating
MCDM in process optimization can reduce energy usage by over 15% and improve part performance
without additional material costs. Similarly, Basar [39] demonstrated that natural fiber–reinforced PLA
composites, when processed under optimal conditions, can rival synthetic counterparts in tensile strength
while maintaining biodegradability. Therefore, leveraging a structured MCDM approach like Fuzzy AHP–
TOPSIS could streamline such optimization processes and minimize the trial-and-error efforts traditionally
associated with FDM parameter tuning.

This paper is organized as follows: Section 2 reviews recent advancements in PLA-based green
composites for FDM and the role of MCDM in sustainable manufacturing. Section 3 presents the proposed
methodology, including the construction of the Fuzzy AHP hierarchy and the application of the TOPSIS
ranking model. Section 4 discusses the selection of parameters, criteria, and literature-based performance
values used for model development. Section 5 provides a discussion on the outcomes of the MCDM process,
supported by case illustrations and comparative analysis from literature. Finally, Section 6 concludes the
study, highlighting key contributions, limitations, and directions for future research, particularly the potential
for integrating this framework with machine learning or digital twin platforms for real-time optimization.
This study introduces a novel Fuzzy AHP–TOPSIS-based optimization framework aimed at enhancing the
sustainable use of PLA-based green composites in FDM. By prioritizing both technical and environmental
performance, the research supports informed decision-making in eco-friendly additive manufacturing,
making it especially relevant for academic, industrial, and policy-making stakeholders working toward a
circular economy.
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2. Materials and methods
In this study, the optimization of Fused Deposition Modeling (FDM) parameters for fabricating eco-

friendly PLA-based green composites was structured around a literature-driven, sustainability-focused
methodology, utilizing multi-criteria decision-making (MCDM) techniques to identify optimal processing
conditions. The fabrication setup centers on the Bambu Lab A1 3D Printer, a high-precision desktop FDM
machine known for its automated calibration features, closed-loop control, and compatibility with diverse
filaments including biodegradable and composite variants of PLA. The material selected for this study is a
PLA-based green composite filament preformulated with natural fiber reinforcement, such as bamboo or
wood flour, commercially available or custom-compounded to match properties reported in state-of-the-art
research (e.g., tensile strength ranging from 40–60 MPa, modulus 2.5–3.5 GPa, elongation below 10%).
These PLA composites offer improved environmental sustainability without significantly compromising
mechanical integrity and are compatible with a nozzle diameter of 0.4 mm, consistent with the Bambu Lab
A1’s standard extrusion setup. Key process parameters targeted for optimization include layer thickness
(0.1–0.3 mm), nozzle temperature (190–220°C), printing speed (30–60 mm/s), infill density (20–100%), and
bed temperature (50–60°C), with the assumption that these fall within acceptable ranges established by
recent experimental studies involving similar materials and printer platforms. Evaluation criteria were
selected based on technical relevance and sustainability objectives, including tensile strength, surface
roughness, dimensional accuracy, material consumption, and estimated energy use per part. For mechanical
characterization in referenced studies, ASTM D638 (for tensile properties of plastics) is employed using
Type IV specimens, as it is commonly recommended for FDM-printed polymers due to its compatibility with
the build plate size and alignment with isotropic material assumptions; similarly, surface quality and
dimensional precision are typically assessed using digital metrology tools in accordance with ASTM D790
(for flexural properties) and ASTM E2012 (for geometric accuracy of manufactured parts). Though
experimental tests were not conducted in the current phase, selection and weighting of parameters and
criteria were based on a comprehensive literature review of peer-reviewed publications and meta-analyses in
additive manufacturing. The multi-criteria decision-making (MCDM) methodology adopted combines Fuzzy
Analytic Hierarchy Process (Fuzzy AHP) for determining the relative importance of evaluation criteria with
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for ranking various parameter
settings. In the Fuzzy AHP phase, a hierarchical structure is established, with the goal at the top (sustainable
FDM output), followed by criteria and sub-criteria layers. The parameters selected for this study layer
thickness, nozzle temperature, print speed, and infill density were chosen due to their primary influence on
mechanical performance and sustainability metrics in PLA-based composites. Previous studies have shown
that layer thickness strongly governs interlayer adhesion and surface quality, with 0.1–0.2 mm often yielding
superior strength. Nozzle temperature (190–220 °C) directly affects polymer flow, fiber wetting, and
bonding, with higher values enhancing adhesion but risking thermal degradation . Infill density (20–100%)
determines material usage, stiffness, and energy consumption, with higher infill improving load-bearing
capacity at the expense of sustainability. Print speed (30–60 mm/s) influences cooling rate and bonding
efficiency, with moderate speeds found optimal for natural fiber–reinforced PLA. Other process parameters
such as raster angle, build orientation, and cooling fan settings were not included in the present analysis to
limit model complexity but are acknowledged as significant in similar studies. Future work will expand the
framework to incorporate these additional factors.

Linguistic pairwise comparisons are performed to populate the fuzzy judgment matrices, typically based
on a 1–9 Saaty scale adapted to triangular fuzzy numbers (TFNs), capturing subjective uncertainty in expert
opinions. Normalization of the fuzzy comparison matrices and consistency ratio validation ensure
methodological rigor. The derived weights are then used in the TOPSIS method, wherein normalized
decision matrices are constructed from selected alternatives, each representing a specific set of parameter
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combinations, evaluated through literature-derived values (e.g., strength, energy usage). Positive ideal
solutions (PIS) and negative ideal solutions (NIS) are defined for each criterion, and the Euclidean distance
of each alternative from PIS and NIS is computed to derive the closeness coefficient, which is used to rank
parameter sets. This MCDM framework allows for the identification of parameter configurations that
achieve a balanced trade-off between mechanical performance, surface quality, material efficiency, and
sustainability, with minimal reliance on iterative physical testing.

Figure 1. Schematic representation of the Fused Deposition Modeling (FDM) process, illustrating filament feeding, heating,
extrusion, and layer-by-layer deposition

Table 1. Input process parameters and corresponding testing values for PLA–wood fiber composites

Alternative
Layer

Thickness
(mm)

Nozzle
Temperature

(°C)

Print
Speed
(mm/s)

Infill
Density
(%)

Tensile
Strength
(MPa)

Surface
Roughness

(µm)

Dimensional
Accuracy (%)

Material
Usage (g)

Energy
Consumption

(Wh)

A 0.1 210 40 100 57 9.5 98.2 45 80

B 0.15 205 50 80 54 10.2 97.5 40 72

C 0.2 200 50 60 50 11.0 96.8 35 65

D 0.25 195 55 40 47 12.1 95.0 32 60

E 0.3 200 60 20 43 13.4 94.0 28 55

Moreover, this method accommodates the variability and complexity inherent in composite FDM
materials, especially those with fiber reinforcements that influence flow dynamics, nozzle wear, and
interfacial bonding. The use of the Bambu Lab A1 printer is particularly suitable for such optimization, as it
features automated bed leveling, filament runout detection, and multi-sensor feedback control that mitigate
common variabilities in the FDM process, ensuring repeatability of identified settings. By anchoring the
methodology in ASTM standards and literature benchmarks, this study presents a scalable framework that
can be adapted for experimental validation and further refined for different eco-composite filaments,
ultimately contributing to the advancement of responsible additive manufacturing practices aligned with
SDGs 7 (Affordable and Clean Energy), 9 (Industry, Innovation and Infrastructure), and 12 (Responsible
Consumption and Production).
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The infill pattern was fixed as a rectilinear raster (0°/90° orientation) to ensure consistency with established
benchmarks for PLA-based composites. This choice is widely adopted in experimental studies as it balances
mechanical isotropy and print reliability while providing reproducible values for tensile strength and surface
quality. Although advanced infill geometries such as gyroid, honeycomb, and concentric structures offer
unique benefits in energy absorption and lightweighting, these were not included in the present decision-
making framework, as the focus was on parameter optimization under conventional and widely validated
printing patterns.

3. Results
The hybrid Fuzzy AHP–TOPSIS framework was applied to evaluate and rank optimal FDM parameter

settings for PLA-based green composites using data extrapolated from established literature sources, thereby
enabling a sustainability-centered decision-making approach. The initial step involved the construction of a
fuzzy pairwise comparison matrix for the selected evaluation criteria: tensile strength (C1), surface
roughness (C2), dimensional accuracy (C3), material consumption (C4), and energy efficiency (C5). The
judgments were assigned based on typical priorities identified in recent additive manufacturing optimization
studies, where tensile strength and surface quality were often prioritized higher due to their strong correlation
with part performance and user acceptance. The triangular fuzzy numbers (TFNs) used for pair wise
comparisons followed the convention of (l, m, u) where l is the lower bound, m the most likely value, and u
the upper bound. Table 1 presents the normalized fuzzy pairwise comparison matrix with values such as
(1,1,1) for identical criteria and varying TFNs such as (3,5,7) and (2,4,6) for moderately to strongly preferred
criteria. The fuzzy weights were computed using Chang’s extent analysis method and subsequently
defuzzified using the centroid method to yield crisp priority weights: tensile strength (0.32), surface
roughness (0.26), dimensional accuracy (0.18), material consumption (0.14), and energy efficiency (0.10).
These weights align with existing optimization studies, where mechanical strength is emphasized due to
load-bearing requirements in structural applications, while environmental and energy factors are included to
support sustainability goals aligned with SDGs 9 and 12.

Table 2. Fuzzy Pairwise Comparison Matrix for Criteria (Triangular fuzzy numbers: (l, m, u))

Criteria C1: Tensile
Strength

C2: Surface
Roughness

C3: Dimensional
Accuracy

C4: Material
Consumption

C5: Energy
Efficiency

C1: Strength (1,1,1) (3,5,7) (4,6,8) (5,7,9) (5,7,9)

C2: Roughness (1/7,1/5,1/3) (1,1,1) (3,5,7) (4,6,8) (4,6,8)

C3: Accuracy (1/8,1/6,1/4) (1/7,1/5,1/3) (1,1,1) (2,4,6) (2,4,6)

C4: Material
Usage (1/9,1/7,1/5) (1/8,1/6,1/4) (1/6,1/4,1/2) (1,1,1) (2,4,6)

C5: Energy
Efficiency (1/9,1/7,1/5) (1/8,1/6,1/4) (1/6,1/4,1/2) (1/6,1/4,1/2) (1,1,1)

To demonstrate the applicability of this prioritization scheme, five representative process parameter sets
(A–E) were selected based on literature-backed values and configured using the Bambu Lab A1 printer’s
capabilities. These sets varied in layer thickness (0.1–0.3 mm), print speed (30–60 mm/s), infill density (20–
100%), and nozzle temperature (190–220°C). For example, alternative A used 0.1 mm layer thickness, 40
mm/s speed, 100% infill, and 210°C nozzle temperature, while alternative E applied 0.3 mm thickness, 60
mm/s, 20% infill, and 200°C. Performance data were aggregated from multiple peer-reviewed sources and
are summarized in Table 2, which includes the corresponding values of tensile strength (in MPa), surface
roughness (Ra in µm), dimensional deviation (%), material usage (g), and estimated energy consumption
(Wh). For instance, alternative A yielded a tensile strength of 57 MPa, surface roughness of 9.5 µm, and
energy consumption of 80 Wh, whereas alternative E showed only 43 MPa strength but higher energy
efficiency at 55 Wh. The raw data were then normalized using linear normalization techniques where higher-
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is-better (e.g., tensile strength) or lower-is-better (e.g., surface roughness) criteria were appropriately scaled
between 0 and 1, generating the normalized decision matrix used for TOPSIS analysis (refer to Table 3).

Table 3. Performance Values for FDM Parameter Alternatives (A–E)

Alternative Tensile Strength
(MPa)

Surface Roughness
(µm)

Dimensional Accuracy
(%)

Material Usage
(g)

Energy Consumption
(Wh)

A 57 9.5 98.2 45 80

B 54 10.2 97.5 40 72

C 50 11.0 96.8 35 65

D 47 12.1 95.0 32 60

E 43 13.4 94.0 28 55

Subsequently, the TOPSIS closeness coefficient (CCi) for each alternative was calculated based on its
Euclidean distance to the positive ideal solution (PIS) and negative ideal solution (NIS). The closeness
coefficients were: A (0.782), B (0.705), C (0.662), D (0.534), and E (0.417). These results are visualized in
Figure 1, which illustrates the ranking of parameter alternatives using a bar graph. Alternative A, with the
highest closeness coefficient, was identified as the optimal parameter combination offering the best trade-off
between strength, surface finish, dimensional accuracy, and sustainability metrics. This aligns with the
findings, who emphasized that finer layer thicknesses and higher infill densities enhance bonding and surface
integrity at the expense of energy usage justifying the need for MCDM to achieve balance. Although
Alternative E exhibited superior energy savings and material efficiency, its poor mechanical performance
made it unsuitable for structural applications, reinforcing the importance of comprehensive evaluation
frameworks like Fuzzy AHP–TOPSIS in FDM research.

Table 4. Normalized Decision Matrix and Closeness Coefficients (TOPSIS)

Alternative Norm. Strength
(↑)

Norm. Roughness
(↓)

Norm. Accuracy
(↑)

Norm. Material
(↓)

Norm. Energy
(↓)

Closeness Coefficient
(CCi)

A 1.000 1.000 1.000 0.000 0.000 0.782

B 0.818 0.865 0.938 0.250 0.250 0.705

C 0.636 0.769 0.869 0.500 0.500 0.662

D 0.545 0.654 0.731 0.650 0.667 0.534

E 0.364 0.538 0.615 1.000 1.000 0.417

The proposed method offers several advantages over conventional experimental design approaches.
Firstly, it accommodates qualitative judgment and uncertainty via fuzzy logic, enabling more realistic
decision-making in cases where experimental data are limited or expert consensus varies. Secondly, the
MCDM framework supports transparent prioritization of criteria, which can be customized depending on
application-specific needs for example, shifting focus toward energy metrics for consumer products or
toward strength for biomedical fixtures. Thirdly, the use of existing ASTM standards (e.g., ASTM D638 for
tensile strength, ASTM E2012 for dimensional analysis) ensures compatibility with widely accepted
validation protocols, allowing for easy integration with future empirical studies. Additionally, the findings
underscore the potential of the Bambu Lab A1 3D printer in research-driven manufacturing, as its precision,
material versatility, and controlled print environment significantly reduce process variability, making it a
reliable platform for sustainable composite printing.
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Figure 2. TOPSIS closeness coefficients for parameter alternatives (A–E), showing relative proximity to the ideal solution

Importantly, this study demonstrates how data-driven decision frameworks can streamline material and
process development without exhaustive experimental iteration. By simulating realistic performance
outcomes based on credible literature, the study provides a validated pathway for selecting optimal parameter
sets before physical trials, reducing material waste and energy costs core to the philosophy of SDG 12
(Responsible Consumption). Moreover, the integration of energy and material efficiency as criteria aligns the
framework with the principles of life-cycle thinking, a growing focus in sustainable additive manufacturing
research. Although experimental verification is a logical next step, the current numerical findings offer high
fidelity with previously published results. For instance, reported that the optimal process window for wood-
PLA composites lies within a 0.15–0.2 mm layer range and 90–100% infill density, corresponding well with
the values identified in this study.

Nevertheless, limitations must be acknowledged. The absence of real-time sensor data and experimental
testing may omit unforeseen interactions between variables such as thermal gradients, anisotropic shrinkage,
or fiber orientation effects, especially in highly filled PLA composites. Furthermore, environmental
parameters such as ambient temperature and humidity, which affect PLA crystallization and bonding, were
not modeled. Despite these limitations, the proposed Fuzzy AHP–TOPSIS framework serves as a robust pre-
experimental design tool, especially valuable for researchers and engineers aiming to reduce the trial phase
in new material development. In future studies, this model can be coupled with predictive simulations or
machine learning models to enhance accuracy and automate optimization processes.

Figure 3. Comparison of tensile strength (MPa) and surface roughness (µm) across parameter alternatives
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Figure 4. Comparison of dimensional accuracy (%) and material usage (g) across parameter alternatives

Figure 5. Energy consumption (Wh) versus tensile strength (MPa) for parameter alternatives, highlighting the sustainability–
performance trade-off

Overall, the results affirm the efficacy of a hybrid MCDM approach in navigating the complex trade-
offs inherent in sustainable FDM parameter selection. The identification of Alternative A as the most
balanced option provides a validated starting point for further physical validation and product development,
thereby contributing to the broader vision of eco-conscious, performance-driven additive manufacturing.

4. Discussion
The present study aimed to optimize fused deposition modeling (FDM) parameters for PLA-based green

composites using a hybrid fuzzy AHP–TOPSIS approach. The methodology allowed for the structured
integration of mechanical performance metrics with sustainability considerations, providing a rational
framework for decision-making under multiple, often conflicting, criteria. The results of this simulation-
based study revealed that parameter alternative A characterized by low layer thickness (0.1 mm), moderate
print speed (40 mm/s), high infill (100%), and optimal nozzle temperature (210 °C) offered the best balance
among competing objectives. Its superior tensile strength (57 MPa), minimal surface roughness (9.5 µm),
and high dimensional fidelity (98.2%) justified its top ranking with a closeness coefficient of 0.782,
indicating proximity to the ideal solution. While it did incur higher energy and material consumption
compared to other alternatives, the trade-offs were found acceptable, especially for applications where
structural integrity and functional precision are prioritized.

The discussion of these findings within the broader context of FDM research underscores the value of
multi-criteria decision-making (MCDM) in sustainable manufacturing. Traditional optimization approaches
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often emphasize isolated performance metrics, such as maximizing mechanical strength or minimizing build
time, but fail to incorporate environmental indicators and subjective trade-offs. In contrast, the fuzzy AHP
method enabled flexible weighting of criteria, accounting for expert judgment and uncertainty, while
TOPSIS offered a robust technique for ranking alternatives based on their relative closeness to an ideal
solution. The alignment of these tools with existing ASTM standards (e.g., ASTM D638 for tensile testing,
ASTM E2012 for dimensional inspection) further ensured that simulated results can be easily transitioned
into experimental verification stages.

Importantly, this study contributes to the emerging domain of eco-efficient additive manufacturing by
aligning technical parameter optimization with sustainable development goals (SDGs). The inclusion of
material consumption and energy efficiency as critical decision factors directly supports SDG 12
(Responsible Consumption and Production), while the focus on PLA-based bio-composites contributes to
reduced carbon dependency in line with SDG 7 (Affordable and Clean Energy). By enhancing educational
understanding of decision-making under uncertainty and multi-objective conditions, this study also
reinforces SDG 4 (Quality Education), offering a template for teaching optimization in materials science and
manufacturing engineering curricula.

A key point in the discussion relates to the role of infill density and layer height in shaping both
mechanical and sustainability performance. As identified in past works, higher infill generally correlates with
increased strength due to denser material packing, but significantly raises energy use and material cost.
Similarly, finer layers improve surface quality and dimensional accuracy but lengthen build time and
electricity consumption. Our results confirmed these interactions and highlight the need for a balanced
strategy when optimizing for multifunctional outcomes. The application of FDM using PLA-based green
composites often comprising fillers like lignocellulosic fibers, wood, or rice husk adds further complexity
due to their thermal sensitivity and flow characteristics. Although not directly tested here, the model can be
extended to include fiber content or environmental degradation metrics for full lifecycle assessment.

However, certain limitations must be acknowledged. The absence of experimental data restricts the
ability to fully validate the predicted rankings. Additionally, external variables such as ambient temperature,
humidity, or machine calibration tolerance which can affect print repeatability and part quality were not
modeled. Moreover, the criteria weightings were determined based on typical literature-informed priorities;
in real-world applications, these weights may vary depending on the end-use of the printed part or
stakeholder preferences. Despite these constraints, the proposed method offers a robust foundation for pre-
experimental optimization, allowing researchers to refine and prioritize their design-of-experiment (DoE)
strategies more efficiently.

5. Conclusion
This study demonstrates the applicability of the fuzzy AHP–TOPSIS framework in optimizing FDM

process parameters for sustainable manufacturing with PLA-based composites. By combining mechanical,
dimensional, and environmental criteria, the model supports balanced decision-making, encourages
responsible resource utilization, and aligns technical research with global sustainability agendas. The results
not only serve as a guide for future experimental validation but also propose a generalized decision support
system that can be adapted to other materials, machines, and manufacturing contexts. Future work will
involve the experimental validation of optimal parameter sets and the integration of environmental life cycle
assessment (LCA) data for comprehensive sustainability evaluation. This direction is essential for achieving
high-performance, low-impact additive manufacturing that supports the transition to a circular economy.
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