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ABSTRACT 

 Background: The growing global demand for seafood and the 

limitations of conventional aquaculture practices have highlighted the need 

for sustainable and efficient alternatives. Ocean-based fish farming faces 

challenges such as inconsistent water quality, delayed disease detection, and 

inefficient feeding strategies. Artificial Intelligence (AI), integrated with the 

Internet of Things (IoT), computer vision, and machine learning, offers 

opportunities to address these issues and advance smart aquaculture systems. 

Methods: This review systematically synthesizes literature, industrial 

reports, and case studies from leading aquaculture regions including Norway, 

Japan, India, and Chile. The analysis focuses on AI applications in water 

quality monitoring, fish health management, feeding optimization, biomass 

estimation, and decision support. The study also evaluates commercial 

platforms and identifies technical, economic, and ethical challenges, 

alongside emerging research directions. Results: AI-based monitoring and 

management systems demonstrated significant improvements in aquaculture 

practices. Commercial solutions such as eFishery, Aquabyte, and Aquaai 

reported feed cost reductions of 15–30%, early disease detection leading to 
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up to 20% lower mortality rates, and more accurate biomass estimation exceeding 90% prediction accuracy. These 

outcomes resulted in enhanced yield, cost savings, operational efficiency, and compliance with environmental standards. 

Conclusion: AI technologies have shown transformative potential in achieving sustainable, climate-resilient 

aquaculture. While challenges such as data scarcity, high setup costs, environmental variability, and ethical concerns 

persist, emerging approaches—including multimodal AI, digital twins, robotics, and explainable AI—can enhance 

robustness and transparency. Future research should emphasize scalable, adaptive, and standardized AI frameworks to 

support global seafood security and long-term sustainability in ocean-based fish farming. 

Keywords: Artificial intelligence, biomass estimation, disease detection, feed optimization, smart aquaculture, water 

quality monitoring 

1. Introduction 

Increasing worldwide demand for seafood combined with the exhaustion of wild fish stocks has made 

aquaculture an essential contributor to global food security. Of the proposed aquaculture systems, oceanic 

fish farming—especially offshore or open-water farms—is a promising option for mass cultivation. 

Nevertheless, these systems present several challenges including maintaining optimal water quality, 

monitoring fish health status and feeding efficiency as well adapting to environmental changes in 

temperature or disease outbreaks. Traditional monitoring can be labor-intensive, ad hoc and myopic which 

are not suited to the dynamic environment of open ocean aquaculture. 

Recent developments in the field of artificial intelligence (AI) have led us to new possibilities on how 

we can improve efficiency, precision and sustainability in our aquaculture practice. By applying AI methods 

like machine learning, deep learning and computer vision, smart aquaculture systems can automate real- time 

monitoring predictions analytics or decision making [1]. Such platforms combine data from multi-source 

sensors, sub-sea camera and remote operated vehicles in order to enable timely interventions; efficient use of 

resources through resource optimization algorithms together with as minimizing impact on the environment. 

AI-enabled solutions have the potential to revolutionize aquaculture, aiding in data- driven applications 

leading to higher productivity levels at lower costs and more responsible environmental practices [2, 3]. Real-

time monitoring can avoid diseases and deaths by preventing and specifying the treatment of biomolecules [4]. 

Combination of AI and IoT (the Internet of Things) is changing industries in terms of sustainability, 

efficiency, innovation etc [3]. 

It is a revolution of the traditional fish farming, using IoT and big data analysis technology to remotely 

operate with robotics control system that enabled by 5G/Cloud/AI technologies [5]. This technology chain is 

conducive to creating real-time data acquisition, quantitative regulation accuracy of decision-making means, 

intelligent control mode and refined investment direction as well as personalized service content that have a 

new way for fish farming [6]. Integration of IoT devices as sensors, cameras and monitoring systems have 

improved data collection from remote and dynamic aquaculture ecosystems [1]. AI models can be used with 

machine learning to analyze large amounts of data in order to optimize feeding strategies, monitor fish 

behavior and forecast environmental impacts [3]. In addition, drones, nano/micro sensors and bionic robots as 

well as energy-efficient devices contribute towards increased productivity and sustainability of aquaculture 
[6]. The application of AI technology in smart cities studies Aquaculture and creates the means to in-service 

such aquaculture management, thus its use with AET to improve aqua farm productivity [7]. 

In this article, the utilization of AI methods and tools in developing aquaculture to close food supply-

demand gap was reviewed [8]. The review evaluates the contribution of AI in improving traceability, feeding 

optimization, disease detection and growth prediction as well as environmental monitoring and market 

information. The application of AI to aquaculture can help reduce human intervention in industry and 

increase output with better sustainability [9]. The targeted introduction of AI applications into various 

aquaculture processes is essential for delivering large productivity gains, increased operational sustainability 
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and higher efficiencies that will be required to meet growing global demand for seafood, while at the same 

time complying with increasingly demanding environmental standards. 

  
Figure 1. Conceptual Framework of Smart Aquaculture Using AI and IoT Technologies 

Figure 1 shows a smart aquaculture system with AI-IoT technologies, where data from underwater 

sensors/cameras and remote devices are fused to achieve real-time monitoring. This is conducive to the 

intelligent decision and data-driven management for the oceanic fish farming. Smart aquaculture involves the 

use of sophisticated digital technologies—such as AI, IoT (Internet of Things), edge computing, big data 

analytics and automation in combination—to optimize decision making based on real-time information 

within an agricultural framework [10]. However, such systems aim to overcome the increasing demand for 

sustainable and scalable solutions of truck farming that have also been developed with favorable growth 

conditions in ocean-based environments where natural parameter fluctuate much more than inland system 

due to several constraints[3]. AI in surveillance and management systems achieve functions including real-

time environmental monitoring, automation feeding system operation, detection of fish health status 

prediction models for the growth or disease outbreak [11]. In this context, the application of AI and IoT has 

proven effective in cage culture facilities where continuous monitoring of fish health, survival rate as well as 

feed residuals is possible. 

Central to smart aquaculture are networked equipment, underwater sensors and actuators, moving robots 

(AUVs or drones), high-resolution video cameras for filming the aquatic environment and feeders [6]. These 

are tools that monitor water temperature, dissolved oxygen levels, pH level of the waters, salinity to name a 

few as well as monitoring fish behavior and feeding activity through sensors; hence providing you with 

every single information about your livestock (fish), their size and other health indexes. AI-powered 

algorithms process this data, analyses the resulting information to provide actionable insights and even 

automate responses while minimizing human intervention in routine monitoring activities [1]. 

Smart aquaculture farms are generally divided between onshore (land-based recirculating systems) and 

offshore (open-ocean cages or net pens).  Although onshore systems can better implement environmental 

control, offshore ones can make the most of natural water exchange and be easily scaled up but with stronger 

requirements to monitoring system because they are away from land where current, tide, storm should have 

impact. In both environments, AI plays a very important role in supporting predictive management that can 
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help to decrease operational costs and reduce the number of fish destroyed while improving their welfare as 

well as environmental compliance. 

Aquaculture, especially marine fish farming is receiving intense pressure to feed the growing world 

population and now in need of more sustainable approach [8]. Smart aquaculture with the combination of 

sophisticated technologies such as AI and IoT is a promising approach to transforming fish farming systems 
[10]. With this method, the real-time monitoring, data-driven decision making and automated procedures 

which improve productivity while decreasing environmental impact as well as improving fish welfare is 

achieved [12]. The anticipated growth in aquaculture production to almost 109 m tonns by 2030 further 

emphasizes the need for alternative measures [12]. Precision aquaculture systems are necessary to optimize 

feeding regimes and increase fish farming efficiency [13]. The adoption of a IoT solutions is revolutionizing 

conventional farming approaches facing problems related to pest control and post-harvest management [14]. 

Aquaculture, a fast-growing industry and an important contributor to global food security, requires novel 

strategies for improving its efficiency and sustainability [15]. New friendly intensive breeding will be targeted 

nontoxic agents and non-destructive products using antibiotics for the pro-biotic nature substances, 

immunocompetent to adjust with physiological regulation cultured organisms [16]. Fish farming problems can 

be overcome using AI technologies to achieve accurate, scalable and efficient solutions [10]. Automatic 

systems could be made used to manage for a success of 70-80% which would also bring about an advantage 

in profit by 20–30% [17]. 

Designing and deploying AI systems for aquaculture necessitates a thorough understanding of the 

unique challenges as well as opportunities in open ocean fish farming settings. For example, AI-based 

monitoring can help to foster an optimal environment for fish growing which may increase production and 

profitability quite considerably [5]. Generative AI is a disruptive force for aquaculture, as the industry turns 

towards a data-driven decision automation and digital integration; GAI models provide new opportunities in 

environmental monitoring (e.g. detecting contamination or algal blooms), robotized processing plants design 

optimization metrics development Flood management [18]. It also enables from analysis in situ of the 

environmental and biological parameters that influence aquaculture system performance. AI capabilities 

include optimization of fish feeding by real-time monitoring and combining an understanding of the behavior 

of the fish with environmental conditions to avoid waste for feed while increasing growth rates [19]. Data 

from such sensors, as well as cameras and others can be analyzed by AI algorithms to identify early signs of 

disease, predict growth rates, and optimize feeding routines [16]. Additionally, AI can also help with 

predictive maintenance of aquaculture machinery to prevent down times and reduce operational costs [20]. 

When deploying AI-based applications in aquaculture, it is necessary to address data privacy and security 

stakes as well as ethical issues. AI has capacity to turn existing systems into extremely efficient and scalable 

frameworks [21]. 

The Precision Fish farming concept applies control-engineering principles to enhance the supervision, 

regulation and surveillance of biological operations within fish farms [22]. As production is up scaled, 

however biological as well economic and social issues will more surely start to affect the ethical soundness, 

productive viability and environmental beings of producing fish [22]. Thus, the promotion of Integrated 

Farming System technologies will increase yields and income by resource efficiencies and waste 

minimization [23]. AI-based methods in aquaculture have a wide variety of applications, from monitoring fish 

behavior and optimizing feeding strategies to forecasting environmental conditions. An analysis of data from 

sensors and cameras is of importance to achieve early disease detection in aquaculture using AI systems. 

These systems can detect subtle alterations in fish behavior; for example, lower feeding activity or abnormal 

swimming patterns that might be indicative of the presence of disease. The early recognition of such changes 

might give possibility to an efficient intervention and preventing the spread of diseases, with following 

reduction in mortality rate and economic losses. 
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AI has also been applied to improve industries such as food quality control and supply chain 

optimization [24]. Taking inspiration from our terrestrial agriculture, AI algorithms are able to calculate when 

it is the best time for harvesting aquatic species, predict potential wasted based on growth and environmental 

conditions or perceiver how healthy their infrastructure waters are as in full rain with a network of sensors 

mediated by advanced machine learning model. 

More concretely, AI programs can crunch real-time data from sensors to calculate the most auspicious 

time for harvesting and predict potential waste using variables like growth progressions or water quality; 

ceaselessly monitoring aquaculture conditions. Figure 2 depicts the main elements of smart-aquaculture, 

showing how AI and IoT enable oceanic fish farming. It focuses on the monitoring in real time, intelligent 

decision and data-driven management to improve productivity and sustainability. 

  

Figure 2. Conceptual framework of smart aquaculture using AI and IoT technologies 

The integration of AI and IoT allows automatic, real-time monitoring with intelligent analysis of animal 

health status to enhance productivity, farm economy and animal welfare by reducing risks through machine 

learning algorithms (ML) [25]. In combination with artificial intelligence (AI)-based analysis, near real-time 

data is collected then processed resulting in decision making based on the collection of hyper spectral and 

multispectral imagery for optimal resource use as well as to combat minimizing environmental damage [26]. 

This serves to improve even more the sustainability and efficiency of aquaculture farms [28]. AI is currently 

applied in many areas, such as food quality inspection and supply chain optimization [29]. AI algorithms may 

also assist in deciding the optimal time for harvesting aquatic organisms, predicting potential waste by 

combining growth trend with environmental data and monitoring continuously and on a network basis the 

healthiness of an ecosystem thanks to sensors field-pointed based measurements together with advanced 

machine learning models [21-31]. 

Combining such sensors with deep learning and AI algorithms provides the ability to quickly analyze 

large datasets in real-time, discovering patterns, anomalies or trends [32]. 

By being able to handle large datasets, the AI models can unearth trends and patterns in water quality 

that conventional techniques may miss [33]. AI systems, by automatically controlling the levels of crucial 
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water quality parameters such as dissolved oxygen, pH, temperature and salinity to optimize conditions for 

fish health and growth in an online mode [34]. 

In this work we review the status of AI technologies for smart ocean fish farming and their perspectives. 

It concentrates on key applications including water quality monitoring, disease detection estimation of feed 

and fish biomass. The contribution of the paper is, also, to survey recent advances for AI hardware and 

software in IoT systems discuss implementations based on real world data – with a not negligible part being 

focused onto public description of city services implemented both by commercial operators than local 

government bodies as well limitations achievements and research gaps. The aim is to develop a broader 

vision of how AI can transform the aquaculture industry, and outline potential future for intelligent and 

sustainable netwin systems in ocean farming. Table 1 provides a brief summary of the major challenges 

encountered in ocean fish farming and associated AI approaches/achievements that contribute to intelligent 

aquaculture systems. 

Table 1. Summary of AI-Based smart aquaculture systems—Challenges, technologies, and expected outcomes 

Focus Area Key Challenges AI-Based Solutions 
Technologies 

Involved 
Expected Outcomes 

Global Seafood Demand 

Depletion of wild fish 

stocks; inefficiency of 

traditional farming 

Predictive analytics 

for resource planning 

and management 

Machine Learning, Big 

Data, IoT 

Increased production; 

better food security 

Monitoring & Health 

Management 

Manual, delayed fish 

health monitoring; 

disease outbreaks 

Real-time fish 

behavior and disease 

detection using 

vision and sensors 

AI + Computer Vision 

+ Underwater Sensors 

Early intervention; 

reduced mortality; 

improved fish welfare 

Feeding Optimization 
Feed wastage and cost 

inefficiency 

Automated, adaptive 

feeding schedules 

based on fish 

behavior and 

environment 

ML algorithms; Smart 

Sensors; Automated 

Feeders 

Cost savings; enhanced 

growth rates 

Environmental Control 
Variability in open-

ocean conditions 

Continuous 

monitoring and 

predictive adjustment 

of water parameters 

IoT, Edge AI, Drones, 

Autonomous Vehicles 

Better environmental 

compliance and 

sustainability 

System Integration & 

Automation 

Limited scalability of 

traditional systems 

AI-integrated control 

systems for 

autonomous and 

remote aquaculture 

operations 

Cloud computing, 

Robotics, 5G, Edge 

Computing 

Labor reduction; 

efficient large-scale 

operations 

Market Intelligence & 

Sustainability 

Lack of traceability, 

harvest planning, and 

ethical considerations 

Smart decision 

systems for market 

data, traceability, 

harvesting time, and 

ethical resource 

management 

Generative AI, Digital 

Twins, AIoT, Cyber-

Physical Systems 

Sustainable practices; 

enhanced profitability; 

minimized 

environmental impact 

2. Role of artificial intelligence in aquaculture 

Artificial Intelligence (AI) significantly transforms contemporary aquaculture systems through 

intelligent surveillance, prediction and automation over a range of fish farming procedures. In conventional 

culture the tasks are carried out basically by manual labor and decisions in many cases take place reactively, 

causing lack of efficiency action delays on critical issues or high costs. AI tackles some of these weaknesses 

by providing tools that are data-driven and able to learn about patterns, identify anomalies and help optimize 

management decisions as they’re made. Figure 3 depicts AI -Machine Learning (ML), Deep Learning (DL) 

and Computer Vision (CV)-inclusion in aquaculture systems with data derived from camera, sensors, fish 
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behavior. Moreover, it also summarizes the stages in an AI lifecycle to data acquisition and pre-processing 

till model training for smart fish farm management. 

  

Figure 3. AI-Driven smart aquaculture: techniques, data sources, and lifecycle 

2.1. Types of AI techniques used 

There are many AI methods already used in aquaculture systems. Machine Learning (ML) can be 

applied for water quality prediction [10, 11], feed optimization [12] and disease classification by training with 

record historical data [1]. Deep Learning (DL) which is a subfield of ML technology has gain significant 

popularity in the recent years for analyzing complex image and video data, e.g., fish detection [2], behavior 

analysis [6,8], biomass estimation with CNNs [35]. Underwater cameras are combined with Computer Vision to 

observe fish activity, detect stress behavior and measure the abundance of automatically counted individuals 
[36]. Moreover, fuzzy logic controller are also adopted to deal with uncertain aquaculture environments and 

enables the rule-based reasoning technique for regulating factors such as aeration or feeding in an imprecise 

conditions [37]. Such AI techniques contribute to the less need of human effort for CSPTS and its efficiency. 

2.1.1. Comparative discussion of AI approaches in aquaculture 

Machine Learning (ML) techniques such as support vector machines, random forests, and regression 

models have been widely applied for predicting water quality trends, classifying disease symptoms from 

tabular datasets, and optimizing feeding schedules. Their strengths lie in relatively low computational 

demand and interpretability, which makes them suitable for small- to medium-scale farms. Yet, ML models 

often struggle when handling high-dimensional or unstructured inputs such as video and sonar imaging. 

Deep Learning (DL), especially Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), offers clear advantages for processing complex image and temporal data. In aquaculture, 

CNN-based models have achieved high accuracy in lesion detection, abnormal behavior recognition, and 

biomass estimation from underwater video streams. RNNs, by capturing temporal dependencies, are 

particularly effective for predicting fish appetite and feeding demand based on behavioral sequences. The 
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challenge, though, lies in their need for large annotated datasets and substantial computational resources, 

which may limit adoption in resource-constrained farms. 

Computer Vision (CV) serves as the practical interface for DL and ML models, translating underwater 

images and video into analyzable features. CV-based disease detection enables real-time diagnosis from fish 

skin discoloration or abnormal swimming patterns, while CV-guided feeding optimization adjusts feed 

supply based on observed appetite and pellet wastage. While CV approaches are highly scalable in offshore 

cages with dense populations, they are vulnerable to issues such as turbidity, lighting variability, and 

biofouling on camera lenses. 

Overall, ML provides accessible baseline models, DL drives accuracy in complex data environments, 

and CV ensures real-time field applicability. A hybrid approach—leveraging ML for structured 

environmental data, DL for unstructured imaging and CV for operational monitoring—appears most 

promising for robust, multimodal aquaculture systems. This integration aligns with the identified research 

gap on multimodal AI frameworks for sustainable and adaptive fish farming. 

2.2. Data sources for AI models 

The application of AI in aquaculture: Success and challenges although the value of using a AI-based 

system is well-recognized, its success will be highly reliant on achievement in data input. Today’s fish farms 

use a variety of data sources including underwater sensors that measure the temperature, pH value and 

salinity among other parameters, or even dissolved oxygen [1]. Imaging systems (e.g., HD cameras and sonar) 

collect visual and acoustic information to track fish health, census populations, count dead biomass for 

commercial landings in real time [2], detect when the fish are feeding etc. [38]. For the open-ocean, drones and 

Autonomous Underwater Vehicles (AUVs) are becoming commonly used for remote monitoring, inspection 

of structures and habitats [39]. These devices run constantly, wirelessly feeding data to onshore or cloud 

systems and underpinning the real-time AI that is used for farm management. 

2.3. AI lifecycle in aquaculture systems 

The application of AI technologies in aquaculture generally embodies the life cycle and can be divided 

into several stages. The first part, Data Collection is the step where raw data from sensors or cameras and 

even actuators are gathered [6]. Then, the data is pre-processed (cleaning, normalization and feature extraction) 

integrating it into an adequate format for modelling [40]. The processed dataset is utilized in the training phase 

of model building where various patterns, relationships are learnt by algorithm under supervised and 

unsupervised learning [41]. Finally, during the decision support stage, that same trained model informs 

predictions and automates responses (e.g. modifying feeding rates or aeration) in addition to offering 

suggestions/insights/alerts for operators [42]. Such a lifecycle supports the closed-loop nature of how AI 

systems learn over time based on new data and improved system performance. Table 2 presents six main 

ingredients of AI-driven smart aquaculture systems with the associated technologies, their primary roles and 

real-time benefits. It highlights how AI supports sustainable and effective monitoring, feeding, health 

diagnosis of fish populations and their local conditions in marine based aquaculture. 

Table 2. Key components and functions of AI-Based smart aquaculture systems 

Component Technology Used Primary Function 
Benefit in 

Aquaculture 

Real-Time 

Capability 

Water Quality Monitoring IoT Sensors + ML 
Detect pH, DO, 

temperature 

Ensures healthy aquatic 

habitat 
Yes 

Fish Health Assessment 
Computer Vision + 

CNN 

Analyze fish behavior 

and lesions 
Early disease detection Yes 

Feeding Optimization 
AI Algorithms + 

Cameras 

Auto-feed based on 

fish appetite 
Reduces feed waste Yes 
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Component Technology Used Primary Function 
Benefit in 

Aquaculture 

Real-Time 

Capability 

Environmental Prediction 
Deep Learning 

Models 

Forecast weather and 

water trends 

Prepares farm for 

disturbances 
Yes 

Waste and Contaminant 

Detection 

Image Processing + 

Sensors 

Identify pollutants and 

debris 

Maintains water 

cleanliness 
Yes 

Central Decision System AI Dashboard 
Integrates all data and 

alerts 
Smart control and alerts Yes 

Table 2. (Continued) 

3. AI applications in monitoring systems 

Utilization of AI in the aquaculture monitoring system makes it much more accurate and time saving 

especially for an unfriendly marine environment. AI allows round the clock, real-time tracking of living 

conditions (e.g. water quality and fish health/condition), feeding regime used or biomass by using machine 

learning-based solutions combined with deep leaning and computer vision. These applications support 

anticipatory decisions and autonomous operations, thus supporting greater productivity and sustainability. 

Figure 4 provides a summary of the AI contribution in aquaculture monitoring by performing real time data 

analysis for four main aspects, i.e., water quality management, fish health tracking and feed control together 

with biomass estimation. 

  
Figure 4. AI applications in aquaculture monitoring systems 

3.1. Water quality monitoring 

Good water quality is critical for fish survival, growth and system stability in aquaculture. Sensed 

parameters such as pH, temperature, DO (dissolved oxygen), turbidity and ammonia concentration are 

measured by a distributed sensor network in the AI-based monitoring systems [43]. These quantities can 

change rapidly in ocean, such as tides and rain fall etc. Time series data from multiple sensors are processed 
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using machine learning algorithms to recognize patterns, trends and anomalies. Sensor fusion methods 

integrate measurements of multiple sensors to enhance reliability and robustness [44]. The AI model is able to 

generate alarms or drive controlling devices, e.g., aerators and water exchange pumps for environmental 

conditions that are not desired in the aquatic environment. 

3.2. Fish health and disease detection 

Monitoring the health of fish plays a crucial role in smart aquaculture, especially for large-scale systems 

that cannot be easily inspected manually. AI allows for imaging-based diagnosis through deep learning, 

particularly CNNs that recognize physical symptoms of a disease such as lesions or discoloration from 

underwater camera feeds [45]. Apart from visual observation, behavior pattern algorithms that analyses the 

movement data can be used to detect early signals of stress or disease (such as low activity levels, and non-

habitual very rapid motions) [46]. When these models are linked to real-time monitoring systems predictive 

diagnostics and automated alerts can be produced, which could allow farmers to isolate affected fish or alter 

environmental conditions before a disease becomes established. 

3.3. Feed management and optimization 

Feeding is one of the most important tasks in aquaculture and misfeeding can cause not only poor 

economic profit but also water pollution. AI-based systems analyses live video feeds in real time and 

predictive models—such as CNNs or RNNs—are used to predict feeding demand using fish behavior, among 

other measurements [1]. These models enable to dynamically adapt the feeding schedule and ration according 

to the actual appetite of fish [47]. AI contributes to time-based and dose-controlled feeding, which also affects 

the feed conversion ratio of those farmed animals. These systems save money, because the best water is just 

never wasted by overfeeding. 

3.4. Fish biomass estimation and counting 

Accurate biomass and counting of fish is an important step in determining growth, harvest scheduling, 

or stocking density. Conventional approaches are invasive and laborious, yet AI can provide non-invasive 

methods through sonar data camera footage as well as computer visions models [48]. Using deep learning 

algorithms it is possible to process high resolution video feeds and count the number of fish, in a clustered 

environment. More recently, AI has been employed with 3D imaging technology (stereo vision and 

structured light scanning) to enhance the precision of biomass estimation by calculating fish volume/shape as 

it swims through in real time [36]. These methods allow prediction of growth rate and automatic harvesting 

schedule, making it possible to control the farming more efficiently. Key AI applications in aquaculture: 

monitoring of water quality, fish health, feed management and biomass estimation are summarized on the 

table 3. It indicates artificial intelligence methods, data sources and end-users advantages that are key to 

encourage real-time decision-making, operational efficiency and sustainability in marine aquaculture. 

Table 3. AI Applications in Aquaculture Monitoring Systems 

Monitoring Area 
AI Techniques 

Used 
Data Sources Functionality Key Benefits 

Water Quality Monitoring 
Machine Learning, 

Sensor Fusion 

pH, DO, Temp, 

Ammonia Sensors 

Detect anomalies, 

trigger control actions 

Stable environment, 

reduced manual checks 

Fish Health & Disease 

Detection 

Deep Learning 

(CNN), Behavior 

Recognition 

Underwater 

Cameras, 

Movement Data 

Identify diseases, 

predict outbreaks 

Early intervention, lower 

mortality 

Feed Management 
CNN, RNN, Video 

Analytics 

Feeding Videos, 

Historical Feed 

Data 

Optimize feed 

quantity & timing 

Cost savings, minimal 

waste 

Fish Biomass Estimation 
Computer Vision, 

3D Imaging, Deep 

Sonar, 3D 

Cameras, Video 

Estimate weight, 

count fish 

Non-intrusive, harvest 

planning 
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Learning 

4. AI in decision support and farm management 

Artificial intelligence in smart aquaculture Artificial Intelligence is also not restricted to surveillance 

and detection in Smart Aquaculture systems; it further involves supporting decisions as well as managing 

operations. Using AI tools has the potential to make decisions quickly and based on up-to-date information 

by synthesizing enormous amounts of environmental, biological, and operational data. These systems enable 

farm operators to better manage resources, automate tasks and facilitate a proactive approach to dynamic 

ocean processes. Using AI within management systems Adds transparency, traceability and sustains the 

process of production. 

4.1. Smart dashboards and visualization tools 

Some of today's AI-driven aquaculture systems come equipped with intelligent dashboards that display 

data in an easy to understand and user-friendly manner. The sensors data (censoring tension, spray factor and 

weight) is processed through a server database architecture which compresses it to still graphical views of 

the system states [50]. Charts and heat maps are used to report KPIs such as water quality, fish growth, feed 

consumption etc., while simple trend analyses demonstrate changes over time [51]. Through these dashboards, 

farm managers can view ongoing operations in real-time, compare historical trends across time periods and 

make informed decisions without actively possessing background knowledge of data analysis. 

4.2. Real-Time farm control using AI-integrated platforms 

By incorporating AI in the management of farms, farmers can control farms automatically and respond 

to changes occurring about it or system errors immediately. For instance, if AI notices a sudden decrease in 

dissolved oxygen levels it can instantly switch on the aerators or start water changes [52-54]. Such systems 

allow remote monitoring and control which are particularly useful in offshore (and large scale) aquaculture 

farms where only limited manual access is possible [55]. Through the use of feedback loops, a system adjusts 

various parameters (e.g., feeding rate lighting or circulation) according to AI-based recommendations and 

thereby infinite conditions with minimal human intervention. 

4.3. Risk analysis and forecasting 

AI can improve resilience in aquaculture by providing predictive risk analytics [8]. With the utilization of 

historical along real-time data, ML models can predict on event-based cases like algal blooms and outbursts 

of diseases or groups die-offs etc. [53]. These are predictions based on observed relationships between 

environmental cues and biological responses through time. High biosecurity standards and early warning 

mechanisms enable to take step decisions, for example with adjusting stocking rate, transferring cages or 

using preventive treatments as such, AI enables great financial loss and fish welfare saving [56-62]. 

4.4. Supply chain integration and yield optimization 

Outside the farm gates, AI also has a place in optimizing the wider aquaculture supply chain, from 

planning production to delivering produce to market. Predictive models aid to predict harvest date, match 

transportation scheduling and production in accordance with the market’s requirements [63-66]. AI solutions 

can be connected to inventory systems, traceability platforms and QA protocols in order to guarantee 

compliance as well as transparency [67-70]. Additionally, yield optimization algorithms help to optimize 

stocking density and feeding rates as well as harvesting policies in a way that maximizes output while 

reducing environmental pollution or waste of resources. Table 4 presents a summary of how AI facilitates 

the management in an aquaculture farm via smart dashboards, real-time control, risk forecast and supply 

chain integration by improving automation and decision making as well as operational efficiency. 
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Table 4.  AI applications in decision support and farm management in aquaculture 

Application Area AI Techniques Function Data Sources Automation/Control Key Benefits 

Smart Dashboards 

& Visualization 

Data 

Aggregation, 

Visualization 

Algorithms 

Display 

KPIs and 

trends 

Sensors, Cameras, 

Feeding Logs 
Manual Interpretation 

Informed 

decisions, 

user-friendly 

interface 

Real-Time Farm 

Control 

Rule-Based AI, 

Control Systems 

Adjust 

aerators, 

lights, 

feeders 

Environmental & 

Sensor Data 
Automated Actions 

Timely 

response, 

reduced 

manual work 

Risk Analysis & 

Forecasting 

Machine 

Learning, 

Predictive 

Analytics 

Forecast 

algal 

blooms, 

diseases 

Historical + Real-

Time Data 
Alerts & Recommendations 

Early 

mitigation, 

improved 

resilience 

Supply Chain 

Integration 

Optimization 

Algorithms, 

Predictive Models 

Align 

harvest & 

logistics 

Inventory, Market 

Trends, Yield Data 
Integrated Systems 

Market 

alignment, 

reduced waste 

5. Case studies and commercial implementations 

The real-world adoption of AI in aquaculture is growing steadily, with several countries and companies 

demonstrating measurable improvements in productivity, sustainability, and operational efficiency. This 

section presents selected international case studies, reviews of industry-driven AI solutions, and comparative 

insights into the outcomes before and after AI integration in fish farming systems. 

5.1. Global examples from Norway, Japan, India, and Chile 

Countries like Norway and Japan are at the forefront of smart aquaculture. Norway, a global leader in 

salmon farming, has implemented AI-driven systems in open-sea cages to monitor water quality, detect sea 

lice outbreaks, and optimize feeding using underwater cameras and predictive models. Companies 

collaborate with research institutions to implement digital twins and automate farm operations under extreme 

weather conditions. 

In Japan, AI technologies are being used to maintain the high quality of yellowtail and tuna farming. 

Systems apply deep learning for visual monitoring and utilize sonar to estimate biomass. These 

developments have supported sustainable production with reduced feed wastage and better stock control. 

In India, several start-ups and research initiatives are applying AI and IoT in shrimp farming and inland 

fisheries. Projects in coastal regions of Andhra Pradesh and Tamil Nadu use AI to predict pond water quality 

and automate feed management, leading to improved yields and reduced disease risk. 

Chile, another major player in salmon aquaculture, has deployed AI-based platforms to monitor fish 

behavior and optimize environmental conditions in fjord-based farms. Machine learning models are applied 

to forecast algal blooms and avoid mass mortalities, which have historically affected the region’s aquaculture 

operations. 

5.2. Review of industry solutions: eFishery, Aquabyte, Aquaai 

Several companies have emerged as pioneers in the commercial deployment of AI for aquaculture: 

 E-Fishery (Indonesia) provides AI-powered smart feeders that adapt to fish behavior and feeding 

patterns. Their systems collect real-time data to optimize feeding schedules, reduce costs, and 

prevent overfeeding, particularly in catfish and tilapia farms. 



13 

 Aquabyte (Norway/USA) uses underwater cameras and deep learning to track individual fish 

health, detect lice, and estimate biomass. Their platform helps salmon farmers reduce manual 

inspections and adopt precision farming techniques. 

 Aquaai (USA) has developed robotic fish equipped with sensors and cameras that swim inside 

cages to monitor water parameters and fish welfare. These autonomous units mimic natural fish 

behaviour and collect data with minimal disturbance. 

Such solutions are designed for plug-and-play deployment and offer cloud-based analytics, mobile 

dashboards, and integration with existing farm infrastructure. 

5.3. Comparative analysis of outcomes before and after AI adoption 

Multiple studies and farm-level reports have shown that the adoption of AI leads to significant 

improvements in aquaculture efficiency and sustainability. Before AI integration, fish farms commonly faced 

issues such as inconsistent feeding, delayed detection of health problems, and optimized harvesting 

schedules. After implementing AI-based systems, farms reported: 

 Feed cost reduction by 15–30% due to precise feeding predictions 

 Early disease detection, reducing mortality rates by up to 20% 

 Improved biomass estimation, resulting in better planning and higher yield accuracy 

 Increased traceability and compliance with environmental standards 

These comparisons demonstrate that AI not only improves operational performance but also reduces 

ecological impact and enhances data transparency, making it a critical enabler of next-generation aquaculture 

practices. 

Across documented implementations, AI adoption has yielded measurable technical benefits. For 

example, feed efficiency improvements of 15–30% have been reported when adaptive feeding algorithms 

replace manual schedules. Early disease detection using computer vision and deep learning has led to 

mortality rate reductions of 10–20%, depending on species and farm conditions. Biomass estimation tools 

based on CNNs and sonar integration have achieved prediction accuracies above 90%, enabling optimized 

harvest planning and reducing waste. From an economic perspective, farms adopting AI-powered platforms 

such as eFishery and Aqua byte have reported operational cost savings between 12–25% due to reduced 

labor, optimized feed use, and lower loss from disease. These quantitative outcomes highlight the tangible 

technical and economic impact of AI solutions, reinforcing their role in advancing sustainable aquaculture 

practices. 

6. Challenges and limitations 

Despite the promising advancements in AI-based smart aquaculture, several challenges and limitations 

hinder its widespread adoption, particularly in open-ocean environments. These issues span technical, 

economic, environmental, and ethical domains, and need to be carefully addressed to ensure the long-term 

success and scalability of intelligent aquaculture systems. 

6.1. Data scarcity and inconsistency in offshore environments 

A crucial obstacle in the application of AI to ocean fish farming is a lack of reliable, high-quality data. 

AI models depend on a large amount of data in order to train and validate, but offshore sites are often subject 

to frequent gaps due sensor failures, transmission breakdowns and power limitations. Challenging 

environmental conditions in the marine environment are not conducive to continuous and accurate 

quantitative data on variables of interest, such as fish activity, water chemistry and system performance. This 

lack of data results in low relationship or generalization power for AI models, which may not adapt between 
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different farms and species. There are numerous examples where models, trained on inshore or laboratory 

datasets do not generalize well for offshore conditions. To mitigate these limitations, several technical 

strategies can be employed. Redundancy in sensor networks ensures continuous monitoring by deploying 

multiple sensors for the same parameter, thereby reducing data gaps caused by failures or transmission errors. 

Sensor fusion techniques combine data from heterogeneous sources—such as sonar, optical cameras, and 

chemical probes—to enhance reliability and compensate for individual sensor noise or drift. Moreover, 

synthetic data generation methods, including physics-based simulations and generative adversarial networks 

(GANs), can augment scarce offshore datasets by creating realistic training samples for AI models. Together, 

these approaches improve model robustness, reduce overfitting to limited data, and enable more reliable 

deployment of AI systems in challenging offshore aquaculture environments. 

6.2. High setup costs and maintenance issues 

Operation of AI-based systems in marine aquaculture requires significant investment at the outset for 

hardware, infrastructure and software integration. High-resolution cameras, underwater sensors and 

autonomous vehicles are expensive to purchase or install in many cases) and technical know-how is needed. 

In addition, the operation load is increased by keeping these systems in corrosive saline and remote sites. 

Sensors calibration, battery changing, biofouling control and data transfer systems require maintenance 

which may not be possible in the cases of small or medium fish farming production. Adoption of these 

technologies is expensive and acts as a barrier, particularly for regions where aquaculture activities are 

fledgling. 

6.3. Environmental factors: Tides, storms, and salinity variability 

Cage systems in open sea are typically exposed to environmental factors like tide and surge, wave 

action as well variable salinities. (These also have negative effects on fish as well, but they can distort sensor 

measurements and AIs performance too.) Inclement weather can throw equipment out of place, knock 

communications offline and stop data collection and system control in its tracks. Additionally, salinity and 

temperature are not homogeneous in the deeper water layers for calibration of sensors impacting AV 

predictions by AI. Approaches that do not accommodate this variability can result in either false positive 

alarms or the failure to detect important events and, thus, may have limited practical utility. 

Emerging AI approaches offer new ways to manage such environmental variability. Physics-informed 

neural networks (PINNs) integrate governing equations of fluid dynamics and environmental processes into 

the learning framework, allowing predictions that remain robust even under sparse or noisy sensor data. 

Similarly, hybrid AI–physics models combine machine learning with established hydrodynamic and 

ecological models, improving the accuracy of forecasts for tides, salinity gradients, and storm impacts on 

cage stability. These methods enable more reliable predictions in dynamic offshore conditions, where purely 

data-driven models may fail. By embedding physical constraints into the learning process, such models can 

enhance resilience, reduce false alarms, and support proactive management decisions in ocean-based 

aquaculture systems. 

6.4. Ethical concerns and dependency on automation 

As AI systems become more autonomous in making decisions, questions about over-reliance on fully-

automated decisions naturally follow. While critical judgments such as feeding, medicating or harvesting can 

be delegated to algorithms without appropriate human supervision could produce unintended outcomes. For 

example, an algorithm that is not functioning properly might underfeed fish or miss the early onset of a 

disease. Moreover, the emerging automation would reduce jobs available for workers with traditional 

aquaculture tasks which may create social issues in rural areas. The transparency and explainability of AI 
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decisions, as well, continues to be an issue however when trying to parse complex deep learning outputs that 

seem unmoored from clear explanation.  

To address this, Explainable AI (XAI) methods are increasingly being explored in aquaculture 

applications. Techniques such as saliency mapping and Grad-CAM can visually highlight which parts of an 

image influenced a CNN’s decision, making disease detection in fish more transparent to farmers. Similarly, 

SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations) can 

identify how environmental parameters like dissolved oxygen or salinity contribute to predictive outcomes in 

feed optimization or mortality risk assessment. By embedding such interpretability tools into aquaculture 

dashboards, operators can better understand model reasoning, validate predictions against their domain 

knowledge, and maintain human oversight. Incorporating XAI thus reduces blind reliance on opaque 

algorithms and supports more ethical, trustworthy, and accountable deployment of deep learning systems in 

aquaculture. Table 5 gives Summary of main challenges that prevent A.I. from being widely adopted in 

offshore aquaculture classified into technical, economic, environmental and ethical issues. It details the 

reasons for each problem, its effects and potential ways to address it. 

Table 5. Challenges and Limitations in AI-Based Smart Aquaculture 

Challenge Area Subsection Description 
Underlying 

Cause 

Affected 

Domain 
Impact Remarks 

Data Issues 

Data Scarcity 

and 

Inconsistency 

Offshore 

systems lack 

consistent, 

high-quality 

datasets for 

training AI 

models. 

Sensor 

failures, 

power issues, 

dynamic 

marine 

conditions 

Technical 

Poor model 

generalization; 

reduced 

accuracy 

Requires robust 

data strategies 

and 

redundancy 

Economic 

Barriers 

High Setup 

Costs and 

Maintenance 

High cost of 

equipment and 

maintenance 

limits 

scalability, 

especially for 

small farmers. 

Expensive 

hardware, 

harsh 

environment 

maintenance 

needs 

Economic 

Low adoption in 

developing 

regions 

Subsidies or 

cost-effective 

models needed 

Environmental 

Challenges 

Tides, Storms, 

and Salinity 

Variability 

Weather 

events and 

ocean 

variability 

interfere with 

AI system 

reliability. 

Natural ocean 

disturbances 

and sensor 

calibration 

issues 

Environmental 

Inaccurate 

readings; 

equipment 

damage 

Design systems 

for extreme 

environments 

Ethical and 

Social Issues 

Dependency on 

Automation 

Automated 

systems may 

make flawed 

decisions or 

reduce human 

employment. 

Lack of 

human 

oversight, 

opaque AI 

decision-

making 

Ethical/Social 
Risk of error, 

job displacement 

Ensure 

explainability 

and hybrid 

control models 

7. Research gaps and future scope 

While the integration of AI in smart aquaculture has shown considerable promise, several research gaps 

still exist that limit the full realization of its potential. Addressing these gaps is essential to move from 

isolated applications toward holistic, adaptive, and intelligent aquaculture systems that are scalable, resilient, 

and environmentally sustainable. The following sub-sections outline the key areas where further research and 

innovation are required. 
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7.1. Need for multimodal AI systems 

Most AI applications in aquacultureally employ individual data sources, such as visual or time-series 

sensor data. Fal1: However, ocean farming is a complex environment where physical dynamics influence 

biological and environmental processes all at the same time. Multimodal AI systems that can read and 

correlate different kinds of data, (e.g. images with sonar readings, chemical sensor outputs with weather 

forecasts), are increasingly demanded in practice. Such systems would enable stronger and more context 

aware predictions, increasing the robustness of decision-making in uncertain and varying marine conditions. 

Investigating multimodal fusion methods, cross-domain learning based on hybrid mounting and AI models is 

the cornerstone to get this method working properly. 

Deploying multimodal AI in offshore aquaculture also presents several practical challenges. Data 

synchronization across heterogeneous sources—such as cameras, sonar, and water-quality sensors—requires 

precise temporal alignment, as delays or mismatches can degrade model accuracy. Bandwidth limitations in 

remote marine environments constrain the real-time transfer of high-resolution video or sensor data to cloud 

servers, often necessitating compression or selective transmission strategies. Moreover, computational load 

at the edge is a critical factor, since running deep learning inference directly on offshore devices requires 

energy-efficient hardware and optimized algorithms. Without addressing these constraints, multimodal 

frameworks risk becoming impractical for continuous farm monitoring. Research on lightweight AI 

architectures, edge–cloud hybrid models, and adaptive sampling strategies will be essential to overcome 

these technical hurdles and unlock the full potential of multimodal systems in real-world aquaculture. 

7.2. Integration of AI with digital twins and robotics 

Another significant research frontier lies in the integration of AI with digital twin models and 

autonomous robotics. A digital twin is a virtual replica of a physical aquaculture system that enables 

simulation, forecasting, and real-time optimization. When combined with AI, digital twins can model fish 

behavior, environmental changes, and equipment performance with high precision. Similarly, incorporating 

AI into robotic systems—such as autonomous underwater vehicles (AUVs), robotic feeders, and cleaning 

drones—can support dynamic adaptation and autonomous decision-making in complex underwater 

environments. Current research is limited in this area, and developing coordinated frameworks that combine 

sensing, actuation, and virtual modelling remains an open challenge.  

In practical deployment, digital twins rely on continuous synchronization between physical systems and 

their virtual replicas. AI models play a central role in this loop by processing incoming sensor data, 

calibrating the digital twin against observed states, and updating simulation parameters in real time. For 

instance, predictive models can adjust hydrodynamic simulations of cage environments based on live current 

and temperature data, ensuring the twin reflects evolving conditions. Model calibration and validation are 

performed by comparing simulated outputs (e.g., fish growth curves, water quality predictions) with actual 

farm measurements, thereby refining both the AI model and the twin’s fidelity. Real-time synchronization 

allows proactive decision-making, such as adjusting feeding regimes or triggering maintenance alerts, before 

deviations in the physical farm escalate. This iterative interplay between AI and digital replicas demonstrates 

the potential of digital twins not only for forecasting but also for adaptive, closed-loop farm management in 

offshore aquaculture. 

7.3. Standardization of protocols and data formats 

The lack of standardized protocols for data collection, labelling, storage, and sharing poses a barrier to 

large-scale AI adoption in aquaculture. Presently, most farms operate in silos, using proprietary systems and 

non-uniform sensor configurations. This fragmentation restricts the development of scalable AI models and 

impedes collaboration across research and industry. There is a pressing need to define universal data formats, 
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benchmarking datasets, and interoperability standards for AI tools in aquaculture. Such standardization will 

facilitate model validation, reproducibility of results, and cross-farm integration, thereby accelerating 

innovation and regulatory acceptance. 

Some preliminary steps toward standardization are already emerging. For example, the International 

Organization for Standardization (ISO) has developed guidelines related to aquaculture operations and data 

handling, such as ISO 12878 for traceability of finfish products, which could be extended to AI-driven 

monitoring systems. In parallel, open-source benchmarking datasets are being curated by research groups in 

Norway, Japan, and China, focusing on fish disease images, underwater behavior videos, and water quality 

sensor streams. These resources enable reproducibility of AI models and provide a foundation for 

comparative evaluation across research studies. Collaborative frameworks, such as the Global Aquaculture 

Alliance’s data-sharing initiatives, also highlight the push toward interoperability. Incorporating these early 

standardization efforts into future frameworks will help bridge the gap between experimental AI applications 

and industry-wide deployment. 

7.4. AI for sustainable and climate-resilient aquaculture 

As climate change continues to impact ocean ecosystems, AI can serve as a key enabler of climate-

resilient and sustainable aquaculture. Predictive analytics can forecast temperature anomalies, disease 

outbreaks, or harmful algal blooms, helping farms prepare for environmental stress. AI can also optimize 

resource use—such as feed, water, and energy—thus reducing environmental footprint. However, research is 

still limited in exploring how AI can be designed with sustainability goals in mind. Future studies should 

focus on energy-efficient AI models, low-power hardware, and decision systems that promote biodiversity, 

reduce waste, and support circular aquaculture economies. 

8. Conclusion 

This review highlights the transformative role of artificial intelligence in modern ocean-based 

aquaculture. AI technologies—including machine learning, computer vision, and deep learning—are 

instrumental in real-time water quality monitoring, disease detection, feeding optimization, and biomass 

estimation. Commercial implementations like eFishery, Aquabyte, and Aquaai demonstrate measurable 

benefits in yield, cost-efficiency, and sustainability. However, key challenges persist, such as data scarcity in 

offshore environments, high setup and maintenance costs, environmental variability, and ethical concerns 

over automation. Notably, research gaps remain in developing multimodal AI models, integrating AI with 

digital twins and robotics, and establishing standardized data protocols. The review emphasizes the potential 

of AI not only to improve productivity and reduce manual intervention but also to contribute to 

environmentally resilient and ethically sound aquaculture systems. Moving forward, emphasis must be 

placed on developing scalable, adaptive, and sustainable AI solutions tailored for dynamic marine conditions 

to support global seafood security. 
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