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ABSTRACT 

Importance – Ocean-based Carbon Capture, Utilization, and Storage 

(CCUS) systems are increasingly recognized as a vital solution for 

mitigating climate change due to their vast storage potential. Yet, their 

deployment faces significant challenges including harsh marine conditions, 

biofouling, corrosion, and limited real-time monitoring capabilities, which 

reduce safety and efficiency. Research Gap – Although land-based CCUS 

has been extensively studied, research on AI-enabled frameworks for 

offshore CCUS remains limited. Existing work is often confined to 

simulations or small-scale pilots, with inadequate attention to adaptive fault-

tolerant control, multi-metric performance evaluation, and long-term field 

validation. Objective – This study aims to develop and validate a smart AI-

enabled framework for real-time monitoring, predictive control, and 

optimization of offshore CCUS networks, with a focus on enhancing safety, 

efficiency, and environmental sustainability. Methodology – The proposed 

framework integrates IoT-enabled underwater sensors, autonomous vehicles, 

satellite imaging, and edge computing with advanced AI models including 
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CNNs, LSTMs, GANs, and reinforcement learning. Validation was performed through a simulation-based case study on 

an offshore saline aquifer using a digital twin and multi-objective genetic algorithm optimization. Key Findings – The 

system achieved a 28% reduction in leak detection time, a 31% improvement in injection efficiency, and an 18% 

reduction in ecological risk compared with conventional monitoring approaches. The digital twin predicted plume 

migration with 95% accuracy, and robustness tests showed less than 5% performance degradation under sensor faults. 

Implications – These outcomes demonstrate that AI integration can significantly enhance monitoring, predictive 

decision-making, and compliance in offshore CCUS systems. The findings provide practical guidance for advancing 

autonomous and sustainable marine carbon storage, though large-scale deployment will require solutions to data 

scarcity, energy constraints, and regulatory integration. 

Keywords: Marine AI systems; CO₂ sequestration; offshore monitoring; environmental risk prediction; autonomous 

sensing; digital twin modelling; reinforcement learning; edge computing 

1. Introduction 

Carbon capture, utilization, and storage (CCUS) technologies are increasingly deployed to reduce 

atmospheric CO₂ concentrations and mitigate climate change. Land-based CCUS—such as geological 

storage in depleted oil and gas fields or deep saline aquifers—benefits from stable conditions, easier site 

access, and established monitoring practices. Examples include the Sleipner and Snøhvit projects in Norway, 

the Illinois Basin Decatur Project in the USA, and the Boundary Dam in Canada, which illustrate successful 

large-scale land-based CCUS operations. In contrast, ocean-based CCUS offers a much larger storage 

capacity and the potential for long-term sequestration, but operates in far more complex and variable 

environments. Ocean-based efforts are emerging through pilot and planned projects such as offshore saline 

aquifer studies in the North Sea, Japan’s Tomakomai demonstration project, and Australia’s Gippsland Basin 

initiative, highlighting the global push toward marine CCUS deployment. These include sub-seafloor 

geological storage, alkalinity enhancement, and biologically driven carbon uptake in marine ecosystems [1]. 

Rising atmospheric CO₂ concentrations continue to drive climate change, prompting the development of 

CCUS technologies [2]. While most CCUS research and deployment have focused on land-based systems, 

ocean-based CCUS offers distinct advantages due to the ocean’s vast capacity for CO₂ absorption and 

storage, as well as its role in the global carbon cycle [3]. Approaches include sub-seafloor geological storage, 

alkalinity enhancement, and biological sequestration through marine ecosystems. These methods, however, 

face complex operational challenges arising from dynamic physical, chemical, and biological ocean 

conditions [4]. Effective offshore CO₂ storage requires continuous monitoring of injection processes, plume 

migration, and ecosystem impacts. Harsh marine environments, biofouling, and corrosion complicate sensing 

and data acquisition, while the spatial scale of offshore sites makes manual inspection costly and infrequent 
[5]. In contrast to many land-based CCUS operations that benefit from stable ground conditions and easier 

access, ocean-based systems must address high variability, extreme weather, and limited real-time visibility 
[6]. The ocean’s potential to take up atmospheric carbon dioxide via marine life highlights the central 

importance of the ocean in the global carbon cycle, and estimates indicate that marine organisms fix up a 

major fraction of global biological carbon [7]. Nevertheless, the performance and environmental impact of the 

networks is highly dependent on the intricate interaction of physical, chemical and biological factors which 

requires advance control and monitoring strategies. The incorporation of intelligent AI systems into ocean-

based CCUS networks is a game changer towards real-time surveillance and adaptive optimization, 

promising to elevate the performance and sustainability of these climate change mitigation options to a new 

level [8]. The application of artificial intelligence (AI) for the marine industry can contribute to a significant 

lowering of carbon footprints and pollution levels, and to preserving marine ecosystems, thanks to the 

development of alternative and renewable fuels and to the use of AI driven technologies [9]. For developing 

the models algorithms, an overview and analysis of existing AI solutions that can be used to offer with the 
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best one corresponding to specific tasks related to ports sustainable and cost-efficient operation have to be 

taken [10]. 

1.1. Challenges in monitoring and optimization of ocean-based CCUS 

There are numerous challenges associated with deployment and operations of ocean-based carbon 

capture, utilization, and storage networks, most of which can be attributed to the environmental complexity 

and variability characteristic in marine domains. Continuous detection of CO2 fluxes, plume spreading and 

ecosystem responses means the use of large sensing networks and autonomous monitoring devices, which 

are to operate in harsh marine environments including biofouling [2]. In order to achieve the best possible 

carbon storage capabilities and to avoid adverse seepage taking place, the use of advanced predictive models 

and optimization algorithms is required. Additionally, the long-term security and safety of submarine storage 

sites need a continuous monitoring and flexible management in order to react both on geological instabilities 

and corrosion threats. The large CO₂ Data Acquisition Plans that could be envisaged to ensure monitoring 

efficiency of CC&GS projects have to face and reply to the issues that are crossed when implementing CO₂ 

monitoring in harsh environments [11]. Computational simulation of flow coupled to geo mechanics problems, 

particularly for complex geological models, can be costly and lead to serious difficulties in applications of 

data assimilation and uncertainty quantification which require a large number of forward simulations [12]. 

Furthermore, the various information sources also constitutes a challenge in combining and interpreting the 

information from the different applications, e.g. satellite data, underwater sensors and operation data from 

capture and storage plants [13].  Figure 1 illustrates how AI systems enhance monitoring, predictive 

modelling, and decision-making in ocean-based CCUS networks. 

  

Figure 1. AI-Integrated ocean-based CCUS framework 

1.2. Smart AI systems for enhanced monitoring and optimization 

Intelligent AI systems provide a paradigm shift in the monitoring and optimization of oceanic CCUS 

networks as they can facilitate real-time analytics, predictive modelling and decision making based on 

machine learning. Machine Learning proposes new solutions as faster as and more accurate than established 

solutions in traditional processes along the CCUS chain of value [14]. AI-powered systems can analyze vast 

datasets from diverse sources to detect subtle anomalies indicative of potential leaks or environmental stress, 

enabling proactive mitigation measures [15]. Predictive models based on historical and real-time sensor data 
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can be used to predict carbon plume migration, reservoir pressure increase, and ecosystem responses, to take 

improved injection decisions and to apply adaptive management at storage sites [16]. Reinforcement learning 

methods can be used to train autonomous control policies to adjust flow rates, valve positions, and 

monitoring schedules in response to changing environmental and operational conditions. For example, AI-

based technologies can simulate the potential consequences of sea-level rise on coast infrastructure to enable 

stakeholders to detect locations that are the most exposed to flooding, erosion or other climate hazards [17]. AI 

is also used to minimize energy consumption in buildings and transportation systems leading to the reduction 

of greenhouse gas emissions and energy conservation [18]. 

Moreover, AI is aiding in the development of better weather forecasts, which can provide more accurate 

predictions for extreme weather and help communities prepare for and respond to it. The capacity of AI to 

digest vast amount of unstructured and multi-dimensional data via complex optimization methods is helping 

to understand climate datasets and predict future trends [19]. AI in combination with Decision Science 

improves the decision making and efficiency in resource consumption in all sectors leading to a semblance 

of climate-resilient and sustainable future [20]. AI based decision support models like AI-assisted wildfire 

detection AI enabled vegetation carbon stock assessment, reversal risk management and disaster response 

planning can be combined under a unified framework [21]. 

AI tools have been developed to assess vulnerability and identify areas at high risk from climate change 

impacts such as flooding, landslides, and drought [10]. AI is the key for effective and ethical climate action, 

resource management, sustainability and resilience to climate change impacts [10, 22]. AI can help speed up 

progress towards a sustainable and climate-resilient future through its solutions [23]. AI can also make an 

important contribution by designing more durable and adaptive climate policies. In immediate crisis response, 

AI-assisted video image and/or sensor surveillance technologies have enhanced the detection of incidents, 

which can be intervened in faster and the allocation of resources to these emergencies can be performed 

more efficiently [24]. AI models can be used for proactive disaster preparedness and risk reduction in 

emergencies, such as earthquake, flood and wildfire early warning [25]. 

AI-based applications and services for emergency response increases the overall picture of a particular 

situation, and thus enhances the decision-making process based on large datasets, as well as anomaly 

detection, and actionable information for critical events [26]. The incorporation of AI applications improves 

time-sensitive processing and efficiency in disaster management, with positive implications for public safety 

and well-being [27]. The integration of AI may offer a promising route to enhance decision-making, 

operations, and the economic sustainability of ocean-based CCUS networks [12]. If AI is not properly 

harnessed or misused, it has the potential to subvert existing environmental policies, hinder pathways to 

sustainability, and impose huge environmental costs on future and present generations [28]. But if applied 

correctly, AI can be harnessed to aid in formulating effective policies in support of the climate emergency [28]. 

The existing field of ocean-based CCUS consists of a wide variety of methodologies, all featuring 

distinct operation characteristics and environmental trade-offs. These have included ocean direct capture, 

enhanced weathering, alkalinity enhancement and CO₂ injection in sub-Seafloor geological formations [29]. 

Direct ocean capture comprises the extraction out of the process of dissolved CO₂ from the water and its 

conversion by chemical or electrochemical means, while enhanced weathering seeks to increase the rate of 

natural mineral carbonation by administering alkaline minerals to the ocean [30]. Alkalinity addition increases 

the ocean’s CO₂ absorption by introducing alkaline materials such as lime or olivine, while subsea geological 

sequestration stores captured CO₂ permanently in depleted reservoirs or brine formations beneath the seabed 
[4]. Biological means, such as wetland restoration and ocean-based approaches, have been used for carbon 

sequestration [31]. Microalgae, considered one of the most promising and effective carbon sequestration 

approach, enable the CO₂ sequestration and recycling into biomass that could be exploited for bioenergy and 
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other high value products [32]. Supply chain AI applied to route optimization has also been able to eliminate 

some transportation emissions by better planning routes and reducing fuel use [33]. 

The implementation of AI technologies to ocean-based CCUS networks has been increasing over the 

last few years largely owing to machine learning, sensor development, and autonomy progress. AI methods 

can help overcome these challenges and enhance systemic performance of bioenergy systems [34]. Machine 

learning algorithms have been applied to predict CO2 absorption rates, monitor leaks in subsea pipeline, 

control chemical processes, predicting the impact of ocean acidification on marine ecosystem [20]. Deep 

learning supports real-time marine monitoring through image recognition, natural language processing, and 

predictive analytics. Combined with satellite, LiDAR, and remote sensing, AI maps carbon sinks, evaluates 

marine ecosystem health, and tracks ocean conditions. AI-guided submersibles equipped with sensors and 

satellite beaconing survey subsea floor structures, plume migration, and storage site integrity.  The marine 

transportation can further utilize diversified AI techniques to enhance the efficiency of marine transportation, 

for instance to avoid marine traffic accident or pollution [35]. In fuel efficiency and pollution reduction, AI 

methodologies are deployed to predict ship engine power generation from engines operating conditions [36]. 

The figure 2 illustrates the integration of AI models, multi-source sensing, and edge computing for real-time 

monitoring and optimization of ocean-based CCUS operations. The table 1 summarizes strengths, 

weaknesses, and gaps in past studies, directly linking each gap to how our proposed framework addresses it. 

  

Figure 2. AI-Enabled Framework for Ocean-Based CCUS 

Table 1. Evidence-based Critique of Past Studies and Implications for Framework 

Theme 
Strengths in past 

work 
Weaknesses Gap that matters Solution 

Sensing & coverage 

Robust single-sensor 

studies (e.g., pH 

probes, CTD, 

acoustic, satellite 

color). 

Narrow spatial/temporal 

coverage; limited cross-

sensor alignment. 

Lack of multi-scale, 

multi-sensor fusion 

for open-ocean 

conditions. 

Integrate satellite, 

AUV/glider, and 

mooring data; time-

sync and fuse via 

learned and physics-

based operators. 

Leakage/plume 

detection 

High accuracy on 

curated test sets; clear 

detection pipelines. 

Performance drops under 

domain shift (turbulence, 

biofouling, storms). 

Generalization across 

sites/seasons remains 

weak. 

Domain adaptation and 

augmentation; 

simulation-to-real 
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Theme 
Strengths in past 

work 
Weaknesses Gap that matters Solution 

training with ocean 

state perturbations. 

Process modeling 

Detailed mechanistic 

models for carbonate 

chemistry and 

transport. 

Purely data-driven models 

ignore constraints; pure 

physics models struggle 

with noise and missing 

data. 

Limited physics–ML 

hybrids with explicit 

constraints. 

Physics-guided 

learning (mass balance, 

alkalinity bounds) with 

soft/hard constraints in 

loss functions. 

Uncertainty 

Point estimates 

reported 

(RMSE/MAE). 

Rare calibration checks; 

few predictive intervals or 

risk bounds. 

Insufficient 

uncertainty 

quantification to 

support MRV 

decisions. 

Probabilistic outputs 

(ensembles/variational 

methods); decision 

rules based on 

calibrated risk 

thresholds. 

MRV pipelines 

Component studies 

on monitoring or 

reporting exist. 

End-to-end MRV 

(monitor→verify→report) 

seldom demonstrated 

offshore. 

Auditable, continuous 

MRV missing for 

ocean CCUS. 

End-to-end pipeline 

with data lineage, 

versioned models, and 

reproducible reports. 

Control & 

optimization 

Optimization shown 

for isolated units 

(e.g., dosing, pump 

scheduling). 

Limited closed-loop control 

with safety and cost 

constraints in dynamic seas. 

No integrated 

sensing–model–

actuate loop. 

Digital twin with MPC; 

multi-objective control 

(capture efficiency, 

energy, risk). 

Datasets & 

benchmarks 

Valuable local 

campaigns and tank 

trials. 

Small, proprietary datasets; 

inconsistent labels and 

protocols. 

No open benchmark 

for ocean CCUS 

tasks. 

Curate standardized 

schemas, split 

protocols, and shared 

metrics for detection, 

localization, and flux. 

Evaluation metrics 
Use of accuracy/F1, 

RMSE. 

Metrics rarely map to MRV 

needs (false alarms, 

localization error, flux 

bias). 

Limited task-

appropriate, policy-

relevant metrics. 

Report AUROC/PR, 

time-to-detect, false 

alarm rate, geodesic 

localization error, flux 

RMSE, and latency. 

Energy & cost 
Device-level energy 

reported. 

System-level energy/opex 

underreported; no real-time 

budget control. 

Missing energy-

aware sensing and 

computing. 

Edge–cloud 

partitioning; adaptive 

sampling to meet 

energy and bandwidth 

budgets. 

Environmental 

safeguards 

Some work on 

alkalinity and habitat 

impacts. 

Few coupled analyses of 

detection + ecological 

thresholds. 

Weak linkage 

between detection 

confidence and action 

limits. 

Decision layer ties UQ 

to trigger thresholds co-

designed with 

ecological limits. 

Table 1. (Continued) 

Artificial intelligence (AI) offers tools to address these challenges by integrating multi-source data, 

enabling predictive modelling, and supporting adaptive operational control. AI can process real-time inputs 

from satellite imaging, underwater IoT sensors, and autonomous vehicles, providing early leak detection, 

optimized injection strategies, and reduced environmental risks. This study proposes an AI-enabled 

framework specifically designed for real-time monitoring and optimization of ocean-based CCUS, validated 

through simulation using offshore saline aquifer data. 

2. Research gap and motivation 

Although there is existing work on land based CCUS, and the use of AI applications in carbon markets, 

few works have addressed AI based real-time systems for ocean CCUS environments. Existing monitoring 

activities are limited by poor visibility of the marine environment, effect of sensor drift, high latency in the 

transmission of observations, and uncontrollable ocean dynamics. There is an urgent requirement for 

intelligent AI-based systems that can operate with extreme efficiency and resilience to address these 



7 

limitations and help make the safe, sustainable, and economically viable development of ocean-based CCUS 

networks a reality. When those drivers—progress on safety, sustainability and strict regulation—are 

combined, they make a strong case for the pervasive adoption of autonomous solutions at sea [37]. Agents 

with AI have the potential to process an enormous amount of data in real time and to take intelligent 

decisions, and they are the key to changing the maritime sector to become safer, more efficient, and 

environmentally friendly [26]. Moreover, AI combined with renewable energy sources and alternative fuels 

are essential for the sustainable growth of the marine sector [4]. Resolving these gaps requires multi-

disciplinary efforts in oceanography, marine engineering, computer science and environmental science. 

Table 2 explains Research gaps in AI-based Ocean CCUS monitoring and their impact with potential AI-

driven solutions 

2.1. Limited real-world offshore validation 

Most studies have been validated through simulations or small-scale pilot projects, with limited 

deployment in actual offshore environments [21, 32 - 33]. For example, Smith et al.  reported a 94% 

prediction accuracy in a controlled laboratory setup, but their framework has not been stress-tested under the 

unpredictable conditions of offshore aquifers. This limits confidence in scalability and operational reliability. 

2.2. Lack of adaptive fault-tolerant AI control 

Current AI models are often designed assuming ideal data availability and stable communication links. 

Studies by [34] and [20] highlight system performance drops exceeding 8% during sensor malfunction or 

network latency events, yet solutions for real-time adaptation remain underdeveloped. This makes current 

systems vulnerable to offshore environmental stressors such as storms and biofouling. 

2.3. Absence of unified multi-index evaluation frameworks 

Existing research tends to optimize for a single metric, such as detection accuracy, without integrating 

robustness, ecological risk, and operational efficiency into a single evaluation framework [38]. As reported by 
[5], this narrow evaluation approach can overlook operational trade-offs that impact long-term deployment 

feasibility. 

Table 2. Research gaps in AI-based Ocean CCUS monitoring and their impact with potential AI-driven solutions 

Research Gap 
Observed Limitation / 

Impact 
Supporting Evidence 

Potential AI-Driven 

Solution 

Limited Real-World Offshore 

Validation 

Most systems tested only in 

simulations or small-scale 

pilots; uncertain scalability 

and operational reliability in 

actual offshore environments 

[21]; [32]; [33] 

Conduct multi-site offshore 

trials integrating 

environmental variability into 

testing protocols 

Lack of Adaptive Fault-

Tolerant AI Control 

Performance drops (>8%) 

during sensor malfunctions or 

network latency; vulnerable 

to storms, biofouling, and 

ocean dynamics 

[34]; [20] 

Develop real-time adaptive 

control with redundancy, 

sensor fusion, and 

autonomous recovery 

mechanisms 

Absence of Unified Multi-

Index Evaluation Frameworks 

Focus on single metric 

(accuracy) without integrated 

assessment of robustness, 

ecological risk, and 

operational efficiency 

[35] 

Establish a multi-index 

framework covering accuracy, 

robustness, ecological safety, 

and operational efficiency 

By addressing these gaps through a multi-index performance evaluation, adaptive AI algorithms, and 

real-world offshore validations, the proposed framework aims to enhance the resilience, accuracy, and 

environmental safety of CCUS monitoring systems. 
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3. Review framework 

This review, based on a cross-section of peer-reviewed literature, technical reports, and industry white 

papers, aims to consolidate information from multiple literature sources. We carried out literature review in 

various databases, IEEE Xplorer, Science Direct, Google Scholar searching "ocean carbon capture", "AI for 

CCUS", "real-time monitoring". This search was designed to identify the use, constraints, and potential of AI 

in ocean-based CCUS. Figure 3 illustrates the framework comprising system architecture, AI algorithms, 

communication protocols, and optimization strategies for intelligent ocean-based CCUS operations. 

3.1. System architecture 

The system of smart ocean-based CCUS combines several cutting-edge technologies to guarantee full 

real-time environmental monitoring and decisions. At the heart of the architecture is a network of IoT-

enabled underwater sensor arrays that are deployed in locations where essential oceanographic parameters, 

including temperature, pH, salinity, and pressure and dissolved CO₂ levels, need to be measured. These 

sensors provide the basis of continuous data collection that facilitates highly resolved imaging of the 

subsurface hydrological storage regime [33]. In addition to these stationary sensors, robotic platforms such as 

Autonomous Underwater Vehicles (AUVs) expand the spatial area of coverage by deploying them on 

missions to sense the environment while in motion. Such AUVs are pre-programmed to automatically follow 

CO₂ plume anomalies and map possible hazards in otherwise inaccessible areas. For wider monitoring, they 

can use satellite imaging, coupled with Unmanned Aerial Vehicles (UAVs) that can monitor for surface-level 

CO₂ venting and other signs that leakage or instability are imminent. This airborne view ensures early 

warning and surveillance over large stretches of the ocean. Finally, the system is equipped with the Edge-AI 

modules which allow on-board data analytics, filtering, and compression. With these modules, users can 

minimize latency, optimize bandwidth utilization and process critical data in situ before sending it to the 

cloud. These elements combine to form a strong and smart structure that can support offshore CCUS 

operations safely, efficiently and autonomously. 

In the system architecture of AI-enabled CCUS, IoT-enabled underwater sensor arrays form the 

backbone of real-time monitoring. They continuously measure parameters such as temperature, salinity, 

pressure, pH, and dissolved CO₂ levels at subsea storage sites. These high-resolution datasets help track 

plume migration, reservoir pressure changes, and early leakage signals. Integrated with surface gateways, 

Autonomous Underwater Vehicles (AUVs), and Edge-AI modules, the arrays ensure that data is processed 

locally and transmitted efficiently for predictive modeling and adaptive injection control. By serving as the 

primary layer of observation, IoT sensor arrays enable AI systems to function with accuracy and resilience in 

harsh offshore environments 
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Figure 3. Framework for AI-Enabled Ocean-Based CCUS Systems 

3.2. AI algorithms used 

In order to take advantage of smart AI systems for live monitoring and optimizing ocean-based CCUS, 

several AI methods have been adopted. AI algorithms are also essential in the processing and interpreting of 

data from IoT sensors, AUVs, UAVs or satellite imagery. Machine learning models including deep learning 

having large neural architectures such as CNNs and Recurrent Neural Networks are used for the prediction 

of CO₂ plume migration [28]. Due to the complexity of underwater conditions in which the CO₂ will be offset, 

the CO₂ lifting model must be modelled with the high performance model such as machine learning model 

with high accuracy. Real-time anomaly detection is provided using one-Class Support Vector Machines and 

Isolation Forest algorithms that can detect abnormal operational behavior such as leaks or equipment 

breakdown. 

The system uses a collection of state-of-the-art AI algorithms to improve the intelligence, adaptability, 

and prediction of the oceanic CCUS operations. CNNs are used to process visual data collected by 

underwater cameras and AUV coupled imaging systems. These models are also trained to identify and track 

CO₂ plumes by alternative spatial structures, allowing accurate localization and tracking of subterranean 

carbon spread. For operational control on a real-time basis, Reinforcement Learning (RL) is combined for 

the optimization of the injections and storage operations. By the interaction with environment and 

accumulating the knowledge through successive attempts (trials), RL agent dynamically controls the CO2 

injection rate and storage strategies to achieve the best performance with respect to varying oceanic 

conditions. Long Short-Term Memory (LSTM) networks are employed to estimate potential leakage events 

due to their aptness in modelling sensor data as temporal sequences. These models predict the trend of the 

leaks by learning the patterns in historical time series data, which can be intervened proactively. Furthermore, 

GANs are used inside of the digital twin setup to replicate diverse scenarios such as failure scenarios, 

environmental constraints and unwanted operating states. These curves can be used to perform power system 

reliability, vulnerability, secure analysis as well as to make model-based contingency plans. Together, the AI 

models compose an advanced and intelligent autonomous system for control over a complex and changing 

oceanic CCUS system. CNNs and LSTMs are most suitable for detecting CO₂ plume migration—CNNs 

capture spatial plume patterns from imaging data, while LSTMs predict temporal plume dynamics from 
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sensor time-series. GANs strengthen robustness by simulating diverse scenarios, and RL complements 

detection by adaptively controlling injection to keep plume movement within safe limits. 

In ocean CCUS applications, both purely physics-based and purely data-driven models face critical 

limitations. Physics-based models capture fundamental processes such as carbonate chemistry and plume 

migration but require extensive computational resources, making them slow and impractical for real-time 

monitoring. They also struggle with noise, incomplete datasets, and highly variable marine conditions. On 

the other hand, purely data-driven models can learn patterns from large datasets but often lack physical 

constraints, leading to unrealistic predictions and poor generalization when environmental conditions change. 

These shortcomings highlight the need for hybrid physics–AI models that combine mechanistic 

understanding with data-driven adaptability, ensuring both accuracy and robustness under dynamic offshore 

environments. 

3.3. Communication protocols 

Reliable operation of real-time monitoring systems in oceanic CCUS networks depends on the efficient 

communication protocols. The core of the communications system in a smart AI system for ocean-CCUS is 

to use also robust and reliable networking protocols, which are specifically designed to address the 

challenges of underwater data telemetry and remote operations. Underwater IoT devices transmit sensor data 

to surface gateways or AUVs through subsea acoustic communication. Acoustic channels being 

characterized as low bandwidth and high latency, efficient data compression and error correction are key [39-

43]. 

Processed data and alarms are transmitted by satellite communication such as Iridium or Inmarsat from 

surface gateways to onshore control centers, thus achieving global coverage and redundancy. On ground-

based wireless communication links Terrestrial wireless technologies, like 5G or Wi-Fi, handle short-range, 

high-throughput video streaming and control signals transfer between surface vessels and UAVs and onshore 

facilities. Common IoT protocols such as MQTT used to support lightweight machine-to-machine 

communication, to simplify data transmission of the IoT sensors to the Edge Computing devices [44]. The 

underwater wireless communication is especially important to underwater applications such as submarine 

monitoring, marine breeding, early-warning of ocean disaster et al [45-48]. 

Robust, efficient, and low latency communication is critical for efficient running of intelligent AI on 

oceanic networks based on CCUS [49]. Acoustic communication is applied to subsea data conveying among 

sensors, AUVs and subsea equipment. This technique uses modulated sound waves to drive signals over long 

distances in water, but may suffer from small bandwidth, signal attenuation and multipath interference. To 

overcome some of these problems, more sophisticated modulation techniques such as Orthogonal Frequency 

Division Multiplexing are employed to increase data transmission rates and to reduce error rates [50]. Broad-

sky satellite communication provides wide-ranging attributes of long-distance data transmission between 

offshore structures/surface vessels and onshore monitoring centers. The use of satellite links provides real 

time data and allows the UAV to be remote controlled. Underwater visible light communication (UVLC) is 

used for high-bandwidth short range communication, mostly for AUV-to-infrastructure links [42]. This 

technology delivers modulated light signals that are modulated to contain data at high transfer rates and is an 

underwater communication alternative to the use of sound in clear water environments. For the seamless 

transfer of data and interoperability, standardized communication protocols such as the Internet Protocol (IP) 

suite is employed to facilitate effective communication between devices and systems from different suppliers. 

In underwater environments, communication mainly relies on acoustic protocols, supplemented by 

underwater visible light communication (UVLC) for short-range, high-bandwidth links and, in some cases, 

electromagnetic methods for niche applications. Acoustic communication is the most widely used because it 

supports long-range transmission, but it suffers from low bandwidth, high latency, multipath interference, 
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and signal attenuation. UVLC enables high-speed data transfer between AUVs or sensors and nearby 

infrastructure, though its effectiveness is limited to clear water and short distances. Electromagnetic signals 

degrade rapidly in seawater, restricting them to very short ranges. These constraints make hybrid 

communication strategies—combining acoustic, optical, and satellite relays—necessary to maintain reliable, 

low-latency data exchange in offshore CCUS operations. 

To address limitations of acoustic and satellite communication, hybrid UVLC–acoustic links are 

emerging as a promising alternative. These systems leverage the long-range and robustness of acoustic 

channels while using underwater visible light communication (UVLC) to deliver high-bandwidth, low-

latency data transfer at shorter ranges. By dynamically switching or combining these modalities, hybrid 

communication can reduce latency, improve reliability, and enhance the resilience of offshore CCUS 

networks under varying ocean conditions. 

3.4. Optimization strategy 

Optimization methodologies in intelligent AI platforms for oceanic CCUS networks are vital in 

improving the efficiency, safety, and economics of such complex systems. Energy integration AI-based 

optimization algorithms can be applied to reduce energy consumption in the CCUS process such as for CO₂ 

capture, transportation and storage. The system can also minimize energy consumption by dynamically 

altering operating conditions in response to real-time sensor inputs, current weather conditions, and 

equipment performance. 

For efficient, sustainable, and environmental- friendly operation of the ocean-based CCUS system a 

Multi-Objective Genetic Algorithm (MOGA) is applied for the system-level optimization. MOGA is 

especially well-suited for solving a multi-objective problem characterized by competing/conflicting criteria, 

such as offshore carbon storage sites. The first goal is to maximize the storage efficiency by optimizing the 

CO₂ injection rate, but preventing the subsurface pressure above some safe operational limits. The second 

goal is to reduce environmental damage index (EDI) that includes PCBs on how it affects the marine 

ecosystem through leakage, acidification, and thermal unbalance. This would make sure carbon storage isn't 

conducted except under ecologically adequate conditions and in a fashion that doesn't harm the ocean's 

biodiversity. The third objective focuses energy consumption of the support systems, such as AUVs, UAVs, 

edge computing modules, and data transmitters. Reducing energy consumption reduces cost and enhances 

overall sustainability of the CCUS infrastructure. Through the evaluation and evolution of a variety of 

candidate solutions, MOGA is able to discover optimal compromise solutions among these objectives, 

resulting in an adaptive, robust, and energy-efficient system response in a time-varying ocean. 

In the MOGA framework, the fitness function takes into account the terms that weight each objective 

according to their preferences, as all objectives do not have the same importance. The Pareto optimality is 

also employed to guide the solution provider selection so as to provide the best compromise solutions to the 

conflicting objectives of the stakeholder parties [28]. Constraint handling strategies handle operational 

constraints, such as maximum injection pressure, minimum acceptable distance from MPAs and regulatory 

caps on emissions. Multi-objective formulation Genetic algorithms can accommodate multi-objective 

formulations to generate compromise solutions [51]. 

The MOGA includes real-time environmental and operational data to dynamically update variables, e.g, 

injection rates, monitoring times, energy input, in coming periods to account for variability. Data 

assimilation combines data from sensors with predictive models to improve forecast accuracy, better 

informing decisions. The energy system optimization problem is a difficult task to solve because of the 

complexity of mathematical models, which are usually multi-scale, distributed, and nonlinear and 

computationally expensive (to be) evaluated [38]. Adaptive control is employed for compensating against 
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variations in the desired performance, maintaining the robustness and efficiency when unforeseen situations 

occur. 

When combined with AI based optimization algorithms, digital twins improve capability to predict 

system behavior in different situations. Digital twins are digital replicas of physical assets or processes, and 

can be used to simulate and optimize the operation of CCUS processes in a safe environment. 

It also follows that AI models get better and better over time, learning as they do from operational data 

and results of simulations, and addressing problems with olfactory and optimization across datasets. MOEAs 

server as a complementary approach to each other and in combination can help in optimizing the parameters 

where solutions are to be sought both in the mean of high returns and least risk positioning the continuous 

management to the investment time interval [52-55]. To accelerate the optimization we use surrogate models to 

approximate the computationally expensive simulations thus decreasing the numerical effort and increasing 

the number of optimization cycles. This is especially critical in real time monitoring and optimization, where 

decisions need to be made quickly. 

What’s more, AI algorithms are used for predictive maintenance, where they analyze sensor data to find 

outliers that determine the failure of machinery – reducing downtime and overall maintenance costs. Table 3 

presents a comprehensive methodological framework highlighting the integration of AI technologies in 

ocean-based CCUS systems. It details system architecture, AI algorithms, communication protocols, and 

optimization strategies essential for real-time, efficient, and sustainable operations. 

Table 3. Methodological framework for ai-integrated monitoring, communication, and optimization in Ocean-Based CCUS systems 

Focus Area Key Components Purpose 
Technological 

Approach 
Benefits 

System Architecture 

IoT sensors, AUVs, 

UAVs, Edge-AI, 

satellite imaging for 

real-time monitoring 

and control. 

Enable autonomous, 

real-time 

monitoring and 

decision-making in 

ocean CCUS 

networks. 

System-of-systems 

integrating fixed and 

mobile platforms for 

spatial and temporal 

coverage. 

Scalable, efficient, and 

autonomous offshore 

operations. 

AI Algorithms Used 

CNN, RNN, RL, 

LSTM, GANs, 

anomaly detection 

using One-Class SVM 

and Isolation Forest. 

Accurately predict 

plume behavior, 

detect anomalies, 

and adapt 

operations 

dynamically. 

Use of deep learning 

and reinforcement 

learning for spatial, 

temporal, and 

behavioral modeling. 

Accurate modeling 

and responsive system 

behavior. 

Communication Protocols 

Acoustic 

communication, 

satellite links, UVLC, 

MQTT, IP suite, 

OFDM for data 

transfer. 

Ensure reliable, 

low-latency data 

exchange between 

subsea devices and 

onshore systems. 

Multimodal data 

communication with 

compression, error 

correction, and 

standard protocols. 

Robust and resilient 

information flow 

across platforms. 

Optimization Strategy 

MOGA, adaptive 

control, data 

assimilation, surrogate 

models, digital twins, 

and predictive 

maintenance. 

Improve system 

efficiency, 

sustainability, and 

safety through 

multi-objective 

optimization. 

Genetic algorithms, 

digital twins, and AI-

enhanced forecasting 

for real-time 

optimization. 

Sustainable, cost-

effective, and adaptive 

CCUS management. 

To evaluate the effectiveness of the proposed AI-enabled ocean-based CCUS system, four key 

performance indices were defined. The Leak Detection Time (LDT) measures the duration between the onset 

of a leak and its detection, reflecting the system’s responsiveness. The Injection Efficiency (IE) quantifies 

the ratio of actual CO₂ injected into the reservoir to the planned injection volume under safe operational 

limits. The Ecological Risk Index (ERI) assesses the potential environmental impact, incorporating factors 

such as leakage-induced acidification and disturbance to marine ecosystems. The System Robustness Index 
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(SRI) indicates the system’s ability to maintain performance under adverse operational conditions, such as 

sensor faults or data noise. These indices provide a comprehensive basis for quantifying improvements in 

safety, operational efficiency, and environmental compliance. 

4. Result and discussion 

The integration of AI in carbon capture, utilization, and storage (CCUS) systems presents significant 

opportunities for enhancing operational efficiency, environmental safety, and economic viability. AI 

algorithms can facilitate predictive monitoring; enabling early detection of anomalies such as CO₂ leakage or 

equipment malfunctions. By processing large volumes of heterogeneous data from sensors, satellites, and 

marine monitoring devices, AI systems can identify patterns that may be undetectable through conventional 

analysis, thereby supporting proactive decision-making. 

Furthermore, AI models can be implemented for performance improvements of carbon capture plants 

for higher energy conversion and for reducing operation cost. This application is particularly relevant in 

optimizing process parameters, minimizing energy losses, and improving the integration of renewable energy 

inputs. The use of reinforcement learning, for example, allows AI systems to adapt to changing operational 

conditions, ensuring continuous improvement in performance metrics. When applying AI for ocean-based 

CCUS networks, an integrated perspective is necessary to address the full value chain, taking into account 

the value chain from capture to storage/usage of carbon. With AI-generated solutions, these networks can 

operate at levels of efficiency, safety and environmental responsibility never before possible, and ready 

themselves for the large-scale deployment of this important technology for mitigating climate change. 

The proposed smart AI-enabled ocean-based CCUS system was evaluated through a simulation-based 

validation using real-world data from an offshore saline aquifer site. The evaluation focused on key 

operational performance metrics—leak detection speed, injection efficiency, ecological risk, predictive 

accuracy, and system robustness—under realistic marine conditions.  

4.1. Case study: Offshore Aquifer CCUS site 

A representative Norwegian offshore subsea CO₂ storage site was selected as the case study to assess 

the system’s real-world applicability. Environmental and operational datasets were used to simulate the 

integration of IoT sensor arrays, Autonomous Underwater Vehicles (AUVs), Unmanned Aerial Vehicles 

(UAVs), satellite imaging, and AI-based decision modules. 

The results demonstrate significant improvements over conventional monitoring and control approaches: 

 Leak detection speed was improved by 28 %, with anomalies identified within 100 minutes, 

enabling early intervention to prevent large-scale CO₂ escape. 

 Injection efficiency increased by 31 %, achieved through reinforcement learning algorithms that 

dynamically adjusted injection parameters in response to real-time environmental feedback. 

 Ecological risk was reduced by 18 %, due to AI-powered plume propagation prediction and 

optimized injection strategies that ensured environmental thresholds were maintained. 

These outcomes confirm that the system’s integrated sensing, predictive analytics, and autonomous 

control framework can enhance safety, efficiency, and environmental compliance in offshore CCUS 

operations. 

4.1.1. Uncertainty analysis 

To evaluate the robustness of the proposed AI-enabled framework, the key performance metrics were 

tested over 20 independent simulation runs with controlled variability in operational and environmental 

parameters. Variations included current velocity (±15%), seawater temperature (±2 °C), and sensor 
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measurement noise (Gaussian, σ = 0.05). The results were aggregated to compute the mean, standard 

deviation (SD), and 95% confidence intervals (CI), as shown in Table 4. 

Table 4. Uncertainty analysis 

Metric Mean 
Standard Deviations 

(SD) 

95% Confidence 

Intervals (CI) 

Evidence Source & 

Reference 

Leak detection time 

reduction (%) 
28.0 1.5 27.2 – 28.8 

Simulation Series S2; 
[2],[3] 

Injection efficiency 

improvement (%) 
31.0 2.1 29.9 – 32.1 [3] 

Ecological risk 

reduction (%) 
18.0 1.2 17.4 – 18.6 

Risk Assessment 

Module Output; IEA 

(2022) [7] 

CO₂ plume migration 

prediction accuracy 

(%) 

95.0 0.8 94.6 – 95.4 
Digital Twin 

Validation;[5],[6] 

These results indicate that the proposed system can maintain operational performance under 

uncertainties related to environmental variability and sensor errors—an essential requirement for safe and 

sustainable offshore CCUS deployment. Beyond the reported confidence intervals and robustness tests, 

incorporating probabilistic approaches such as Bayesian deep learning and ensemble models can further 

strengthen reliability. These methods generate calibrated predictive intervals, quantify epistemic and 

aleatoric uncertainty, and provide uncertainty-aware decision thresholds. Such probabilistic modeling would 

allow the framework to better handle ocean variability and improve confidence in plume migration forecasts 

and leak detection. 

4.2. Digital twin performance 

The AI-driven digital twin of the CCUS process accurately simulated CO₂ plume migration with 95 % 

prediction accuracy, leveraging a hybrid GAN–LSTM model capable of learning both spatial and temporal 

plume dynamics. This allowed proactive injection route optimization, avoiding high-risk geological zones 

and maximizing storage capacity. The digital twin acted not only as a simulation environment but also as an 

operational decision-support tool. 

The digital twin was trained using a hybrid dataset combining (i) real-world operational data from the 

Norwegian offshore saline aquifer CCUS site, including historical injection parameters, reservoir pressure 

records, and multi-year CO₂ plume monitoring data from fixed sensor arrays and Autonomous Underwater 

Vehicles (AUVs), and (ii) synthetic datasets generated through physics-based reservoir simulations 

calibrated to site-specific geological and hydrodynamic parameters. These datasets were pre-processed to 

remove outliers and normalized to ensure compatibility across different sources. 

For model validation, the GAN-LSTM framework was tested against a withheld portion of the real-

world dataset (20% split), ensuring no temporal overlap with the training data. Model outputs for plume 

migration patterns and pressure evolution were compared with observed in-situ sensor measurements and 

high-resolution seismic imaging results. The accuracy metric was computed using the Root Mean Square 

Error (RMSE) for spatial plume prediction and the R² score for temporal dynamics, achieving a 95% 

predictive accuracy. Additional stress testing was performed by introducing synthetic noise and simulated 

sensor dropouts, with the model’s performance drop remaining below 5%, confirming robustness under 

degraded data conditions. 

A digital twin enhances predictive control in ocean-based CCUS by acting as a real-time virtual replica 

of the physical storage system. It integrates operational data from IoT sensors, AUVs, and reservoir 

simulations to model CO₂ plume migration with high accuracy. By continuously updating with live data, the 
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digital twin allows operators to test different injection scenarios, predict future plume behavior, and identify 

risks before they occur. AI models such as GAN–LSTM embedded in the twin capture both spatial and 

temporal dynamics, enabling proactive adjustments in injection rates and monitoring schedules. This 

predictive capability improves safety, optimizes storage efficiency, and reduces ecological risks by ensuring 

that operations remain within safe and sustainable limits. 

Although the GAN–LSTM digital twin achieved strong accuracy in plume migration prediction, its 

computational complexity poses challenges for resource-constrained edge devices deployed in offshore 

environments. To mitigate this, approaches such as model compression, pruning, quantization, and edge–

cloud partitioning can be employed. These strategies allow critical real-time functions (e.g., leak detection, 

injection control) to run locally while offloading heavy plume-simulation tasks to cloud infrastructure, 

ensuring both efficiency and feasibility in real deployments. 

4.3. System robustness under stress conditions 

Stress testing was conducted to evaluate resilience under sensor malfunctions, data noise, and 

communication disruptions typical of harsh oceanic environments. The system maintained operational 

continuity with less than 5 % performance degradation, thanks to redundant sensing pathways, fault-tolerant 

AI models, and edge-AI decision-making capabilities. Core functionalities—leak detection, plume tracking, 

and injection optimization—remained unaffected, ensuring uninterrupted monitoring and control. 

4.4. Comparative analysis with similar studies 

To establish the novelty and significance of the proposed AI-enabled ocean-based CCUS framework, 

the obtained results were compared with findings from other recent studies on offshore CO₂ monitoring and 

control. Table 5 explains Comparative Performance Benchmark. 

4.4.1. Leak detection performance 

Ringrose et al. (2019) reported a leak detection timeframe of 140–150 minutes using conventional 

subsea monitoring methods with periodic ROV inspections and sparse sensor networks [5]. Similarly, Wen et 

al. (2022) achieved ~130 minutes using Fourier Neural Operator (FNO)-based predictive models. In contrast, 

the present study detected leaks within 100 minutes, representing a 28 % improvement in detection speed, 

primarily due to the integration of multi-modal sensing (IoT arrays, AUVs, UAVs) with AI anomaly 

detection algorithms [6]. 

4.4.2. Injection efficiency 

Machine-learning-driven injection optimization in prior works, improved injection efficiency by ~20–

22 % through coupled flow geomechanics surrogate modeling [8]. Our reinforcement learning–based adaptive 

injection strategy achieved a 31 % improvement, demonstrating superior adaptability to fluctuating 

environmental and geological conditions. 

4.4.3. Ecological risk reduction 

Environmental risk mitigation in oceanic CO₂ storage is less frequently quantified in literature. 

McLaughlin et al. (2023) estimated a ~10–12 % reduction in ecological risk using scenario-based 

management and conventional hydrodynamic models. In contrast, this study’s 18 % risk reduction was 

enabled by GAN–LSTM-driven plume prediction, which allowed for real-time avoidance of ecologically 

sensitive zones [2] 

4.4.4. Digital twin accuracy 

Digital twin implementations for subsurface CO₂ plume modeling, such as in Wen et al. (2022), 

typically report prediction accuracies of 88–92 % under controlled simulation environments [6]. The present 
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system achieved 95 % accuracy in predicting plume migration in a dynamic offshore setting, marking a 

notable advance in both spatial–temporal modeling and operational decision support. 

4.4.5. System robustness 

Few prior studies explicitly evaluate robustness under sensor faults and noisy data conditions. Arinze et 

al. (2024) reported system performance drops of 10–15 % under simulated failures [11]. In comparison, our 

system maintained < 5 % performance degradation through redundancy in sensing and fault-tolerant edge-AI 

decision-making [11]. 

Table 5. Comparative performance benchmark 

Metric This Study Best Prior Reported Improvement & Novelty 

Leak Detection Time 100 min (28 % faster) 130–150 min 
Multi-modal sensing + AI 

anomaly detection 

Injection Efficiency +31 % +20–22 % RL-based adaptive injection 

Ecological Risk Reduction –18 % –10–12 % 
GAN–LSTM plume 

prediction + real-time control 

Plume Prediction Accuracy 95 % 88–92 % 
Hybrid GAN–LSTM + digital 

twin integration 

Performance Drop Under 

Stress 
< 5 % 10–15 % 

Fault-tolerant edge-AI + 

redundancy 

These distinctions also reflect in their geographical deployment: while land-based CCUS projects are 

concentrated in North America and Europe, ocean-based projects are in early stages with testbeds located in 

regions like the North Sea, offshore Japan, and Australia. 

In addition to overall performance gains, we provide a clearer comparison with specific baseline 

approaches. Compared to Fourier Neural Operator (FNO)-based predictive models, which achieved plume 

prediction accuracy of ~88–92% in similar offshore settings, our GAN–LSTM digital twin reached 95% 

accuracy, highlighting superior spatial–temporal learning. Likewise, in contrast to PID-based injection 

control, which typically reports ~20–22% efficiency gains, our reinforcement learning strategy delivered a 

31% improvement by dynamically adapting to fluctuating reservoir and environmental conditions. This 

breakdown illustrates the technical novelty of our framework in surpassing state-of-the-art baselines. 

4.5. Comparative baseline against existing systems 

To contextualize the performance of the proposed AI-enabled ocean-based CCUS system, a 

comparative baseline analysis was conducted against representative approaches reported in the literature. The 

selected baselines reflect common industry and research practices: (i) leak detection using single-sensor 

threshold alarms without multi-sensor integration, (ii) injection control employing proportional–integral–

derivative (PID) regulation without model-predictive feedback, (iii) environmental risk assessment via static 

scoring methods lacking uncertainty propagation, and (iv) plume migration forecasting using physics-only 

surrogate models without machine learning correction. 

Table 6. Performance Metrics Comparison Table 

Metric (unit) 

Baseline method 

(representative of 

literature) 

Baseline value 
This study 

(simulation-based) 
Relative change 

Time-to-detect leak (min) 
Threshold alarms, 

single-sensor 
≈139 100 –28% 

Injection efficiency 

(normalized) 
PID-only control 1.00 1.31 +31% 
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Ecological risk index 

(normalized) 
Static scoring 1.00 0.82 –18% 

Plume-migration prediction 

accuracy (%) 
Physics-only surrogate — 95 — 

The results, summarized in Table 6, demonstrate that the proposed system substantially outperforms 

these baselines under identical simulation conditions. Specifically, the AI-based multi-sensor fusion 

approach reduced leak detection time by approximately 28% (100 min vs. 139 min), while the reinforcement 

learning-based injection control strategy improved normalized injection efficiency by 31%. Furthermore, the 

integration of uncertainty-aware risk models yielded an 18% reduction in the ecological risk index compared 

to static scoring. The digital twin framework, incorporating GAN–LSTM models, achieved 95% accuracy in 

plume migration prediction, exceeding reported values for purely physics-based approaches in similar 

offshore aquifer contexts. 

These findings underscore the advantages of integrating AI-driven sensing, control, and predictive 

modeling into CCUS operations, translating into faster anomaly detection, improved storage efficiency, and 

enhanced environmental safeguards. The comparative analysis also confirms that the observed improvements 

are attributable to the proposed system’s methodological innovations rather than to differences in testing 

conditions, as all scenarios was evaluated using the same simulation-based offshore aquifer dataset. 

5. Limitations and challenges 

Despite the promising results demonstrated by the proposed AI-enabled ocean-based CCUS monitoring 

and optimization system, several limitations and challenges remain that must be addressed before large-scale 

operational deployment. Table 7 represents Limitations and Challenges of the Proposed AI-Enabled Ocean-

Based CCUS System. 

Table 7. Limitations and Challenges of the Proposed AI-Enabled Ocean-Based CCUS System 

Limitation / Challenge Description Potential Mitigation Strategy 

Data Scarcity and Quality Issues 

Limited in-situ datasets from offshore 

CCUS sites; data heterogeneity and gaps 

due to accessibility, sensor drift, and 

interference. 

Increase field deployments, use synthetic 

data generation, and apply advanced data 

assimilation to improve dataset coverage 

and quality. 

Harsh Marine Environment and 

Equipment Degradation 

Corrosion, biofouling, and extreme 

pressures affect sensor calibration and 

hardware longevity. 

Develop corrosion-resistant materials, 

anti-fouling coatings, and autonomous 

maintenance systems. 

Energy Constraints of Edge and 

Underwater Systems 

Limited power availability for AUVs, 

IoT sensors, and edge devices in deep-

sea environments. 

Integrate renewable ocean energy 

systems (wave, tidal, offshore wind) for 

autonomous power generation. 

Communication Latency and Bandwidth 

Limitations 

Low bandwidth and high latency in 

underwater acoustic communication; 

satellite link cost and weather 

dependency. 

Adopt hybrid communication protocols, 

advanced modulation techniques, error 

correction, and bandwidth optimization. 

Computational Demands of Real-Time 

AI Models 

High-resolution predictions and control 

algorithms require significant processing 

power on constrained edge devices. 

Use lightweight AI models, optimize 

algorithms for edge computing, and 

integrate cloud-assisted processing where 

feasible. 

Integration Complexity Across 

Heterogeneous Systems 

Difficulty in ensuring interoperability 

across diverse sensors, vehicles, and AI 

platforms. 

Establish standardized communication 

protocols and modular, interoperable 

system architectures. 

Regulatory, Ethical, and Policy 

Uncertainties 

Varying global policies, unclear 

regulations, and ethical concerns 

regarding marine ecosystem 

interventions. 

Collaborate with policymakers, develop 

compliance frameworks, and create 

transparent ethical guidelines. 

Long-Term Storage Stability and Risk Uncertainty in predicting CO₂ storage Maintain continuous monitoring, 
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Assessment stability over decades under changing 

ocean conditions. 

recalibrate models regularly, and employ 

adaptive risk management frameworks. 

Harsh marine conditions such as biofouling and corrosion directly impact sensor-based monitoring in 

offshore CCUS by reducing accuracy, causing signal drift, and shortening sensor lifespan. These challenges 

increase maintenance demands and operational risks. To mitigate these effects, our study highlights 

corrosion-resistant materials, anti-fouling coatings, and fault-tolerant AI models that ensure reliable long-

term monitoring. 

While the proposed framework demonstrates strong performance in simulation-based validation, scaling 

to real offshore deployments poses additional challenges. Site-specific geological variability, dynamic 

oceanographic conditions, and unforeseen ecological interactions may limit direct transferability of models. 

Practical constraints such as communication latency, sensor degradation from biofouling and corrosion, and 

integration of heterogeneous sensing platforms further complicate large-scale implementation. Addressing 

these issues will require multi-site offshore trials, adaptive calibration of AI models to local environments, 

and collaborative validation campaigns to ensure robustness and scalability in operational contexts. 

5.1. Regulatory and governance barriers 

The deployment of large-scale offshore CCUS systems operates within complex marine governance 

structures governed by both national legislation and international conventions such as the United Nations 

Convention on the Law of the Sea (UNCLOS), the London Protocol, and the International Maritime 

Organization’s MARPOL Convention. Compliance with these frameworks requires comprehensive 

environmental impact assessments, multi-agency permitting, and adherence to site-specific monitoring 

protocols. Cross-jurisdictional projects face additional hurdles in aligning disparate regulatory regimes, 

particularly where storage sites and monitoring infrastructure span multiple Exclusive Economic Zones 

(EEZs). These legal and policy constraints can delay project timelines, increase operational costs, and 

introduce uncertainties in long-term commitments. Moreover, the lack of harmonized global standards for 

AI-driven environmental monitoring and automated compliance reporting may hinder the acceptance of 

autonomous decision-making systems in regulatory processes. 

In addition to governance challenges, integrating AI monitoring outputs with compliance frameworks 

requires technical solutions. Standardized data formats and metadata protocols can ensure interoperability 

with regulatory databases. Automated reporting pipelines can generate verifiable MRV (Monitoring, 

Reporting, and Verification) records, reducing manual errors and latency. Furthermore, auditable AI models 

with version control and explainability features can enhance trust and acceptance of AI-driven decision-

making in compliance processes. 

5.2. Scalability constraints for Global Roll-Out 

Scaling the proposed system from regional pilots to globally deployed networks presents further 

challenges. Marine environments differ considerably in hydrodynamic conditions, seafloor geology, 

biodiversity, and anthropogenic activity, limiting the direct transferability of AI models trained in one setting 

to another. Data interoperability remains a critical bottleneck, as variations in sensing technologies, 

communication infrastructure, and data standards can complicate model integration and real-time decision-

making. Infrastructure readiness is uneven across regions, with developing coastal nations often lacking the 

satellite connectivity, edge computing capability, or autonomous vehicle fleets required for full-scale 

deployment. Economic barriers, including the high capital cost of advanced sensors and autonomous 

platforms, may also impede widespread adoption, particularly in resource-limited settings. Addressing these 

challenges will require international collaboration on shared data platforms, open AI model repositories, and 

the development of unified operational and regulatory standards to enable interoperability and scalability 

while maintaining environmental safeguards. 
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6. Future scope 

The proposed smart AI-enabled CCUS framework has shown measurable improvements, but several 

areas remain open for future exploration. As indicated in Table 8, challenges such as data scarcity, harsh 

marine conditions, energy constraints, and regulatory uncertainties require targeted solutions. Future research 

can focus on block chain integration for transparent carbon accounting, AI-driven weather and tide models 

for predictive maintenance, and hybridization with renewable ocean energy systems for autonomous 

operations. Additionally, developing a global AI collaboration platform with standardized protocols and 

shared datasets could address interoperability issues and accelerate large-scale deployment of ocean-based 

CCUS. 

Table 8. Future Scope of Smart AI-Enabled CCUS Framework 

Future Direction Linked Limitation Proposed Advancement Potential Considerations 

Fusion with Block chain for 

Secure and Traceable Carbon 

Accounting 

Current carbon credit tracking 

lacks transparency and is 

prone to tampering in 

offshore CCUS operations. 

Employ block chain to create 

immutable and verifiable 

carbon accounting across the 

capture-to-storage chain, 

enhancing trust among 

regulators and stakeholders. 

High energy consumption of 

certain blockchain protocols; 

interoperability with existing 

carbon registry systems must 

be ensured. 

Integration with AI-Based 

Weather and Tide Models for 

Predictive Maintenance 

Current system does not 

adequately account for 

extreme weather or tidal 

disruptions, leading to 

downtime and equipment risk. 

Use AI-driven forecasts of 

weather and tidal patterns to 

proactively adjust injection 

rates, AUV deployment, and 

protective measures. 

Requires reliable 

oceanographic data; model 

accuracy is critical for 

avoiding false predictions. 

Hybrid CCUS + Ocean 

Renewable Energy Systems 

for Power Autonomy 

System nodes and sensors 

depend on external or fossil-

fuel-based power, limiting 

sustainability in remote areas. 

Combine CCUS with offshore 

renewable energy (wave, 

tidal, wind) to create self-

powered, sustainable, and 

low-emission facilities. 

Integration challenges 

between energy generation 

and storage; variability of 

renewable energy supply. 

Global AI Platform for Ocean 

CCUS Collaboration and 

Standardization 

No unified platform exists for 

cross-regional data, AI 

models, or best practices 

sharing. 

Develop a global AI-enabled 

platform for standardized 

monitoring, interoperable 

models, and collaborative 

innovation in ocean CCUS. 

Needs international 

cooperation; must balance 

global standards with local 

ecological and regulatory 

conditions. 

Table 8. (Continued) 

7. Conclusion 

The proposed study presents a novel AI-enabled framework integrating CNNs, LSTMs, GANs, 

reinforcement learning, edge computing, and digital twins for real-time monitoring, predictive control, and 

optimization of ocean-based CCUS networks, achieving measurable improvements such as 28% faster leak 

detection, 31% higher injection efficiency, and an 18% reduction in ecological risk. This approach advances 

the field by combining advanced AI models with autonomous sensing and optimization strategies to enhance 

operational safety, efficiency, and environmental compliance in challenging marine conditions. However, the 

system faces limitations, including restricted availability of high-quality operational data, corrosion-induced 

sensor calibration issues, energy constraints on edge devices, and communication delays in underwater 

environments. Addressing these constraints through targeted research, interdisciplinary collaboration, and the 

incorporation of emerging solutions such as block chain-based carbon accounting, AI-driven weather and 

tide forecasting, renewable energy-powered CCUS systems, and global AI collaboration platforms could 

enable broader adoption and scalability of this technology for sustainable marine carbon management. 
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