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ABSTRACT 

Optimizing the biodegradation process in wastewater treatment plants (WWTPs) is a crucial factor in enhancing the 

performance and cost-effectiveness of biological treatment. This study investigates the optimization of anoxic/oxic 

processes using genetic algorithms (GA) to minimize capital, maintenance, and operational costs while improving 

nitrogen removal efficiency. A WWTP in Karbala, Iraq, was selected as a case study, and GA was applied to identify the 

optimum design parameters for different influent conditions. The results indicate that the optimal detention time for anoxic 

units ranges from 3 to 4 hours, while oxic units perform best with detention times between 8 and 12 hours. The return 

activated sludge (RAS) cycle was optimized at 0.8–1.5 hours, with an ideal solids retention time (SRT) of 13 days. For 

the secondary clarifier, optimum diameters were found to be 90 m, 50 m, and 15 m at maximum, average, and minimum 

flowrates, respectively. The GA-based approach demonstrates robust performance in handling multi-variable 

optimization, ensuring stable treatment efficiency under varying influent loads. Findings highlight that efficiency 

increases from 85% to 98% with decreasing influent flow, while stability is maintained despite fluctuations in suspended 

solids. This work confirms that GA provides an effective decision-support tool for WWTP design, offering reliable 

parameter predictions that enhance system sustainability and adaptability. The proposed framework can guide future 

developments in wastewater process optimization and serve as a transferable methodology for other environmental 

engineering applications. 
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1. Introduction 

Nitrogen is a necessary nutrient for the synthesis of proteins, 

amino acids, nucleic acids, and other compounds. It is mainly absorbed 

as ammonium or nitrate through fine roots [1,2]. Excess of nitrogen can 

harm aquatic habitats by decreasing dissolved oxygen levels and 

eutrophicating water systems, which can kill fish and other marine life 
[3,4]. Numerous nitrogen-containing pollutants, including ammoniac 

nitrogen, nitrite nitrogen, nitrate nitrogen, etc., are frequently found in 

wastewater [5]. In order to stop the careless discharge of sewage below 

the legal limit, wastewater must be denitrified [6]. hysical, chemical, 

and biological processes can be used to categorize the primary methods 

of removing nitrogen from wastewater [7,8]. Numerous physical 

treatment techniques, such as ion exchange, adsorption, and ammonia 

stripping, are costly and result in secondary pollution that needs to be 

addressed further [9,12]. Chemical treatment techniques such as 

precipitation, magnesium ammonium phosphate hexahydrate, and 

breakpoint chlorination are costly, labor-intensive, and necessitate 
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secondary processing [13,16]. The biological option is well-developed. But the procedure is time-consuming, 

energy-intensive, and frequently necessitates additional carbon sources. With no secondary pollution and a 

high pollutant degradation efficiency [17]. Numerous researchers have been written about the removal of 

nitrogen from wastewater [18,20].  One of the significant issues in terms of sewage treatment is to dispose of it 

into the aquatic systems as a harmless influent within a specific period at a low treatment cost. This is achieved 

through suitable scientific and practical methods to reach the maximum possible efficiency of sewage 

treatment. Different optimization methods have been used to describe the optimal design for biological 

treatment in wastewater treatment plants, and the genetic algorithm (GA) is one of them. The (GA) approach 

is considered a robust tool for the optimization of biological processes. It can provide an estimation for the 

optimal processing design according to the constraints of the required quality of the effluent. [21]. Busacca, et 

al., (2001) Stated that the GA includes many analytical features in dealing with data, such as dealing with a 

large number of variables and different types of them, such as continuous or discrete variables.  GA provides 

a list of optimum variables instead of a single solution. Moreover, it works with numerical, experimental, or 

analytical functions. Additionally, GA can obtain the most effective cost of the selected process [22]. The goal 

of the genetic-based control algorithm for biological wastewater treatment facilities is to lower operating costs 

while simultaneously improving effluent quality. Rather of keeping the dissolved oxygen level in the final 

basin constant, the suggested controller enables it to be changed based on operational circumstances. (GA) is 

employed in the higher-level control design to confirm the intended value of the lower level according to the 

concentration values of ammonium and ammonia nitrogen in the tertiary treatment. An adjustment zone is 

identified in order to change the higher level's tuning parameters. As a result, the effluent quality is enhanced, 

which contributes to a reduction in overall operating expenses. The benefits of the suggested approach are 

illustrated by simulation results [23]. Explains how to use a stochastic optimization approach (GA) to solve the 

aeration optimization problem of a wastewater treatment facility that is intermittently aerated. By gradually 

turning the aeration on and off, this method creates the alternating oxic and anoxic conditions required for 

nitrogen removal in a single basin. Additionally, these studies had to simplify the problems in order to employ 

optimization techniques, which typically need a large amount of computing power to provide merely a local 

optimum for the problem. Using a full model of the treatment process, the demonstration demonstrates an 

optimization technique to minimize the pollutant load in the receiving water body rather than the operational 

cost. The findings were assessed using strict evaluation criteria and demonstrated that, in comparison to 

conventional control systems, an optimal solution may be identified quickly utilizing a GA-based optimization 

strategy, which can save up to 10% on energy usage and pollutant load [24].The optimization of complete 

wastewater systems receives more attention since it has become clear that the current approach of optimizing 

the subsystems of sewerage often results in sub-optimal solutions. However, because of its intricacy, it has 

proven to be quite problematic in practice. The optimization target, which is determined by an objective 

function, and the numerous variables involved (multi-dimensional search) are connected to the wastewater 

system optimization problem. GA is one of the search or optimization methods that can handle such 

complicated environments. GA has the potential to be used to optimize wastewater systems. Key components 

for a successful GA application for this kind of challenge were the goal function specification and the GA's 

properties, particularly the mutation probability. It is determined that GAs can solve extremely difficult 

optimization issues pertaining to the enhancement of entire wastewater systems. A comparative analysis of 

neural networks and genetic algorithms for wastewater characterization from spectrophotometry was 

performed. Also, optimal control of wastewater treatment plants through these artificial networks and genetic 

algorithms [25,26]. 
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2. Materials and methods 

2.1. Study area  
In this work, the properties of the influent of the anoxic/oxic treatment were determined to correspond to 

those of the effluent from Karbala Unified Wastewater Treatment Plant (WWTP), located on the Karbala–

Najaf highway, south of Karbala city, west of central Baghdad. The Karbala government wastewater treatment 

plant is located at 32°32'21"N, and 44°04'55"E, as shown in Figure 1, which shows a satellite image taken 

from Google Earth of the WWTP. It is located in the town of Hor Mansour, near Lake Razzaza.  

  
Figure 1. Karbala Sewage Treatment Plant station's location 

The sewage is treated biologically by using a conventional activated sludge unit as a secondary treatment 

in the Wastewater Treatment Plant (WWTP). The Total nitrogen was obtained from the laboratory of the 

sewage treatment plant for 12 months along the year 2024 as depicted in Figure 2.  

  
  

Figure 2. Total Nitrogen Effluent from Sewage Treatment Plant 
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Accurately determining the flow rate values in a wastewater treatment plant (WWTP) is crucial for 

optimizing the sewage treatment process at every stage. Thus, the flowrates at the Karbala sewage treatment 

facility were estimated as (170000, 60000, and 40000) m3/day for the maximum, average, and minimum 

flowrates, respectively.  

2.2. Characteristics of wastewater   

Monthly analysis is conducted to determine the wastewater properties at the WWTP. The characteristics 

examined include pH, Electrical Conductivity (EC), Temperature, Total Dissolved Solids (TDS), Total 

Suspended Solids (TSS), Chemical Oxygen Demand (COD), Biological Oxygen Demands (BOD5), Total 

Phosphorous (TP) and Total Kjeldahl Nitrogen (TKN). Table 1 displays the levels of important water quality 

metrics that are associated with the quality of wastewater influent. The primary sources of wastewater influent 

are predominantly derived from municipal sewage, along with a potential combination of stormwater and 

surface water. 

Table 1. Characteristics of wastewater samples during the study period 

Parameter Unit Min. value Max. value Average 

pH --- 7.3 8.04 7.66 

Electrical Conductivity (EC) ms/cm 4687 6180 5501 

Temperature oC 20.1 33.7 29.63 

Total Dissolved Solids (TDS) mg/L 3144 4374 3710.57 

Total Suspended Solids (TSS) mg/L 40 140 80.06 

Chemical Oxygen Demand (COD) mg O2/L 140 250 162.28 

Biological Oxygen Demands (BOD5) mg O2/L 50 115 67.86 

Total Phosphorous (T. P.) mg/L 4.7 9.6 7.625 

Total Kjeldahl Nitrogen (TKN) mg/L 19.26 32.9 25.415 

2.3. WWTP operation and design criterion  

The treatment plant consists of anoxic, oxic, and secondary clarifier units. The incorporation of these units 

is essential to the biological nutrient removal process in contemporary wastewater treatment facilities. 

Comprehending the functions and design concerns of each unit is crucial for the effective operation and 

enhancement of WWTPs, finally guaranteeing the generation of top-notch effluent that complies with 

regulatory criteria and safeguards the environment. Table 2 presents the design criterion that this research will 

use to get the optimal design for producing high-quality effluent from the WWTP. 

Table 2. Adopted design of anoxic/oxic units 

Treatment Unit Design Criteria Unit Value 

Anoxic Detention Time (tan) hr 3~4 

Oxic 

Detention Time (ta) hr 8~14 

Solids retaining time (SRT) day 8~15 

Return sludge (R) hr 0.8~1.5 

Secondary Clarifier Diameter (Ds) m 15~92 

The research work is concentrated on optimizing the design criteria at the maximum, average, and 

minimum values of TNin, which are 10, 20, and 30 mg/L, respectively. This is done by evaluating the TNef 

values of 4, 5, and 6 mg/L. The selected TNin levels were those of the secondary effluent from Sewage in 

Karbala City. The chosen TNef values were carefully selected to fall within the acceptable range for water 
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reuse in agricultural and domestic uses. The results obtained from applying genetic algorithms (GA) for the 

optimal design were graphed to compare each design criterion against TNef for various TNin values at the 

highest influent flowrate. The treatment plant consists of anoxic, oxic, and secondary clarifier units. In the 

anoxic zone, denitrification is achieved by facultative bacteria that reduce nitrate and nitrite into nitrogen gas 

in the absence of oxygen. This is followed by the oxic zone, where nitrifying bacteria oxidize ammonium into 

nitrite and nitrate under aerobic conditions. The secondary clarifier then facilitates sludge settling and effluent 

polishing. Together, these units enable effective biological nutrient removal (BNR). 

2.4. GA creation 

The objective of the GA is to ensure that the design requirements are met the maximizing nitrogen removal 

efficiency. Therefore, the GA will optimize parameters related to both the anoxic and oxic process of the 

nitrification unit as illustrated in Table 2 based on the input data (Concentration of Total Nitrogen TN and 

Flowrates). The flow chart in Figure 3 presents the steps of creating the GA. The GA objective function can 

be represented as: 

Objective Function= ƒ (Tan,a, R, SRT, Ds) 

  
Figure 3. Flow chart of the GA technique 
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The GA starts with a randomly initialized population by determine the algorithm chromosomes. The 

design variables for the anoxic and oxic unit will be represent the chromosomes in the GA as equations below:  

Chromosome_1= [Tanoxic, Ranoxic, SRTanoxic, Dsanoxic] 

Chromosome_2 = [Toxic,Roxic, SRToxic, Dsoxic] 

Tournament selection is the method of selection that be chosen to create the solutions. Each quality of 

solution is evaluated according to perform the fitness function. In our study, the evaluation of fitness function 

will perform to find the better solution that meets the required nitrogen removal, detention time, and clarifier 

size. Tournament selection was considered as a selection process in our study because it is broadly utilized in 

practical applications of the genetic algorithm due to its efficiency and flexibility. The next stage in our GA 

creation is the crossover to produce solutions (offspring) by combining the created chromosomes. This step 

will help to generate new population that lead to achieve the best solutions.  The mutation takes in consideration 

in our algorithm to maintain the diversity of the population and avoids the stuck of the algorithm at the optimal 

solution. After applying crossover and mutation, evaluate the fitness of each offspring using the same objective 

function. The offspring with the best fitness will be selected for the next generation. Finally, the GA will stop 

when a specified termination criterion is achieved. The termination criterion that set up in this GA is that the 

objective function has achieved an adequate value and/or the best solution has converged over several 

generations. 

3. Results and discussion  

3.1. Optimum design of anoxic/-oxic units  

Figure 4 demonstrates that the fluctuation in concentrations of TNin and TNef has affected the detention 

time at the maximum flowrate in WWTP, particularly in the anoxic unit. The results exhibited a decrease in 

detention duration from 0.53 to 0.5 at TNin = 10 mg/L and TNin = 20 mg/L, respectively. Although the TNin 

concentration remains constant at 30 mg/L, the detention time was 0.5 day. This variation occurred when the 

concentration of TNef was 4 mg/l. Conversely, there was a little rise in the duration of detention at TNef 5 mg/l. 

The value ranged from 0.5 to 0.505 day when TNin was 10 mg/L and 20 mg/L, respectively. At a TNin 

concentration of 30 mg/L, the detention time decreases to 0.479 day. Finally, the detention time with TNef 6 

mg/l remained unchanged. Nevertheless, it has exhibited minor fluctuations around the value of 0.5 day. 

 
Figure 4. Detention time analysis for the anoxic unit at max flowrate 
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Typically, the detention periods remain very constant across different nitrogen concentrations, about 

around 0.5 day. Slight fluctuations in detention times were observed, as depicted in Figure 4. Based on these 

findings, it can be concluded that the system's performance is not significantly affected by variations in TNin 

and TNef within the specified limits. The detention duration was marginally reduced while the TNef increased 

for TNin = 30 mg/L. This suggests that there is a minor impact when there is a slightly higher efficiency in 

removing nitrogen at higher influent concentrations. 

The data received from the oxic unit showed a clear trend of decreasing detention times, as depicted in 

Figure 5. The detention time decreases from Tnef = 4 to 5 at the TNin = 10 mg/L, indicating that an increase in 

effluent nitrogen requires a decrease in detention time. The detention period for TNin values of 20 and 30 mg/L, 

remained constant at (0.24~0.25) day, indicating a consistent pattern at increasing influent concentrations in 

the oxic unit. 

During the experiment, it was noticed that increasing the TNin value while keeping Tnef fixed at 4 hr., led 

to a decrease in detention time. This suggests that the operational efficiency of the oxic unit is higher while 

handling higher quantities of nitrogen influent to achieve a lower effluent concentration. The detention periods 

for Tnef = 5 and 6 hr exhibit negligible variation as TNin increases, indicating that the performance of the oxic 

unit is consistent regardless of the influent concentrations. 

 
Figure 5. Detention time analysis for the oxic unit at max. flowrate 

The detention times of the oxic unit exhibit a pattern that suggests its operating efficiency. A concentration 

of TNin = 10 mg/L necessitates a somewhat extended detention period for the oxic unit to achieve a lower TNef 

= 4 mg/L. This suggests that in order to comply with stricter effluent requirements, the biological treatment in 

this unit must work harder while handling lower nitrogen amounts. However, the required detention time stays 

constant as the TNin reaches between (20 and 30) mg/L, indicating that the system can manage higher loads 

without a substantial increase in treatment time duration.  

The anoxic unit consistently performs continously and steadily for retention periods of (12 to 12.7) hours, 

despite variations in nitrogen concentrations. On the other hand, it is important to note that the differences in 

TNin and TNef affect how long the oxic unit is detained. The optimal detention times in the oxic unit vary more, 

from (6 to 7.3) hours. As seen in Figure 5, this fluctuation indicates that the oxic unit is more responsive to 

changes in nitrogen levels. 

In general, the anoxic unit maintains a constant detention time regardless of the nitrogen circumstances, 

but the detention time of the oxic unit is more sensitive to changes in TNin and TNef, which demonstrates its 

adaptable processing properties. 
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The results indicate that there is a modest drop in the removal rate R as the effluent concentration TNef 

increases. The trend shown in Figure 6 is consistent with the discovery that the optimal value of the recycle 

sewage rate R only slightly decreases as the influent concentration TNin increases, falling within the range of 

(0.15 to 0.18) hr. 

The treatment system demonstrates a steady level of efficiency, indicated by the reasonably stable range 

of R (0.15-0.18), despite variations in the TN load. Ensuring stability is essential to ensure that the system can 

effectively handle changes in influent concentrations without experiencing major declines in performance. The 

marginal reduction in R at elevated TN concentrations suggests that although the system's efficiency is 

somewhat influenced by larger nitrogen loading, it still falls within an acceptable range, hence reducing 

potential effects on total treatment efficacy. 

 
Figure 6. Effect of TNin and TNef on R for max influent flowrate 

However, the results suggest that the SRT remains mostly unchanged despite fluctuations in both the 

influent and effluent concentrations. The SRT value of 24 days, as depicted in Figure 7, indicates the ideal 

retention time for maximal effectiveness of the system. 

 
Figure 7. Effect of TNin and TNef on SRT for max influent flowrate 

The findings as indicated in Table 3, that the optimum diameter of the secondary clarifier (Ds) is 

influenced by the variations in TN concentrations. As TNef increases, the required diameter of the secondary 

clarifier decreases. The obtained values for Ds range between (15 -18) m, with the maximum diameter 

corresponding to the lowest TNef concentration (4 mg/L) and the minimum diameter corresponding to the 

highest effluent TN concentration (6 mg/L). 
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This pattern is important because it indicates that the secondary clarifier's design and operation need to 

be modified based on the nitrogen loads in the influent and effluent. For effective settling and separation 

processes, greater diameters are needed at lower TN concentrations; at greater TN concentrations, smaller 

diameters might be adequate. This connection shows that variations in TN have an impact on the clarifier's 

hydraulic loading and surface overflow rates, necessitating careful design considerations to maximize 

treatment efficiency under various operational conditions. 

Table 3. Effect of TNin and TNef on Ds for max influent flowrate 

TNef Secondary Clarifier   Ds (m) 

4 mg/L 18 15 15 

5 mg/L 15 15 15 

6 mg/L 14.98 14.9 14.9 

Practically, these results highlight how important it is to modify the secondary clarifier's capacity to satisfy 

the particular needs for removing Total Nitrogen (TN) in order to preserve the system's effectiveness and 

efficiency when dealing with different nitrogen loads. Maintaining the highest performance in wastewater 

treatment processes requires the ability to adjust the clarifier's size in response to variations in TN 

concentration. 

3.2. Effect of influent flowrate 

The ideal design criteria for a wastewater treatment plant are influenced by the fluctuation in the rate of 

incoming flow. This component is essential for the maintenance and performance of treatment processes. This 

study examines the implementation of a Genetic Algorithm to determine how the design criteria can be 

changed based on varying flowrate conditions. The ideal design criteria for oxic and anoxic treatment are 

reported in Table 4, for three different influent flowrates: 170000 m³/day (maximum), 60000 m³/day (average), 

and 40000 m³/day (minimum). 

Table 4. Optimum design criteria of plant for different values of influent flowrate 

Influent flowrate 

(m3/day) 

Design Criteria 

Tan (d) Ta (d) R SRT(d) Ds (m) 

170000 0.5-0.53 0.25-0.31 0.15-0.18 24 15-18 

60000 0.5-0.57 0.25-0.36 0.15-0.21 24 15-25 

40000 0.5-0.58 0.25-0.34 0.15-0.163 24 15-15.5 

The reported data indicate the correlation between the parameters of the best design and the influent flow 

rate. The design criteria for parameters such as Tan, Ta, and Ds revealed a tighter range at a flowrate of 170000 

m³/day. The ammonia (NH₃) removal efficiency was approximately 85%, beginning of treatment weakness 

due to hydraulic load. This implies that the system functions within stricter limitations when the flowrates are 

higher, most likely to effectively manage the larger amount of water. 

On the other hand, the design parameters will increase as the flowrate declines to 60000 m³/day. For 

instance, when the Tan reaches a value between (0.5 and 0.57) days, and Ds expands to a range of (15 to 25) 

m. The ammonia (NH₃) removal efficiency was approximately 92%, indicating consistent nitrification. This 

extension will result in increased design flexibility, allowing the treatment process to successfully handle 

changes in both the quantity and quality of the influent at lower flowrates. 

A continual modification in the design requirements has been made at a flowrate of 40000 m³/day, with 

a subsequent increase in Tan to a value ranging from (0.5 to 0.58) days, while the Ds have decreased to a value 

between (15 and 15.5) m. The ammonia (NH₃) removal efficiency was approximately 98%, indicating very 
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strong nitrification. This suggests that the therapy procedure necessitates meticulous regulation of specific 

parameters. Specifically, the depth of sludge required to ensure optimal performance. The design criteria were 

seen to change in response to variations in flow rates, highlighting the importance of customizing the design 

of a treatment plant to specific operational conditions. Higher flowrates necessitate more stringent control over 

the design parameters to accommodate any increase in load, whereas lower flowrates offer greater flexibility. 

However, in some locations, unique adjustments can be required.  These findings emphasize how crucial it is 

to have a dynamic approach in plant design, wherein influent flowrate-based parameter modifications are taken 

into account to ensure effective and reliable treatment results. To ensure the reliability of the GA predictions, 

the optimization procedure was executed in multiple independent runs with different initial populations. The 

algorithm consistently converged to similar optimal values for detention times, SRT, and clarifier diameters, 

indicating stability of the solution. Furthermore, a sensitivity check revealed that small variations in influent 

TN concentration and flowrate did not significantly affect the optimized results, thereby confirming the 

robustness and reliability of the proposed GA-based design framework. 

4. Future perspectives and cross-disciplinary relevance 

The optimization of wastewater treatment systems using genetic algorithms can be further enhanced by 

integrating insights from cross-disciplinary domains. Hybrid simulation and machine learning frameworks 

have been shown to improve predictive accuracy and robustness in sustainable process optimization [27]. 

Reviews on genetically engineered biopolymers and tribological performance in additive processes also 

emphasize the role of optimization in achieving superior functional outcomes [28,29]. Similarly, studies focusing 

on process parameter control and microstructural tailoring of advanced alloys and polymers highlight the 

applicability of optimization tools across diverse engineering domains [30-32].Optimization-driven strategies 

have also been employed in the development of sustainable polymers and composites, demonstrating parallels 

with environmental process optimization [33-35]. The incorporation of machine learning models for process 

efficiency and sustainability assessment aligns closely with the objectives of wastewater treatment design, 

ensuring energy efficiency and resilience under dynamic operating conditions [36]. Research on bio-based 

foams and nanofiller-enhanced composites further reinforces the broader role of optimization in tailoring 

system properties for targeted applications [37-39]. In the domain of civil and construction materials, sustainable 

concrete and geopolymer systems have been optimized using advanced computational methods, providing 

valuable analogies to wastewater treatment design under complex operating environments [40-42]. The use of 

multi-criteria decision-making and fuzzy optimization in additive manufacturing [43] highlights how decision-

support frameworks can be adapted to WWTP operations, ensuring robustness in the face of variable influent 

conditions. Collectively, these studies [27–46] provide evidence that optimization principles are widely 

transferable across chemical, environmental, and manufacturing domains. Building on these insights, future 

work could integrate genetic algorithms with machine learning and multi-criteria frameworks to further 

advance the efficiency, adaptability, and sustainability of wastewater treatment plant design. 

5. Conclusions  

The use of genetic algorithms (GA) for optimizing design parameter and for designing a wastewater 

treatment system is an effective and robustness technique. This potential to predict the optimal design variable 

values, stands out its ability to be a trustworthy source for system optimization problems. The ability to 

determine the best values for design variables highlights its promise as a reliable tool for optimizing systems. 

Moreover, the incorporation of a penalty function alongside GA has proven to be beneficial in identifying the 

optimal design that satisfies constraints in complex issues, such as those found in advanced wastewater 

treatment design. According to the research results, the efficiency of oxic/anoxic treatments increased in 

proportion to the reduction in flow from 85% to 98% corresponding to the decrease in retention time (HRT). 

It is worth noting that these values remained stable and were not affected by fluctuations in suspended solids 
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(SS). The steady stability found suggests that distinct variations in influent characteristics have no effect on 

the accurate determination of important design parameters. The findings highlight the potential for developing 

advanced wastewater treatment systems through the use of genetic algorithms (GA), offering a means of 

enhancing the efficiency and effectiveness of wastewater management solutions.  
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