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ABSTRACT 

Floating solar-ocean hybrid platforms offer a promising solution to 

meet the growing energy needs of coastal and island regions through 

sustainable sources. However, their control remains a major challenge due to 

the complex, nonlinear dynamics caused by waves, wind, and fluctuating 

solar irradiance. Conventional control methods often lack the adaptability 

required for such environments, limiting their effectiveness. To address this 

gap, this study proposes a Genetic Algorithm-Tuned Neural Network (GA-

NN) control framework aimed at enhancing stability, energy efficiency, and 

real-time adaptability in floating hybrid platforms. The methodology 

involves a three-layer neural network optimized using genetic algorithms, 

which continuously adjust network parameters in response to environmental 

inputs such as wave height, wind speed, solar irradiance, and platform 

inclination. Simulations conducted in MATLAB/Simulink demonstrate that 

the GA-NN system outperforms traditional PID controllers, achieving up to 

35% improvement in platform stability and higher energy tracking accuracy 

under varying sea states. These findings highlight the potential of intelligent 

control systems in enabling autonomous, resilient, and efficient operation of 

next-generation marine renewable energy infrastructures. 
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1. Introduction 

With growing global energy demands and a pressing need to reduce carbon emissions, offshore 

renewable energy systems have gained significant attention. Floating platforms that integrate photovoltaic 

(PV) arrays and ocean energy harvesting devices offer a promising approach for continuous energy 

production. However, such platforms face complex control challenges due to wave-induced motions, wind 

loading, mooring dynamics, and variability in energy inputs. Traditional control systems often struggle in 

these environments due to their lack of adaptability. Artificial Neural Networks (ANNs) have demonstrated 

the capability to handle nonlinear, time-varying systems, but they often require optimal tuning for real-time 

performance. Genetic Algorithms (GAs), as global search and optimization tools inspired by natural 

evolution, can efficiently tune ANN weights and structure to improve system robustness and accuracy. The 

hybrid approach—GANN—offers an effective means to manage control tasks in complex marine 

environments. To enhance understanding, it is important to briefly describe how these systems operate. 

Floating solar-ocean platforms consist of buoyant structures equipped with photovoltaic panels to capture 

sunlight and integrated wave energy converters (WECs) that harness mechanical energy from ocean waves. 

The WECs may function using oscillating water columns (OWCs), point absorbers, or attenuators to convert 

wave motion into electricity. These hybrid platforms float on the ocean surface, anchored via mooring 

systems, and their energy harvesting components are designed to adapt to dynamic marine conditions. 

Together, solar and wave systems provide a more consistent power output by complementing each other's 

intermittency. Due to the increasing global demand for energy and rising environmental concerns, the 

development of new and efficient technologies for sustainable energy production has become imperative [1]. 

Floating solar-ocean hybrid platforms that combine solar photovoltaic (PV) technique and ocean energy 

extraction is a prospective way to utilize renewable resources and reduce dependence on fossil fuels [2]. In 

that regard, these wave energy converter (WEC) systems can be combined with solar energy systems and 

there would be less downtime than in individual renewable energy systems due to the complementary nature 

of solar and ocean energy [3]. Efficient control tactics are critical in guaranteeing the performances and 

robustness of such complex hybrid systems, as a result of the dynamic interactions among the environmental 

conditions, energy requests, and system constraints [4,5]. Classic control strategies often have difficulty 

coping with the inherent nonlinearities and uncertainties of renewable energy systems. There is a need to 

develop control strategies which are intelligent for better performance [6]. Recent developments in artificial 

intelligence methodologies, notably neural networks, have widely been used for modelling and controlling of 

a variety of complex systems. Nevertheless, the designing and tuning of neural network controllers are not 

straightforward and the choice of network architecture, training algorithms and control parameters should be 

carefully considered. Of all these types of tunings, genetic algorithms, which inherit a concept from natural 

selection, provide a promising optimization for parameter tunings in NN for better control performance. By 

changing the parameters of the training algorithms, the best known PSO variants to optimize prediction 

models, based on Swarm Intelligence so far, have been successfully applied [7]. Combining GAs with NNs 

can result in the most successful method for intelligent control systems of floating solar-ocean hybrid 

platform to maximize the energy extraction, system stability and operational cost minimization [8]. The role 

of strong control strategies and effective system integration techniques in maximizing the benefit of 

Renewable Energy (REN) are highlighted in recent works. For the successful installation and operational 

lifetime of hybrid renewable systems, it is necessary to understand the control mechanism of the system. In 

this review, the state-of-the-art of Genetic Algorithm-tuned Neural Networks applied to control floating 

solar-ocean hybrid platforms, including the theory, procedures, utilities, and challenges are presented. 
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Although several intelligent control approaches have been applied to marine renewable platforms, each 

has limitations. Model Predictive Control (MPC) is effective in handling multi-objective optimization and 

system constraints, but its reliance on accurate dynamic models and high computational cost reduces its 

feasibility in real-time marine conditions. Sliding Mode Control (SMC) offers robustness against 

uncertainties and disturbances, yet it often suffers from chattering that shortens actuator life and reduces 

efficiency. Fuzzy Logic Controllers (FLCs) and adaptive neuro-fuzzy methods provide interpretability and 

adaptability, but their rule-based structure struggles when exposed to highly nonlinear and stochastic 

disturbances such as irregular sea states. By contrast, Genetic Algorithm–Tuned Neural Networks (GA-NNs) 

combine global optimization with the adaptive learning of neural networks. This hybrid approach allows 

continuous tuning of parameters under uncertain and time-varying conditions, enabling superior stability, 

energy tracking, and resilience. Thus, GA-NN controllers provide a more balanced trade-off between 

adaptability, computational feasibility, and control robustness, positioning them as a strong alternative for 

next-generation floating solar–ocean hybrid platforms. 

1.1. Floating solar and ocean energy systems 

Recent works highlight the increasing interest in floating PV on reservoirs and near shore waters. 

Meanwhile, the exploitation of ocean energy by wave energy converters (WECs), OWCs and point absorbers 

has attracted increasing attentions. Hybridization aims to integrate these systems in order to achieve secure 

power supply, even with oceanic intermittency. Floating solar-ocean hybrid systems are a novel way to 

capture solar energy and ocean energy simultaneously [9]. These systems are usually designed as a floating 

platform with integrated solar panels and wave energy converters for the production of electricity from 

sunlight and waves at the same time. Floating solar-ocean hybrids come with several benefits compared to 

regular renewable energy installations. Floating solar-ocean hybrids offer several advantages over 

conventional renewable energy installations. First, they can generate electricity continuously—solar energy 

is available during the day, while wave energy can be harnessed both during the day and night [10]. Second, 

they are suitable for use in locations where land is limited or expensive [11]. Third, they reduce the 

environmental footprint of energy generation decoupling land use and associated infrastructure constrains [12]. 

Huge floating structures provide a solution for the generation of substantial space within the sea for different 

applications such as airports, seaports, and fishery farms [13]. There are several engineering challenges to 

design and construct floating solar-ocean hybrid platforms, particularly in relation to wave dynamics. 

1.2. Neural networks in marine applications 

Artificial Neural Networks (ANNs) are computational models inspired by the human brain’s neural 

structure. They consist of interconnected layers—an input layer, one or more hidden layers, and an output 

layer—where each layer comprises processing elements called neurons. Each neuron receives input signals, 

processes them through an activation function, and transmits the output to the next layer. Neural networks 

learn patterns and relationships in data by adjusting the weights of these connections during a training 

process, typically using algorithms like backpropagation. Their ability to approximate complex nonlinear 

functions makes them highly suitable for control, prediction, and classification tasks in dynamic and 

uncertain environments. 

Neural networks (recurrent and feed-forward) are widely adopted in marine control systems for dynamic 

positioning, wave prediction, and fault detection [14]. To improve clarity and coherence, the various 

applications of neural networks in marine systems can be categorized based on the type of neural network 

used and the specific application domain. For instance, recurrent neural networks (RNNs), including LSTM 

and GRU models, are particularly effective for time-series predictions such as ship motion forecasting. In 

contrast, convolutional neural networks (CNNs) are often combined with RNNs for learning spatial-temporal 

dynamics. These models are applied across domains like dynamic positioning, wave load prediction, vessel 
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stabilization, and fault detection. Such categorization helps in better understanding the scope and suitability 

of each neural network architecture. Their learning ability enables them to learn the nonlinear dynamics and 

to adapt to changing environments. Neural nets have been successfully applied in a variety of marine tasks 

such as the prediction of ship motion [15]. Due to their capability of learning complicated patterns and 

relationships from data, NNs are well suited to model the non-linear and time-varying dynamics of the 

marine with systems [16]. Traditional algorithms such as Kalman filters and autoregressive models do not 

perform well for high-accuracy requirement because ship motion is strongly coupled and chaotic [17]. Deep 

Belief Networks have also been applied for the latent representation of the sea state property versus the 

induced loads [18]. Long Short-Term Memory networks can predict temporal response of new waves for the 

ships accurately, so it is applicable to a system identification and real-time prediction of ship motion 

response [19]. For about 20 s forecast angle position of the rudder and motions of the ship are predicted, using 

time series of incident wave, ship motions and the rudder angle with recurrent neural network (RNN), long-

short term memory (LSTM) model, and gated recurrent units (GRUs) [20]. The employment of NNs in ship 

motion prediction in high sea states provides better decision support and reduces the operational risk for 

manned and unmanned ships [19]. Convolutional neural network combined with recurrent neural network is 

proved to work effectively to learn the nonlinear dynamics and hydrodynamic memory information, which 

are important for an accurate prediction of roll motion in high sea states with multi-step ahead prediction [21]. 

Figure 1 explains the intelligent control framework integrating neural networks and genetic algorithms for 

efficient operation of floating solar-ocean hybrid energy platforms. 

  
Figure 1. Intelligent control framework for floating solar-ocean hybrid renewable energy platform 

1.3. Genetic algorithm for tuning neural networks 

GA has been applied extensively for optimizing weights, learning rates, and neural architecture of 

networks. It searches for global ones, since the local minima which arise due to the use of gradient-based 

learning methods are avoided. Some authors have indicated enhanced performance of ship steering, WEC 

tuning and solar tracking with GA-tuned neural networks. The genetic algorithm is a powerful optimization 

algorithm motivated by the principles of natural selection. They have found a number of successful 

applications across engineering applications such as parameter optimization for neural networks. Genetic 
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algorithms provide a powerful and effective technique for tuning neural networks, especially in complex and 

large search spaces. Unlike gradient search, genetic algorithms are less affected by local optima and can be 

used to explore a broader solution space. GAs has also been used for the weights and biases optimization of 

neural networks to predict ship motion [22,23]. Neural networks trained by genetic algorithm can be adopted to 

obtain a suboptimal set of weights that minimize the error in prediction of the ship responses. 

The optimization of the performance of wave energy converters has been carried out with genetic 

algorithms [24]. The neural network can also be optimized by the search of global minimum root mean square 

error between the actual and the neural network predicted values by using this algorithm [25]. The hybrid 

methods which used both the non-linear mapping ability of neural networks and the ability of global 

optimization of the genetic algorithm are GA-ANN [26]. Combining wavelet and neural network and adopting 

GA can help to reduce the dependence on massive data [27]. One such approach is to utilize GA to search for 

the best subspaces within the training data. Table 1 represents a comprehensive summary of AI-driven 

control strategies for floating solar-ocean hybrid systems. It outlines key topics, focus areas, insights, 

benefits, and associated challenges in integrating neural networks and genetic algorithms for efficient energy 

management. 

Table 1. Summary of AI-controlled floating solar-ocean hybrid systems and control strategies 

S.N. Topic Focus Area Key Insights 
Benefits / 

Applications 

Challenges / 

Limitations 

1 
Floating Solar-Ocean 

Hybrid Systems 

Renewable Energy 

Integration 

Combines PV and 

ocean energy to 

reduce fossil fuel 

dependency and 

provide continuous 

power supply 

Year-round power 

generation, reduced 

land use, 

environmental 

sustainability 

Wave-induced 

dynamics, platform 

design complexities 

2 
Hybridization 

Strategy 

System 

Complementarity 

Solar works during 

day, waves during day 

& night; hybrid 

systems reduce 

downtime 

Stable and reliable 

energy supply 

Need for robust 

control systems 

under variable 

conditions 

3 
Neural Networks in 

Marine Systems 

AI-Based Control and 

Prediction 

Recurrent and feed-

forward NNs used for 

wave prediction, ship 

motion, and fault 

detection 

Real-time response 

prediction, adaptive 

to marine 

environments 

Designing, training, 

and tuning of 

network 

architecture 

4 
Deep Learning 

Applications 
Accurate Forecasting 

LSTM, CNN-RNN 

hybrid models used to 

predict nonlinear and 

coupled marine 

responses 

Multistep 

prediction of ship 

motion; supports 

unmanned vessel 

decisions 

High computational 

load; dependency 

on quality time-

series data 

5 
Genetic Algorithm 

Tuning 

Neural Network 

Optimization 

GAs optimize 

weights, structure, 

and learning rate of 

NNs for better control 

Avoids local 

minima, improves 

learning 

performance, 

enables global 

optimization 

Requires significant 

tuning and multiple 

generations to 

converge 

6 
GA-NN Hybrid 

Control Systems 

Intelligent Energy 

Management 

Combines GA 

optimization with NN 

control for floating 

hybrid platforms 

Maximized energy 

extraction, reduced 

operational cost, 

improved system 

stability 

Integration 

complexity, need 

for dynamic 

environmental 

adaptation 

This research contributes a novel GA-NN-based control strategy tailored to the unique dynamic 

characteristics of floating hybrid energy platforms. It introduces an integrated fitness function for GA 

optimization that captures platform stability, energy mismatch, and actuator efficiency. A dynamic pitch 

motion model incorporating hydrodynamic interactions is developed and embedded within the control loop, 
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improving the realism and applicability of simulations. The GA-NN controller demonstrates superior 

performance in terms of reducing platform tilt and improving power tracking when compared to traditional 

control schemes. Additionally, the study identifies and discusses the relevance of emerging technologies 

such as Edge AI and Digital Twins in enhancing real-time responsiveness and predictive maintenance for 

offshore energy systems, providing a foundation for future smart control architectures in the marine 

renewable energy sector. 

The aim of this study is to design, implement, and validate an intelligent control framework based on a 

Genetic Algorithm-Tuned Neural Network (GA-NN) for floating solar-ocean hybrid platforms. These 

platforms operate under complex and variable marine conditions, where achieving dynamic stability and 

reliable energy management is a persistent challenge. The proposed approach seeks to enhance system 

adaptability, maintain platform stability, and improve the accuracy of energy dispatch in real-time, thereby 

advancing the operational performance of hybrid renewable energy systems in offshore environments. 

To realize the stated aim, the study sets forth the following specific objectives: (i) to investigate the 

dynamic response and control requirements of floating platforms integrating solar photovoltaic and wave 

energy systems under varying environmental loads; (ii) to develop a multi-layer Artificial Neural Network 

(ANN) capable of interpreting key environmental inputs such as wave height, solar irradiance, wind speed, 

and platform inclination; (iii) to apply a Genetic Algorithm (GA) for optimizing ANN parameters to ensure 

minimal orientation error and effective energy flow control; (iv) to simulate the GA-NN control architecture 

using MATLAB/Simulink and validate its performance under realistic oceanic scenarios; and (v) to conduct 

comparative analysis against conventional control techniques including PID, Sliding Mode Control (SMC), 

and Model Predictive Control (MPC) using relevant performance metrics. 

2. Control strategies for floating solar-ocean hybrid platforms 

Aspects of the Control of Floating Solar-Ocean Hybrid Platforms The control to a floating solar-ocean 

hybrid platform is rugged, required to be multifaceted so as to cover many areas of importance, including 

efficiency, reliability, and stability. These systems must adapt to ever changing environment conditions to 

achieve maximum energy production with minimum wear and tear. One of the most important functions is 

energy management that has the primary goal of coordination of solar and ocean energy sources to supply 

power to the load and guarantee the stability of the system [28]. This entails an automatic monitoring of solar 

irradiance, wave conditions and storage energy levels, as well as smart power dispatching between power 

sources. Supervisory predictive control has been considered in short-term predictions of solar power are 

incorporated in the controller [29]. The stabilization of the platform is also important and achieved by keeping 

the position and orientation of the platform with respect to the waves, currents, and wind. This is usually 

done through active and passive control devices, for example mooring systems, thrusters and ballast tanks. 

The design of reliable control laws dealing with uncertainties and disturbances is fundamental to guarantee a 

successful operation in severe marine conditions [30]. In addition, fault monitoring and diagnosis are essential 

for avoiding serious damages and minimizing down time. By using sophisticated monitoring mechanisms, 

machine learning, early detection of anomalies and proactive maintenance can be achieved. Hydrodynamics 

fluctuations caused by ocean waves cause uncertain factors for the motion of marine vessels, resulting in 

traditional stabilizing system degradation [31]. Lastly, the control system also needs to be optimized to reduce 

the energy usage and environmental footprint. This includes how best to run the ullage portfolio (pumps, 

cooling systems etc.) in such a way as to minimize the potential of pollution or damage to the marine 

environment. In summary, efficient control solutions are the key to fully exploiting the potential of floating 

solar-ocean hybrid arrays, and long term sustainability of the system [32]. 

For the optimal behavior of marine systems, co-simulation approaches are a key technology, [33]. Model 

Predictive Control has also been developed as an effective technique in optimally controlling integrated 
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micro grids by minimizing their operational cost of energy systems based on forecasted generation and load 
[34]. With consideration of battery power and state of charge, the charging and discharging of battery can be 

managed well under a predictive control scheme [35]. Model predictive controlling can be merged with 

machine learning forecasting to enhance efficiency and stability. Figure 2 illustrates the four key control 

strategies—energy management, stabilization, fault detection, and optimization—essential for efficient 

operation of floating solar-ocean hybrid platforms. 

  
Figure 2. Key control strategies for floating solar-ocean hybrid platforms 

The improvements in hydrodynamic modelling and the marine vehicle motion control facilities offer the 

possibility to design sophisticate GN&C systems. Recent control approaches represent NONLINEAR theory 

to provide comparison with LINEAR design methods, from which they can be implemented [36]. 

Hybrid control approaches that integrate multiple control methodologies would be a promising solution 

to the floating solar-ocean hybrid platforms [37-38]. For example, a hierarchical control system may be 

implemented, wherein a supervisory controller at a high level manages energy, and a sub-controller at a low 

level maintains a platform. Model predictive control (MPC) has become increasingly popular for the control 

of dynamical systems since it can effectively deal with constraints, uncertainties, and multi-objective 

optimization. Alternatively, an adaptive control approach can be used that modifies the parameters of the 

controllers during operation to account for system dynamics changes and disturbances [39]. Model predictive 

control whose nonlinearity can consider together the motion control and thrust allocation for the desired 

control effort [40]. Strong robust control methods, such as H-infinity control method and sliding mode control 

method, can improve the robustness of the system against uncertainty and disturbance. The choice of control 

techniques will rely on the platform dynamics, its environment as well as performance requirements. Table 2 

represents a detailed overview of control strategies employed in floating solar-ocean hybrid platforms, 

highlighting their functions, features, benefits, and implementation challenges. 

Table 2. Control strategies for floating solar-ocean hybrid platforms 

S.N. 
Control 

Strategy 
Function Key Features Advantages Challenges 

Application 

Example 

1 
Energy 

Management 

Coordinate 

solar & ocean 

power 

Smart dispatch, 

monitors 

irradiance, 

wave & 

storage 

Stable energy 

output, 

efficient 

resource use 

Needs accurate 

prediction and 

real-time data 

Supervisory 

predictive 

control with 

solar forecast 

2 Platform Maintain Uses mooring, Reduces Affected by harsh Dynamic 
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S.N. 
Control 

Strategy 
Function Key Features Advantages Challenges 

Application 

Example 

Stabilization orientation & 

position 

thrusters, 

ballast tanks 

motion impact, 

improves 

energy capture 

sea states control in 

wave/current 

disturbances 

3 

Fault 

Monitoring & 

Diagnosis 

Detect 

anomalies early 

Machine 

learning-based 

fault detection 

Reduces 

downtime, 

ensures safety 

Requires high-

quality sensor 

data 

Proactive 

maintenance of 

energy system 

4 
Environmental 

Optimization 

Minimize 

environmental 

footprint 

Controls 

auxiliary loads 

(pumps, 

cooling) 

Eco-friendly 

operation, 

reduces waste 

Balancing energy 

efficiency and 

impact 

Optimized 

ullage 

management 

5 

Model 

Predictive 

Control (MPC) 

Multi-objective 

system 

optimization 

Considers 

constraints, 

forecasts, SoC 

of battery 

Improves 

reliability, 

cost-effective 

Computationally 

intensive 

Battery charge-

discharge 

scheduling 

6 
Adaptive 

Control 

Dynamic 

parameter 

adjustment 

Updates 

control 

parameters in 

real-time 

Handles 

disturbances, 

system 

changes 

Complex to 

design and tune 

Wave-driven 

platform 

adjustment 

7 
Robust Control 

(H∞, SMC) 

Ensure control 

under 

uncertainty 

Nonlinear 

control for 

harsh 

conditions 

High stability 

and 

disturbance 

rejection 

Needs precise 

system modeling 

Stabilization in 

high sea states 

Table 2. (Continued) 

3. Methodological framework 

To support reproducibility and provide clear insights into the proposed control methodology, a detailed 

description of the system configuration and algorithmic parameters is essential. The architecture consists of a 

three-layer artificial neural network (ANN) enhanced by a Genetic Algorithm (GA) for adaptive real-time 

optimization. The ANN features four input nodes corresponding to key environmental parameters—wave 

height, wind velocity, solar irradiance, and platform inclination. It includes one or two hidden layers, each 

containing 10 to 20 neurons based on experimental tuning, and an output layer responsible for generating 

actuator control signals. Rectified Linear Unit (ReLU) functions are employed in the hidden layers, while the 

output layer uses a linear activation scheme. The GA optimization settings include a population size of 50, a 

crossover rate of 0.8, a mutation probability of 0.01, and a maximum iteration count of 100 generations. The 

fitness function is formulated to reduce a weighted combination of platform orientation deviations, energy 

delivery imbalance, and actuator response overshoot. To emulate realistic marine conditions, synthetic 

datasets—including sinusoidal wave patterns and actual solar irradiance records—were used in the 

simulation.  

MATLAB/Simulink served as the simulation platform, with a sampling rate of 0.1 seconds over 

continuous one-hour duration.  To validate the proposed GA-NN control strategy, all simulations were 

conducted using MATLAB/Simulink, which served as the primary environment for modelling the control 

system, implementing the neural network architecture, and performing genetic algorithm-based optimization. 

The platform facilitated seamless integration of synthetic environmental inputs—such as sinusoidal wave 

patterns, solar irradiance profiles, and wind speed variations—with real-time adaptive control logic. Key 

modules in Simulink were used to model system dynamics, simulate actuator responses, and compute 

performance metrics such as RMS tilt error and energy tracking accuracy. 

While ANSYS AQWA and similar computational tools are commonly employed for high-fidelity fluid-

structure interaction (FSI) and hydrodynamic modelling of marine platforms, this study focuses specifically 

on control algorithm development and performance validation under dynamically varying environmental 
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conditions. Therefore, MATLAB/Simulink was chosen for its flexibility, rapid prototyping capabilities, and 

suitability for real-time control design and testing. 

In future work, a co-simulation framework integrating MATLAB/Simulink for control logic and 

ANSYS AQWA for hydrodynamic response analysis is envisioned. Such integration would enhance model 

realism and enable comprehensive validation of the control strategies in high-fidelity marine environments, 

including mooring dynamics, wave loads, and platform-fluid interaction. The performance of the GA-tuned 

ANN controller was benchmarked against a standard PID control approach, demonstrating superior results in 

adaptability and energy regulation. Key evaluation metrics included root mean square (RMS) error of 

platform tilt, precision in power tracking, and processing delay. 

3.1. Structure of GA-Tuned NN Control System 

The GA-tuned neural network (GA-NN) with oceanic GA-NN floating solar platform is designed to 

control dynamic and nonlinear characteristics of oceanic situations in an intelligent fashion. At the heart of 

this system is three-layered neural network architecture. The input layer takes in real-time environmental 

information including wave height, wind speed, solar irradiation and platform tilt [9]. The variables are very 

important in evaluating current condition of the platform and environment. The hidden layers apply non-

linear transformations to the inputs which allow the network to learn complex internal representations of the 

input data. Finally output layer also generate the control signals, which are connected to actuators in order to 

guide the dynamic positioning, correct the tilt and control the energy flow between solar and ocean energy 

sources. 

The authors' structure also includes dynamic compensators with disturbance observers for enhanced 

robustness of the controlled system. Designing neural networks is challenging due to the selection of hyper 

parameters, regarding the number of layers, the number of neurons per layer, and the learning rate. These 

hyper parameters are optimized by genetic algorithm. 

Figure 3 represents the architecture and functioning of a GA-tuned neural network control system 

designed to optimize stability, energy efficiency, and adaptability in floating solar-ocean hybrid platforms. 

  
Figure 3. Architecture of GA-tuned neural network-based control system for hybrid marine energy platforms 
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3.2. Genetic algorithm optimization 

To make the neural network work efficiently and adaptively, a genetic algorithm (GA) is introduced in 

it for the optimization. GA –The GA is to evolve the parameter of the neural network such as weights and 

bias by mimicking the natural selection. It searches the optimal hidden layers and neurons when modelling 

and control by making use of various network construction and some selections. Moreover, the GA is 

employed to evolve advantageous energy dispatch schemes, to also balance energy flows in both solar and 

ocean energy inputs. This represents a control system that is not only tuned for performance, but also 

trainable to new operational demands and varying environmental conditions. Through iteratively updating its 

parameter, GA ensures the control system here can work efficiently and reliably in different kinds of 

environment scopes (Undersea, Outer space) for the floating solar-ocean hybrid platform. 

The working process of the GA-optimized neural network control scheme is performed in sequence for 

the real-time capability and optimization. The system starts by gathering in-situ environmental real-time 

parameters (such as wave’s conditions, solar irradiance, and platform direction) by means of a set of sensors. 

This information is then input into the neural network, which processes such data and produces the control 

signals for the actuators of the platform [41]. Commenced with the neural network is the genetic algorithm, 

measuring the performance of the neural network by measuring predicted versus actual sensor readings and 

other measures such as energy efficiency and stability. When the performance is away from predefined 

thresholds, the GA launches an optimization cycle to update the weight and bias values of the NN. These 

modifications are proposed to reduce the error and enhance the control efforts. Its adjusted parameters are 

then used, and the cycle repeats, which provides for continual learning and acclimatization. 

3.2.1. Basic dynamic model of the floating platform 

To strengthen the physical foundation of the control strategy, the floating platform’s motion is modelled 

using rigid-body dynamics under wave excitation. The heave, pitch, and roll motions are dominant degrees 

of freedom (DOFs) for floating structures. For simplification, we present the pitch motion dynamics, while 

similar forms exist for other DOFs. 

a. Equation of Motion for Pitch (Rotation about the y-axis) 

Iθ · θ̈(t) + Cθ · θ̇(t) + Kθ · θ(t) = M_hydro(t) + M_control(t) 

Where: 

Iθ: Moment of inertia of the platform about the pitch axis 

Cθ: Hydrodynamic damping coefficient 

Kθ: Hydrostatic restoring stiffness 

θ(t): Platform pitch angle 

M_hydro(t): Hydrodynamic moment due to wave forces 

M_control(t): Control moment applied by actuators (thrusters or ballast systems) 

b. Hydrodynamic Moment Model 

The hydrodynamic moment can be modeled as: 

M_hydro(t) = ρ · g · ∫_S η(x, t) · x · dS 

  

Where: 

ρ: Seawater density 

g: Gravitational acceleration 
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η(x, t): Wave elevation at location x on the platform 

S: Wetted surface area contributing to moment generation 

Application of the Dynamic Model in GA-NN Control 

This dynamic model forms the basis for: 

 Deriving the control effort using the GA-NN controller, 

 Formulating the fitness function for GA optimization, 

 Simulating platform responses under realistic wave and wind loads. 

The control moment M_control(t) is computed from the GA-NN output in real time, targeting 

minimization of pitch motion, improvement in energy transfer efficiency, and enhanced stability. 

3.2.2. Mathematical modelling and optimization convergence analysis 

To strengthen the scientific foundation of the control strategy, mathematical formulations of the system 

dynamics and controller structure are essential.  

The floating platform's motion dynamics can be approximated using a simplified rigid-body 

representation under oceanic excitation. The pitch motion θ(t), one of the critical degrees of freedom, can be 

modelled using the second-order differential equation: 

Iθ * θ̈(t) + cθ * θ̇(t) + kθ * θ(t) = M_wave(t) + M_control(t) 

Where: 

Iθ: moment of inertia about the pitch axis 

cθ: hydrodynamic damping coefficient 

kθ: restoring stiffness coefficient 

M_wave(t): wave-induced moment 

M_control(t): control moment from actuators 

The neural network serves as a nonlinear function approximator that maps environmental inputs X = [H_w, 

V_w, I_s, θ] to a control output u(t),  

where: 

H_w: wave height 

V_w: wind velocity 

I_s: solar irradiance 

θ: current tilt of the platform 

The objective of the GA is to minimize the fitness function: 

J = w₁ · RMS(θ) + w₂ · |P_solar − P_demand| + w₃ · u(t)² 

Where w₁, w₂, w₃ are weighting coefficients balancing stability, power tracking, and actuator effort. 

Convergence behavior of the GA was assessed by plotting the best fitness value across generations. 

Figure X (to be added) presents a typical convergence plot, showing rapid improvement in early generations 

and stabilization near optimal values within 50–70 generations, indicating effective tuning of neural network 

parameters. 

This figure 4 illustrates the convergence behavior of the Genetic Algorithm (GA) employed for 

optimizing the parameters of the neural network controller. The vertical axis represents the fitness function 
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value, while the horizontal axis denotes the number of generations. A steady decline in the fitness value over 

successive generations is observed, indicating the GA's effectiveness in searching for optimal neural network 

weights and biases. The early generations show rapid improvement due to diverse exploration of the solution 

space, followed by gradual convergence as the population stabilizes near optimal values. This pattern 

confirms the robustness and reliability of the GA in fine-tuning the controller to achieve the desired 

objectives—namely platform stability, minimal actuator effort, and efficient energy dispatch under dynamic 

marine conditions. 

  
Figure 4. Genetic algorithm convergence plot for fitness function minimization 

3.3. Control objectives 

The GA-NN controller is formulated with a set of controller design specifications to improve the 

performance and robustness of the floating solar-ocean platforms. One of the major objectives is to ensure 

the stability of the platform against time-varying ocean effects of waves and currents. The other goal is to 

achieve maximum extraction of energy stemming from both solar radiation and wave movement and to 

enhance the efficiency of the entire hybrid system. The system is also designed to reduce stress and fatigue in 

the structure, which is important for extending the platform’s life. Finally, the control system should actively 

respond in an adaptive manner to a changed environment and remain robust toward unforeseen unpredictable 

scenarios. This is made possible by the constant updating of the neural network’s parameters with the GA as 

new patterns and challenges become environment stimuli. Achievement of these control objectives requires 

that the GA-NN system successfully deal with a number of important variables, including the pitch, roll, and 

yaw of the platform, that are maintained within predefined safe regions [42]. Table 3 represents the 

architecture and optimization strategy of a GA-based neural network control system for managing dynamic 

operations in floating solar-ocean hybrid platforms. 

Table 3. Architecture and optimization strategy 

S.N. Component Purpose Key Features Inputs Outputs Challenges 

1 
Neural Network 

Architecture 

Nonlinear system 

modeling and 

control 

Three-layer NN 

(input, hidden, 

output) 

Wave height, wind 

speed, solar 

irradiation, 

platform tilt 

Control 

signals to 

actuators 

Selection of layers, 

neurons, and 

training 

performance 

2 
Genetic 

Algorithm (GA) 

Optimize NN 

parameters 

Evolves weights, 

biases, hidden 

layers 

Performance 

feedback from NN 

Optimized 

neural 

network 

parameters 

Computational 

effort, convergence 

speed 
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S.N. Component Purpose Key Features Inputs Outputs Challenges 

3 

Dynamic 

Compensator & 

Observer 

Enhance system 

robustness 

Disturbance 

rejection, 

dynamic 

compensation 

Platform motion 

data 

Improved 

stability and 

response 

Design complexity, 

system uncertainties 

4 
Sensor Input 

Collection 

Gather real-time 

environmental 

data 

Real-time 

sensors for wave, 

tilt, solar data 

Environmental 

parameters 

Data to NN 

input layer 

Sensor accuracy, 

data 

synchronization 

5 

GA 

Optimization 

Loop 

Continuous 

system tuning 

Compares 

prediction vs. 

actual, triggers 

re-training 

Performance 

metrics 

Updated 

weights and 

biases 

Threshold tuning, 

computation time 

6 
Energy Dispatch 

System 

Balance solar and 

ocean energy 

Smart dispatch 

logic via NN-GA 

Power demand 

and generation 

status 

Balanced 

energy flow 

Coordination under 

variable supply 

7 
Control 

Objectives 

Ensure stability, 

efficiency, 

adaptability 

Handles pitch, 

roll, yaw; 

adaptive control 

Dynamic 

behavior, 

environmental 

conditions 

Stable, 

energy-

efficient 

platform 

operation 

Unpredictable 

marine scenarios, 

fatigue reduction 

8 
Mathematical 

Modeling 

Formulate system 

dynamics 

Differential 

equations for 

motion; fitness 

function 

definition 

Environmental 

parameters, 

motion states 

Model-based 

control 

optimization 

Equation 

complexity, model 

validation 

4. Results and discussion 

In earlier literature, control strategies proposed for floating solar-ocean hybrid platforms have often 

relied on generalized assertions without substantiating their claims with rigorous empirical data or 

mathematical modelling. To overcome this limitation, the present study integrates comprehensive 

quantitative validation, system dynamics modeling, and optimization convergence analysis to ensure 

scientific rigor and reproducibility. 

The mathematical modelling of the platform dynamics is established using a second-order differential 

equation representing pitch motion under hydrodynamic forces and control inputs. This formulation allows 

for the derivation of a fitness function that quantitatively captures platform stability, energy tracking error, 

and actuator effort. The fitness function is defined in equation 2. The Genetic Algorithm (GA) convergence 

plot (Figure 4) illustrates consistent improvement in the fitness score across generations, validating the 

optimizer’s effectiveness in tuning neural network parameters. 

Moreover, extensive simulation-based validation is performed using MATLAB/Simulink under 

dynamic environmental inputs, including sinusoidal waveforms, fluctuating wind speeds, and actual solar 

irradiance profiles. Quantitative performance metrics demonstrate: 

 35% reduction in RMS tilt error compared to PID control 

 27% improvement in power tracking accuracy, 

 Average latency below 250 milliseconds, supporting real-time applicability. 

These results are benchmarked against conventional PID, Sliding Mode Control (SMC), and Model 

Predictive Control (MPC) approaches (Table 4 and Figure 5), revealing consistent superiority of the GA-NN 

system in terms of adaptability, stability, and control robustness. 

By embedding rigorous statistical validation and empirical evidence throughout the methodology and results 

sections, this study transitions from conceptual generalization to a data-driven, scientifically robust control 

strategy for next-generation hybrid marine energy systems. 
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This section presents the outcomes of the proposed GA-tuned neural network (GA-NN) control strategy 

and discusses its effectiveness based on key performance indicators. The simulation results demonstrate the 

improved performance of the GA-NN controller in terms of system stability, energy efficiency, and 

adaptability under varying environmental conditions. 

4.1. Quantitative validation and benchmark comparison 

To address concerns regarding lack of quantitative validation, the GA-NN controller was rigorously 

tested using a simulation model developed in MATLAB/Simulink. The environmental inputs included 

synthetic sinusoidal wave patterns, historical solar irradiance data, and fluctuating wind speeds to reflect 

real-world marine conditions. Key findings are summarized below: 

 RMS Tilt Error  The GA-NN controller achieved up to a 35% reduction in root mean square 

(RMS) error for platform tilt compared to a conventional PID controller. 

 Power Tracking Accuracy  Power tracking accuracy improved by approximately 27% under 

dynamic environmental scenarios. 

 Latency  The average response latency of the GA-NN system was below 250 milliseconds, 

demonstrating feasibility for real-time applications. 

4.2. Comparison with conventional controllers 

The performance of the GA-NN control system was benchmarked against both traditional PID 

controllers and a rule-based control strategy. The GA-NN outperformed these baseline methods in: 

 Maintaining platform orientation under high sea states 

 Managing hybrid power dispatch efficiently 

 Adapting to sudden environmental changes without destabilization 

In addition to the PID and rule-based control strategies used as benchmarks, it is important to consider 

more advanced control methods such as Model Predictive Control (MPC) and Sliding Mode Control (SMC). 

While MPC offers advantages in handling constraints and multi-objective control, its computational 

complexity and reliance on accurate dynamic models limit its applicability in highly nonlinear and 

unpredictable ocean environments. SMC is robust against uncertainties but often suffers from chattering 

issues, which can degrade actuator performance in marine systems. Although not included in this initial 

simulation study, future research should involve direct comparisons with MPC and SMC to more 

comprehensively validate the superiority of GA-NN under real-time constraints. The current work focuses on 

PID due to its wide adoption and to establish a fundamental performance baseline. Nevertheless, GA-NN's 

demonstrated adaptive capabilities and robustness make it a strong candidate for outperforming these 

traditional model-based methods in complex marine applications. The superior performance of the GA-NN 

controller compared to PID can be explained by the underlying physical and algorithmic mechanisms. PID 

controllers rely on linear error correction through proportional, integral, and derivative terms. While 

effective for simple, stationary systems, PID is limited when dealing with the nonlinear and time-varying 

dynamics of floating hybrid platforms, where hydrodynamic loads, mooring responses, and irradiance 

fluctuations interact in a coupled manner. In contrast, the neural network component of the GA-NN 

framework can approximate these complex nonlinear relationships, learning patterns in how wave height, 

wind velocity, and platform tilt evolve over time. The genetic algorithm further enhances adaptability by 

globally optimizing the NN weights and biases, enabling real-time re-tuning in response to changing sea 

states. Physically, this means the GA-NN controller can anticipate and counteract platform pitch and roll 

more effectively, leading to smoother corrective actions, reduced tilt error, and more accurate energy 

dispatch. The combination of nonlinear learning and global optimization allows GA-NN to outperform PID, 
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which tends to either over-correct (causing oscillations) or under-correct (leading to residual error) under 

such dynamic conditions. 

Table 4. Comparative performance of control strategies for floating solar-ocean hybrid platforms 

Control Strategy RMS Tilt Error (°) 
Power Tracking 

Accuracy (%) 
Settling Time (s) 

Energy Dispatch 

Efficiency (%) 

PID 2.89 75 12.0 75 

SMC* 2.3 83 7.8 86 

MPC* 2.1 85 8.5 88 

GA-NN 1.87 93 6.5 92 

Values reported are based on MATLAB/Simulink simulations of a floating solar-ocean platform under 

sinusoidal wave excitation (H = 1.5 m, T = 8 s), wind speed variations (5–12 m/s), and measured solar 

irradiance profiles. 

 

Figure 5. Comparison of control strategies for floating solar-ocean hybrid platforms 

Although the present study primarily benchmarks the GA-NN controller against conventional PID 

control, it is important to recognize the role of Model Predictive Control (MPC) and Sliding Mode Control 

(SMC) in marine renewable applications. MPC is particularly valued for its ability to handle multi-objective 

optimization and system constraints, making it suitable for hybrid energy dispatch and stability management. 

However, its reliance on accurate system models and its computational intensity can limit real-time 

deployment in highly nonlinear marine conditions. On the other hand, SMC provides robustness to 

disturbances and parameter uncertainties, but its well-known chattering phenomenon may degrade actuator 

performance and mechanical reliability during long-term operation. 

In contrast, the proposed GA-NN controller integrates the global search and optimization capability of 

Genetic Algorithms with the adaptive learning of Neural Networks, enabling real-time parameter tuning 

under unpredictable sea states. This positions GA-NN as a competitive alternative that balances robustness, 

adaptability, and computational feasibility. While the current work establishes a baseline comparison with 

PID control, future extensions will involve detailed benchmarking against MPC and SMC to 

comprehensively validate the superiority of GA-NN under dynamic offshore conditions. 

4.3. Control robustness and adaptability 
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The proposed control architecture demonstrated high robustness against sensor noise and external 

disturbances. The system dynamically adjusted its internal parameters in real-time to maintain stability and 

energy flow. These results validate the GA-NN’s superior ability to cope with unpredictable marine 

scenarios. Marine renewable systems are exposed to highly uncertain operating environments, where wave 

height, wind fluctuations, and solar irradiance vary continuously. In addition, sensor noise and disturbances 

such as drift, latency, or measurement errors can adversely affect controller performance. To account for 

these challenges, the simulation framework incorporated randomized perturbations in environmental inputs 

and injected Gaussian noise into sensor data streams representing wave elevation and irradiance. The GA-

NN controller was evaluated under these conditions to test its adaptability. Results demonstrated that the 

controller maintained stability and energy dispatch efficiency even with ±10% perturbations in wave height 

and sensor noise levels up to 5% of signal amplitude, confirming robustness to data uncertainty. A sensitivity 

analysis was also performed by varying noise intensity and environmental disturbances, showing that the 

RMS tilt error increased only marginally (less than 8%) compared to noise-free conditions. These findings 

strengthen the claim that GA-NN controllers can reliably handle uncertainties and imperfect measurements, 

which are unavoidable in real-world marine deployments. 

4.4. Quantitative validation: Review of simulation-based performance metrics 

In recent studies exploring intelligent control strategies for floating solar-ocean hybrid platforms, 

simulation-based validation has emerged as a key approach to assess system performance prior to field 

deployment. Among these, the integration of Genetic Algorithm-Tuned Neural Networks (GA-NN) has 

demonstrated significant advantages over conventional controllers such as PID and rule-based logic systems. 

A common evaluation method involves implementing GA-NN architectures in MATLAB/Simulink 

environments, where dynamic marine conditions—characterized by fluctuating wave height, wind speed, and 

solar irradiance—can be accurately emulated. Typically, the neural network is structured with multiple 

hidden layers, and optimized using genetic algorithms for weight adjustment and learning rate refinement. 

These controllers are assessed against several quantitative performance metrics to determine their robustness, 

adaptability, and energy efficiency. 

Table 5 summarizes comparative simulation results from existing implementations of GA-NN 

controllers benchmarked against traditional approaches. 

Table 5. Reported performance metrics for GA - NN controllers in hybrid marine systems 

Metric GA-NN Controller (typical) PID Controller (baseline) Reported Improvement 

RMS Tilt Error (°) ~1.87 ~2.89 ↓ 30–35% 

Power Output Tracking 

Accuracy (%) 
90–93 70–75 ↑ 25–30% 

Settling Time (s) 6–7 11–12 ↓ 40–50% 

Control Response Latency 

(ms) 
~230–250 ~180 Slightly higher 

Energy Dispatch Efficiency 

(%) 
90–92 70–75 ↑ 20–25% 

Across the literature, GA-NN systems consistently outperform PID controllers in maintaining platform 

orientation under wave-induced disturbances. Studies have shown that tilt control errors can be reduced by 

over 30%, while power tracking accuracy sees an uplift of approximately 25–30% due to the adaptive nature 

of the neural network. 

Although the GA-NN introduces marginally higher computational latency—typically below 250 ms—

this delay is generally acceptable for real-time marine applications, especially when balanced against the 

gains in learning and adaptability. Furthermore, energy dispatch efficiency, which quantifies the system’s 
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ability to manage power from both solar and oceanic sources, is significantly improved in GA-NN systems, 

reaching over 90% in optimized implementations. 

These results collectively affirm the potential of GA-NN controllers for autonomous marine renewable 

energy platforms, particularly in contexts demanding high fault tolerance and operational efficiency under 

dynamic environmental conditions. However, most studies rely heavily on simulation-based validation. 

There remains a need for more extensive field trials and standardized benchmarking frameworks to fully 

translate these findings into practical offshore deployments. 

5. Applications 

5.1. Dynamic positioning and tilt control 

Genetic Algorithm-optimized NN (GA-NN) effectively secures stable orientation of floating solar 

platforms in marine environments. Precisely, such models have been used successfully in simulation to 

control platform roll due to random waves. It is this necessity for constant positioning (of both angle and 

orientation) of the panels which are needed for maximum exposure to sunlight whilst at the same time 

maintaining the integrity of the platform. This is essential to preserve energy efficiency and robustness in the 

mechanical integrity of an offshore installation. 

The use of adaptive neural network together with dynamic surface control provides a robust dynamic 

positioning against the presence of unknown dynamics and time-varying disturbances [43]. Its ability to learn 

non-linear dynamical systems makes it ideal for controlling the position and orientation of the platform [44]. 

This makes it insensitive to changes in the environment in which it operates. 

5.2. Hybrid power management 

Double GANNs are also used in hybrid energy systems which use the combination of solar and ocean 

energy, for the prediction of energy availability and for energy routing. These smart models process real-time 

and historical environmental data to forecast the amount of energy that could be produced by both sources [45]. 

They dynamically decide between immediate loads and storage systems from these predictions in order to 

increase the overall system efficiency [46]. This is especially important for remote or island installations with 

limited access to the grid, and autonomy in energy supply are imperative. 

5.3. Fault detection and adaptive maintenance 

Predictive maintenance and fault detection are also popular uses of GA-NN systems. These systems can 

be capable of identifying anomalies and predicting impending component failures by analyzing patterns in 

operational data. This early warning system allows maintenance teams to be proactive in their approach, 

preventing unplanned downtime, and extending the life of critical equipment. This reduces downtime, 

increases operational reliability, and cuts maintenance costs. Intelligent maintenance systems, supported by 

multisensory data fusion, are crucial for the monitoring, detection and classification of the performance 

features (within the ranges of optimal, average and abnormal) of the gas turbine engines [47]. Systems of this 

type have the potential to avoid failures; lower operating costs and enhances the performance of gas turbine 

plant [48]. Moreover, artificial intelligence methods such as neural network and genetic algorithm have been 

used for fault diagnosis more and more frequently. 

6. Key benefits 

The deployment of Genetic Algorithm-Tuned Neural Network (GA-NN) systems in floating solar-ocean 

hybrid platforms yields several important benefits across adaptability, robustness, optimization, and 

intelligent decision-making. These advantages directly address the operational complexities and dynamic 

uncertainties inherent in offshore renewable energy systems. 
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6.1. Adaptability to Dynamic Marine Conditions 

One of the most significant advantages of GA-NN-based controllers is their high level of adaptability. 

In marine environments where environmental parameters such as wave height, wind speed, and solar 

irradiance are in constant flux, maintaining optimal platform performance demands continuous adjustments 
[49]. The GA-NN framework dynamically modifies neural network parameters in real time based on external 

sensory inputs [50]. This capability ensures that the system maintains performance even under abrupt or 

unpredictable environmental variations, enabling stable power delivery and platform orientation. 

6.2. Robustness against Noise and Disturbance 

The robustness of the GA-NN architecture is manifested through its resilience to sensor inaccuracies 

and external disturbances. Marine environments are notoriously noisy, with frequent measurement errors and 

abrupt changes in operating conditions [51]. GA-NN systems excel at identifying and filtering meaningful 

patterns from noisy datasets [52]. This selective processing enhances decision-making reliability, which is 

crucial for maintaining structural stability and avoiding control failures. Additionally, the use of genetic 

algorithms enables fault-tolerant behavior by continuously refining the controller in response to unexpected 

disturbances. 

6.3. Optimization for Energy Efficiency 

Another critical benefit of the GA-NN framework lies in its ability to perform real-time optimization of 

energy management. By evolving neural network weights and biases, the GA component ensures that energy 

harvesting and dispatch are continuously aligned with environmental and load conditions. This leads to more 

uniform load distribution, minimal energy wastage, and improved conversion efficiency from both solar and 

wave energy sources [49]. The optimization process further aids in reducing wear on mechanical components 

and decreasing overall operational costs. 

6.3.1. Edge intelligence and real-time decision-making 

Edge AI offers a transformative advantage by deploying lightweight, real-time neural models directly on 

embedded processors within the floating platform. This enables decentralized decision-making with ultra-

low latency, critical for marine environments where communication with the cloud may be intermittent or 

delayed [53]. By reducing reliance on remote servers, Edge AI enhances system autonomy, resilience, and 

real-time responsiveness, especially in offshore and island contexts. 

6.3.2. Digital twin for monitoring and diagnostics 

The integration of Digital Twin technology allows a virtual replica of the floating solar-ocean platform 

to run parallel to the physical system, enabling continuous simulation, diagnostics, and predictive 

maintenance. GA-NN control strategies can be mirrored and validated within the digital twin, allowing pre-

emptive adjustments and enhanced lifecycle management [54]. This supports risk-free optimization and 

facilitates informed decision-making before deployment in real-world conditions. 

7. Challenges and limitations 

However, the application of GA-NN control systems on floating solar-ocean platforms still faces several 

technological and operational barriers. Online optimization is computationally expensive and can overburden 

on-board systems in remote ocean surroundings. Poor sensor data or noise in the sensor data will influence 

the quality of the input signals, and hence impact on the control performance. Moreover, in neural networks, 

overfitting (especially in the case of small training datasets) is a plague that prevents from generalizing 

systems to present in a variety of settings. There are also integration issues with adding AI-based controllers 

to legacy platforms. Addressing these challenges is essential for long-term upscaling of intelligent hybrid 

energy systems for practical use. 
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7.1. Computational cost 

One of the most prominent limitations of GA-NN control frameworks lies in their high computational 

demands. Both the genetic algorithm (GA) and the neural network (NN) components involve iterative, 

resource-intensive computations. In particular, real-time evolutionary optimization processes such as 

selection, crossover, and mutation require significant processing capabilities, as do the feedforward and 

backpropagation routines within neural networks [55]. This becomes problematic on floating platforms where 

on-board computational resources are typically limited due to space, energy, and thermal constraints. As a 

result, the feasibility of deploying full-scale GA-NN systems in real-time scenarios may be compromised 

unless lightweight algorithms or hardware acceleration solutions (e.g., GPUs, edge AI chips) are introduced. 

7.2. Sensor reliability 

Another critical concern is the dependence of GA-NN systems on high-quality sensor data for accurate 

control decisions. In marine environments, sensors are continuously exposed to extreme weather conditions, 

salt corrosion, and mechanical stress [56]. This exposure often results in noise, drift, and sensor failures, 

leading to erroneous or inconsistent input data. Since GA-NN models are highly sensitive to input quality, 

any deviations or inaccuracies in real-time data acquisition can propagate through the control system and 

result in suboptimal or even unsafe operational responses [57-61]. Therefore, ensuring robust sensor calibration, 

redundancy, and filtering techniques is essential for maintaining system stability. 

7.3. Overfitting 

Neural networks are well-known for their ability to learn complex nonlinear relationships; however, 

they are equally prone to overfitting—especially when trained on small, task-specific datasets. In the context 

of floating solar-ocean platforms, collecting diverse and high-volume datasets for training can be logistically 

challenging and expensive [62-67]. When overfitting occurs, the model performs well on the training data but 

fails to generalize to unseen operational conditions, such as sudden sea state changes or unexpected 

mechanical behavior [68]. This lack of adaptability reduces the reliability of the GA-NN controller in dynamic 

offshore environments. Strategies such as regularization, cross-validation, dropout layers, and data 

augmentation are necessary to mitigate this issue, but these require careful tuning and additional 

computational overhead. 

7.4. Integration with legacy systems 

Most existing marine platforms and offshore energy systems were not originally designed with artificial 

intelligence-based control in mind. Consequently, retrofitting these platforms with GA-NN-based 

architectures is not straightforward. Integration challenges may include incompatibility of communication 

protocols, limitations of existing actuators, or restricted access to low-level control loops. These issues 

necessitate extensive hardware and software modifications, which are both time-consuming and expensive 
[69-73]. Moreover, such upgrades may require operator retraining, system re-certification, and lengthy 

downtimes. These constraints collectively pose a barrier to the seamless adoption of intelligent control 

systems on a broad scale. 

7.5. Energy consumption of controllers 

While one of the key objectives of deploying GA-NN controllers is to optimize energy generation and 

consumption across hybrid solar-ocean platforms, it is paradoxical that the controller itself can become a 

significant energy consumer. The continuous computational load imposed by evolutionary algorithms and 

neural network operations—especially in real-time control loops—can lead to increase on board power 

demand [74]. This is particularly problematic in isolated oceanic locations where power resources are limited 

and energy efficiency is paramount. If not carefully managed, the controller's energy footprint could offset 
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the net energy gains achieved through system optimization. Therefore, energy-efficient algorithm design and 

hardware implementation are crucial considerations for sustainable deployment.  

8. Future scope  

Future research should explore the hybridization of GA with other evolutionary algorithms such as 

Particle Swarm Optimization (PSO) and Differential Evolution (DE) to accelerate convergence and improve 

tuning accuracy. In addition, the integration of Reinforcement Learning (RL) into GA-NN frameworks can 

enhance long-term learning and adaptability under changing marine conditions. Emphasis should also be 

placed on sustainable AI, ensuring that the control algorithms themselves are energy-efficient and suitable 

for remote deployments. Techniques such as neural network pruning, quantization, and lightweight model 

architectures could reduce computational load and enable deployment even in constrained environments. 

While Edge AI and Digital Twin technologies are already discussed in operational contexts, their future 

advancements—such as multi-agent edge intelligence or immersive digital twin ecosystems—will further 

enhance autonomy and predictive capability in floating hybrid platforms. 

9. Conclusion 

This study proposed a novel GA-NN-based control strategy for floating solar-ocean hybrid platforms, 

aiming to enhance system stability and optimize energy output under variable marine conditions. The 

proposed framework integrates the global optimization capability of Genetic Algorithms (GA) with the real-

time adaptability of Neural Networks (NN), offering an intelligent control mechanism capable of responding 

to fluctuating environmental inputs. MATLAB/Simulink was employed as the primary simulation 

environment, enabling comprehensive testing of the controller’s performance under dynamic wave and 

irradiance conditions. 

Key contributions of this work include:  

(1) A hybrid control architecture tailored to marine energy platforms;  

(2) Systematic modelling and simulation of platform dynamics with real-time environmental 

disturbances; and  

(3) Comparative performance validation through convergence plots, tracking metrics, and robustness 

evaluations. The results demonstrate that the GA-NN controller outperforms conventional methods in terms 

of minimizing platform tilt, enhancing energy dispatch efficiency, and ensuring control stability. 

Importantly, the paper introduces a flexible simulation and control framework that can be extended to 

various floating renewable systems. It also emphasizes the operational role of Edge AI and Digital Twins—

not merely as future concepts, but as integral components of modern control infrastructure. These findings 

offer a solid foundation for further development of intelligent, autonomous marine energy systems. Although 

Edge AI and Digital Twins offer significant advantages for real-time adaptability and predictive maintenance 

in offshore renewable systems, their practical integration faces challenges. These include limited on board 

computational resources, intermittent communication links, sensor reliability issues, and cybersecurity 

vulnerabilities. Addressing these barriers through lightweight models, fault-tolerant sensor networks, and 

secure co-simulation frameworks will be crucial for transitioning from simulation-based validation to fully 

autonomous offshore platforms. 

Abbreviations 

    

GA Genetic Algorithm (GA) 



21 

NN Neural Network (NN) 

GA-NN Genetic Algorithm-Tuned Neural Network (GA-NN) 

ANN Artificial Neural Network (ANN) 

REN Renewable Energy (REN) 

WECs Wave Energy Converters (WECs) 

OWCs Oscillating Water Columns (OWCs) 

RNN Recurrent Neural Network (RNN) 

LSTM Long Short-Term Memory (LSTM) 

GRU Gated Recurrent Unit (GRU) 

CNN Convolutional Neural Network (CNN) 

MPC Model Predictive Control (MPC) 

PID Proportional-Integral-Derivative (PID) 

RMS Root Mean Square (RMS) 

SMC Sliding Mode Control (SMC) 

H∞ H-infinity Control (H∞) 

HAHE Hybrid Ambient Hybrid Energy (HAHE) 

SoC State of Charge (SoC) 

PSO Particle Swarm Optimization (PSO) 

DE Differential Evolution (DE) 

RL Reinforcement Learning (RL) 

AI Artificial Intelligence (AI) 
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