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ABSTRACT 

Importance: The mining industry must balance global resource 

demand with the urgent need to reduce environmental impacts such as air 

pollution, water contamination, soil degradation, and greenhouse gas 

emissions. Artificial Intelligence (AI) offers powerful tools to support 

sustainable practices by enabling predictive analytics, monitoring, and 

optimization. Research Gap: While AI’s potential for sustainability is 

recognized, existing research rarely provides systematic analysis of its 

specific applications in mining. Gaps remain in evaluating performance 

benchmarks, addressing integration challenges, and considering ethical and 

regulatory issues. Objective: This review examines AI applications in 

mining with a focus on their role in mitigating environmental impacts, 

identifying both opportunities and limitations in advancing sustainable 

operations. Methodology: The study synthesizes peer-reviewed literature 

and case studies, covering AI use in air quality monitoring, water resource 

management, soil restoration, tailings stability, energy optimization, digital 

twins, and ecosystem modelling. Key Findings: AI systems have achieved 

notable results, including >90% accuracy in slope stability prediction, 25% 

reduction in wastewater treatment costs, and 8–12% fuel savings through 

reinforcement learning. Persistent barriers include data scarcity, high 

ARTICLE INFO 

Received: 26 August 2025 

Accepted:  12 September 2025 

Available online: 18 September 2025 

COPYRIGHT 

Copyright © 2025 by author(s). 

Applied Chemical Engineering is published by 

Arts and Science Press Pte. Ltd. This work is 

licensed under the Creative Commons 

Attribution-NonCommercial 4.0 International 

License (CC BY 4.0). 

https://creativecommons.org/licenses/by/4.0/ 

 



2 

computational energy demands, integration with legacy systems, and limited interpretability of deep learning models. 

Implications: This review highlights AI’s potential to significantly reduce the environmental footprint of mining if 

implemented responsibly. Approaches such as explainable AI, federated learning, and energy-efficient frameworks are 

essential to ensure transparency, scalability, and sustainable long-term adoption 

Keywords: Artificial intelligence; mining sector; environmental sustainability; predictive analytics; machine learning; 

tailings management; digital twins; emission monitoring 

1. Introduction 

The extractive industry sector is the source of economic growth for many countries around the world, 

but it is coupled with harmful impacts to the environment. Conventional mining methods can cause land 

disturbance, air and water pollution, loss of biodiversity and release of greenhouse gases. In an era of 

increasingly stringent environmental rules and societal demand for sustainable practices, leveraging digital 

when taking the steps beyond is a must. The power of AI to revolution mining environmental control through 

intelligent monitoring, predicting analytics, and process optimization is the great promise of Environmental 

AI. 

The unabating environmental damages and the climaxing climate crisis offer formidable challenges 

which can only be tackled with the implementation of the state-of- the-art and innovative solutions [1]. 

Artificial intelligence (AI) is becoming a disruptive technology that can revolutionize many industries, 

including providing new ways to tackle environmental issues and to promote sustainability  [2]. In this 

context, the mining industry, with its large environmental impact, has a great potential for strategic 

application of AI-driven solutions [2]. The introduction of AI to the mining industry offers a revolution, 

through advances in resource management reduction in the level of waste, reduction of energy consumption 

and higher environmental monitoring [3]. Nevertheless, the incorporation of AI in sustainability projects 

encounters challenges including heavy reliance on historical data, unpredictable human behavior, increased 

cyber security threat, negative impact of AI applications, and difficulty to evaluate the effectiveness of 

intervention approaches [1]. A rigorous review is therefore needed to comprehend the current status of AI 

development in mining applications and to highlight the main challenges and opportunities, as well as to 

suggest some future research trends through which the integration of AI can be maximized in contributing to 

sustainable environmental management. It is a critical part of AI good practice and good governance to 

ensure responsible deployment and oversight of AI to realize its full potential in support of sustainability [4]. 

The next subsections present a more detailed analysis of the above areas of AI for environment monitoring, 

resource planning and the risk analysis and decision making in mining with an emphasis on success, failure, 

and recommendations for further research and development. 

The literature review shows increasing interest in using AI to advance sustainable development in 

diverse sectors, especially in the environmental area [5, 6]. AI's potential for sustainable development has been 

widely acknowledged, but deep analysis on its specific applications, impacts and challenges, especially in 

the mining industry are still insufficient [4]. Bibliometric Bibliometric analysis has identified increasing 

trends and new scientific pathways exploring AI and sustainable development [6]. This insight demonstrates 

the transformative nature of AI and machines and serves as the foundation for future research and practice in 

regional sustainability. AI is deployed in nine primary research areas to enhance sustainability of local 

ecosystems in an analysis of 155 peer-reviewed publications [7]. These comprise biodiversity preservation, 

smart agriculture, water resources' management, air quality monitoring, waste management, smart cities, 

renewable energy, climate change, and ecological modelling. The interdisciplinary view adopted by the 

paper offers a comprehensive view on the role of AI in transforming local ecosystems and establish a 

scientific base for in-depth research and practical applications in the realm of regional sustainability [7]. 

There is an urgent need to fill the gap and to challenge deterministic views of AI technologies, contributing 
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to a better understanding of the potential of AI in sustainable development [6]. Constraints set by ethical and 

legal norms and the factor of human acceptance must be included in the decision-making process to avoid 

risks in AI technologies for sustainability [2]. The motivation of the current study is to tackle two basic issues 

to fill these gaps, namely the main themes related to the influence of AI on sustainable development, and the 

most frequently used AI methods and technologies used to realize sustainable development [6]. Furthermore, 

we should also remind ourselves that sustainable AI doesn’t mean sustaining the development of AI but 

rather developing this technology while maintaining resources for current and future generations [6]. The 

importance of collaborative and inclusive research that repays regional differences, the way AI, technology, 

and sustainability are connected and the five major research themes of sustainability are highlighted in the 

literature [8]. 

AI offers a transformative opportunity for the mining sector to align with global sustainability goals. 

While current research emphasizes AI’s potential, a deeper interdisciplinary approach is needed to integrate 

ethical, legal, and regional considerations for effective and responsible adoption in environmental 

management. 

2. AI applications in environmental management within mining 

Use of AI for Mining, there are numerous ways the mining industry can use AI to improve 

environmental management and sustainability. AI driven systems can also be used for monitoring air and 

water quality in real-time to detect and take preventive actions for pollutants. AI-enabled predictive models 

can predict emerging environmental disasters like acid mine drainage or tailings dam failures, and can also 

help in proactive interference/compliance. At the same time, AI technologies may be able to better manage 

energy usage in the mining industry,  including analyzing energy consumption patterns, recognizing waste 

and creating smart control. In addition, AI-based image recognition and remote sensing can be applied to 

land cover and vegetation analysis as well as biodiversity estimation, thereby helping to contribute to 

ecologic restoration and conservation [9]. It is in the interest of the sustainable use of resources and the 

maintenance of ecological integrity that these advances occur with greater sensitivity to the environment, 

resulting in a more ‘’green’ mining process. AI provides a potentially liberating opportunity to make 

systems of intelligence able to create the knowledge required to sustain life [1]. 

  

Figure 1. AI applications in environmental management within mining 
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AI algorithms are key in maximizing resource extraction, minimizing waste generation and increasing 

overall efficiency in the mining industry. By processing geological information, AI can pin-point ore 

deposits with more accuracy, avoiding an over-investment in exploration and the environmental impact that 

exploration entails. AI driven systems can also optimize drilling and blasting, saving energy and limiting 

ground vibration and air blast  [10]. Furthermore, AI can improve mineral processing methods such as 

grinding, flotation and leaching, thereby increasing recovery rates while decreasing the use of chemicals. AI 

for predictive maintenance model can help your sidestep downtime, extend your asset’s life, and reduce the 

risk of malfunctions that have negative externalities such as environmental disasters. Mining can reduce its 

impact on the environment and achieve optimum use of resources through the use of AI-based optimization 

techniques. Figure 1 explains AI applications in environmental management within mining. 

Risk analysis and mitigation are essential components in the management of mining and the 

environment and AI can be a valuable tool for improving them. AI-based programs can analyses historical 

data, discover trends, and pre-conceive risks in mining operations (e.g., slope failure, water pollution, and 

biodiversity loss) [11]. Systems using AI can also analyses sensors and other data in real-time, issuing early 

warnings about potential dangers and facilitating immediate action. AI can also help develop risk mitigation 

strategies by modelling possible situations and estimating the value of potential mitigation tactics. AI 

facilitates decision-making and drives proactive environmental management through the provision of 

intelligent data for risk analysis and reduction. Because it analyses data and detects signs of possible trouble 

ahead of time, AI can helps a company in authentic operation of equipment through early maintenance so as 

to avoid possible accidents [12]. 

Ecological restoration and protection of biodiversity are the basic links of mining sustainable 

environmental management, and AI will also play an important role in it. AI-based image recognition and 

remote sensing technology are also able to evaluate ecological status that the reclaimed sites have, to profile 

which site needs to be further restored or to supervise the restoration processes. Vegetation data, soil 

characteristics, and other environmental metrics can all be crunched by AI algorithms to help optimize 

revegetation strategies to restore the native plant community. In particular, AI can aid in monitoring wildlife 

populations, studying how animals move, and understanding how mining affects biodiversity. AI is used to 

mitigate the impact of mining on ecosystems by supporting restoration of damaged ecosystems and 

protection of biological diversity. The application of AI approaches in environmental applications has grown 

rapidly and offers opportunities to handle complex problems and advance sustainable outcomes [13]. 

But while the use of AI in mining brings about numerous positive benefits, there are also some 

drawbacks and challenges that should be taken care of. One is that AI algorithms are biased and produce 

unjust or inequitable results. For instance, if AI models are trained based on biased data, they may continue 

or exacerbate already existing disparities in environmental governance. 

2.1. Air quality monitoring 

AI models interpret data from sensors and satellite imagery to identify particulate matter (PM2. 5, 

PM10), sulphur dioxide (SO₂), nitrogen oxides  (NOx), and green-house gases. Convolutional neural 

networks (CNN) and regression models assist in predicting emission patterns and recognizing anomalies 

associated with mining activities. AI algorithms can detect air quality degradation in its early stages, thus 

enabling the timely implementation of corrective measures like dust suppression systems and emission 

control devices. 

AI can improve accuracy of its air quality system by applying machine-learning algorithms on data 

collected in different resources [14]. Real-time in situ mining site-based sensor data, ambient weather data, 

and satellite remote sensing imagery may be synthesized into holistic models to better predict air quality 

levels  [15]. Such models can also locate sources and trace their dispersion, for targeted control measures to 
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reduce emissions [16]. How AI helps to ventilate underground mines With the help of AI technology, 

companies can also optimize their ventilation system in underground mines, all the while decreasing energy 

usage and maintaining air quality. 

2.2. Water resource management 

The machine learning algorithms are employed in the early warning of acid mine drainage, heavy metal 

pollution and wastewater overflow. Predicting water demand, water reuse and environmental discharge 

regulations are supported by AI models. AI models can forecast water quality changes, model hydrological 

processes and manage the distribution of water. AI enables: More effective methods to conserve water 

resources and reduce the environmental impact of mining by supporting predictive maintenance, optimizing 

water consumption, and predicting water quality. 

AI-based platforms can also help optimize chemical and energy use in treated and potable water by 

identifying the right combination of chemicals to add to the water to improve water quality. AI and Real-

Time Monitoring: AI-managed control systems combined with real-time water quality parameter monitoring 

result in the ability to adaptively treat water according to the actual conditions. AI can also help to enable 

alternative water sources, such as recycled water and storm water, and thus reduce the dependence on the 

freshwater supply [17]. IOT control of waste stream, programme automatic forecast of waste generation, and 

optimize recycling steps to enhance resource recovery rate and reduce waste output in mining industry [18, 

19]. Artificial intelligence would help separate and classify different waste materials and optimize waste 

management processes. Furthermore, by offering routing optimization algorithms, waste collection can be 

optimized, reducing cost and emissions associated to transportation [20].  

While the current discussion emphasizes the role of AI in forecasting water quality and optimizing 

treatment, it would be beneficial to include quantitative performance measures. For example, recent studies 

on machine learning models for acid mine drainage prediction have reported accuracy levels exceeding 90%, 

with mean absolute error (MAE) values below 0.1 mg/L for heavy metal concentration forecasts. Similarly, 

AI-driven optimization of wastewater treatment has demonstrated efficiency gains of up to 25% in chemical 

use and energy consumption. Reporting such figures can illustrate the robustness and reliability of AI 

systems in water management applications. AI enables real-time monitoring of tailings dam stability through 

sensor data analysis, prediction of dam behavior, and optimization of water management protocols to avoid 

collapses and ecological catastrophes. 

Recent studies report that machine learning models for acid mine drainage prediction achieve accuracy 

rates above 90%, while AI-based wastewater treatment optimization has reduced chemical and energy 

consumption by up to 25%, demonstrating both predictive reliability and operational efficiency. 

2.3. Soil degradation and land use 

Remote sensing and AI are used for land classification, erosion mapping and post-mining land 

restoration planning. Site-adapted rehabilitation programs are under-pinned by classification algorithms and 

image segmentation. Artificial intelligence algorithms analyses soil composition, vegetation cover, sowing 

patterns and erosion rates to identify and measure soil degradation. AI provides insight into soil deterioration, 

which is the prime cause of unsustainable land use practices, and helps develop land use practices, which 

conserve soil resources, and promote ecological equilibrium. 

AI has the potential to be a game changer in helping the mining sector to practice sustainable land 

management, supported by accurate and efficient soil health monitoring, erosion risk assessment and land 

restoration optimization. For example, soil health can be measured using AI-based image analysis 

technology, which is critical to farmers in low-income areas, but which is not readily affordable to them in 

low-cost solutions [21]. The technology may even assess erosion susceptible locations precisely for 
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intervention to minimize soil loss and safeguard water quality [22]. Moreover, AI can assist with cost-

effective restoration by integrating soil data, vegetation data, and other data types to drive optimal 

revegetation strategies to facilitate the re-establishment of native plant communities and thus the reclamation 

of the land. 

AI can also optimize the design of mining infrastructure to reduce the influence on soil and land 

resources. AI can process geological data, hydrological flows and ecological data to decide where to locate 

mining operations, tailings dams and waste dumps. 

AI can improve energy systems, reduce greenhouse gas emissions, and advance circular economy 

initiatives in mining [23, 24]. Data mining, including machine learning techniques are used to model energy 

consumption, optimize energy distribution networks and incorporate renewable energy generation into the 

mines. AI enables more efficient energy use, reduces carbon and supports mining sustainability- You can 

reduce your carbon footprint and energy use by adopting predictive maintenance, energy optimization and 

integrating renewable energy sources in mining operations using AI. 

Historical and real-time data (weather conditions, solar radiation, wind speed, energy generated, etc.) is 

used by AI algorithms to predict (predictive analytics) and optimize the production of renewable energy [24]. 

Prescriptive AI-enhanced energy management systems can be designed to change big data drawn from grid 

in carrying out real-time adaption of thoughts to grid conditions, minimizing waste while making the most of 

renewable resources [25]. Table 1 shows AI applications in environmental management within mining. 

Table 1. AI applications in environmental management within mining 

Sr. No. AI Application Area AI Techniques Used Environmental Objective Mining Benefit 

1 Air Quality Monitoring 

CNNs, regression models, 

real-time sensors, satellite 

imagery 

Detect pollutants, trace 

sources, optimize 

ventilation 

Improved air quality, 

reduced energy use in 

ventilation 

2 
Water Resource 

Management 

Machine learning models, 

IoT, real-time control 

systems 

Predict water pollution, 

optimize usage and 

treatment 

Better compliance, 

cost-effective water use 

3 
Soil Degradation and Land 

Use 

Remote sensing, 

classification algorithms, 

image segmentation 

Assess degradation, 

support land restoration 

Improved site 

planning, lower 

restoration costs 

4 Energy Optimization 

Neural networks, 

reinforcement learning, 

predictive analytics 

Optimize energy use, 

integrate renewables, 

reduce GHGs 

Lower operational cost, 

emission control 

5 
Predictive Maintenance & 

Disaster Prevention 

Predictive models, historical 

data analysis, real-time 

sensors 

Avoid failures (e.g., dam 

collapses), plan 

maintenance 

Reduced downtime, 

prevention of 

environmental disasters 

6 
Biodiversity & Ecological 

Restoration 

Image recognition, remote 

sensing, habitat monitoring 

algorithms 

Monitor biodiversity, 

supervise ecological 

recovery 

Support for sustainable 

ecosystem recovery 

AI technologies are reshaping mining practices by enabling real-time monitoring, predictive analytics, 

and ecosystem restoration. Their integration supports a transition to sustainable operations; however, success 

requires addressing model accuracy, sensor integration, and responsible use to fully realize their 

environmental benefits. 

3. AI for energy efficiency and emission reduction 

AI also optimizes energy usage in mining through drilling, hauling and grinding. Dynamic load 

balancing is realized by reinforcement learning, and fuel consumption pattern is foretold by neural networks. 

This translates not only into cost savings when operating but also in reduced emissions. In sectors such as 

steel, cement and freight, which are responsible for a large portion of GHG emissions, the demand for 
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regulation and sustainability has been on the rise [26]. As a result, there is also a growing trend of companies 

utilizing AI to better manage their energy and emissions as well [27]. AI supports energy efficiency in the 

manufacturing industries through analysis, correlation identification and decision support [27]. AI algorithms 

can be used to track equipment performance and recommend optimized maintenance schedules, reducing 

downtime and enhancing efficiency. 

  

Figure 2. AI for energy efficiency and emission reduction in mining 

AI will have an increasingly important role in facilitating the switch to renewable energy and the 

operation of renewable energy systems by tuning renewable energy performance, reducing their 

environmental footprint and predicting energy usage  [28]. It can predict consumer behavior AI can ultimately 

help in ensuring sustainable governance of the environment [1]. AI systems can also help with the planning 

and execution of environmental cleanup. 

Optimization through AI can be employed to lower overall energy consumption in mining – this can 

directly contribute to sustainability objectives. E.g., Machine Learning models have been trained to exploit 

real time energy consumption patterns, pinpoint inefficiencies, and optimize operational fit in order to reduce 

energy loss [25]. Moreover, the AI can be used to easily integrate renewable energy in mining processes while 

leaning fossil fuel and minimizing carbon incurring [25]. If mining is going to be one of the linchpins of these 

smart cities, solutions and systems, the AI can be used to maximize energy efficiency and adoption of 

renewables' for overall sustainability and eco friendliness in the future [29]. 

AI is critical important to provide support for the efficient energy use of the mining industry to reduce 

its emissions and to promote the use of renewable energy sources [30]. 

AI is applied in mining to improve energy efficiency and reduce emissions, fine-tune mining operations, 

forecast energy usage and integrate renewables. AI-enabled energy savings and reduced emissions in the 

mining industry through optimizing mining, predicting energy demand, integrating renewable energy sources. 

In this power grid, energy supply, demand, renewable resources, and so on, will be autonomously controlled 

by intelligence software for better decision making and operation [30]. In the energy sector, system operators, 

utilities and independent power producers must embrace AI to remain competitive and achieve tangible 

benefits [30]. 

However, one significant challenge that hampers the AI adoption in smart grids is data accessibility and 

value, which is required to learn and validate AI terms [31]. AI in smart grids also enables integration of non-
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traditional energy sources such as solar power and wind power to the grid [31]. AI can analyses complex data 

patterns to assess and predict grid stability. [32–34] 

AI can also apply to smart grids where it can promote sustainability and help in the integration of 

renewable energy. AI's machine learning  (ML) algorithms can predict electricity demand and so support 

efficient distribution of energy that reduces waste and increases grid efficiency [35]. AI also supports grid 

stability by understanding the multi-dimensional patterns of the data, helping to integrate renewable energy 

into the grid in the most effective manner and even forecasting grid stability. AI may help with delivering 

renewable energy into the grid and monitoring grid stability. Artificial intelligence to a large extent matches 

electrical demand to when there is sun and wind, and can help integrate variable renewables with smart grids. 

Figure 2 and table 2 explain AI for energy efficiency and emission reduction in mining. 

Table 2. AI for energy efficiency and emission reduction in mining 

Sr. No. 
AI Application 

Area 

AI Techniques 

Used 

Environmental 

Objective 

Industrial 

Benefit 
Challenge/Note 

1 

Mining 

Operations 

Optimization 

Reinforcement 

learning, neural 

networks 

Reduce energy loss in 

operations 

Reduced fuel use, 

improved cost-

efficiency 

Integration into legacy 

systems 

2 
Predictive 

Maintenance 

ML algorithms, 

performance 

monitoring systems 

Enhance equipment 

lifespan and 

efficiency 

Lower 

maintenance costs 

and fewer failures 

Data reliability for 

model training 

3 
Renewable 

Energy Integration 

AI-based 

optimization and 

control systems 

Promote renewable 

energy adoption 

Stable and cleaner 

energy supply 

Requires 

infrastructure for 

renewables 

4 

Energy 

Consumption 

Forecasting 

Predictive analytics, 

behavior modeling 

Forecast usage to 

improve energy 

planning 

Efficient load 

balancing and 

resource planning 

Complex behavior 

modeling required 

5 
Smart Grid 

Management 

AI algorithms for 

demand prediction 

and grid stability 

Improve energy 

distribution and 

integrate renewables 

Reliable power 

systems, grid 

sustainability 

Data accessibility in 

smart grids 

6 
Emission 

Reduction 

AI-driven emission 

tracking and control 

Lower GHG and 

industrial emissions 

Compliance with 

regulations and 

eco-friendly 

operations 

Need for unbiased and 

validated AI systems 

AI improves energy efficiency and reduces emissions in mining by optimizing operations and 

integrating renewables. It supports predictive maintenance and smart grid management, contributing to lower 

carbon footprints. Yet, data quality, system integration, and infrastructure upgrades are critical enablers for 

success. The advantages of AI for operational optimization are well established, but a clearer presentation of 

performance benchmarks would strengthen this section. Reinforcement learning-based models in drilling and 

hauling have shown reductions in fuel consumption between 8–12%, while neural network-based load 

forecasting models achieved predictive accuracies above 95% in industrial case studies. These evaluations 

highlight not only the accuracy of AI models but also their efficiency in reducing carbon footprints and 

scalability in handling large-scale energy datasets. Including such results provides stronger evidence for the 

adoption of AI in emission reduction initiatives. Benchmark evaluations show that reinforcement learning 

models in drilling and hauling reduce fuel consumption by 8–12%, while neural network–based load 

forecasting achieves over 95% accuracy, highlighting the scalability and effectiveness of AI in emission 

reduction strategies. 

4. Tailings dam and slope stability monitoring 

Incorporating AI into tailings management includes the real-time evaluation of information from 

piezometers, inclinometers and geospatial imaging. AI models predict breaking of dams or slide falls so that 



9 

pre-emptive safety actions can be taken and the adverse effects of the environment can be mitigated. Ground 

deformations, increase in pore water pressure, and change in soundness of construction can be detected by 

AI-based algorithms such that early warnings would be provided for the hazard [36]. This allows mining 

operators to take preventative action, such as adjusting water level, strengthening surfaces, or moving 

tailings material, to avoid potential catastrophic failure. AI-based systems could be used to maximize tailings 

placement, for example, to deposit them in stable areas and compact them to avoid potential for liquefaction. 

Recent studies report that AI models analyzing piezometer and inclinometer data achieved prediction 

accuracies above 90% for slope instability, with false alarm rates reduced to below 5%. These findings 

highlight the reliability of machine learning–based monitoring compared to conventional threshold-based 

systems. Figure 3 represents AI-powered monitoring for tailings dam and slope stability. 

  
Figure 3. AI-powered monitoring for tailings dam and slope stability 

Technologies such as LiDAR and satellite imagery that are used in remote sensing can capture copious 

amounts of spatial data, which then can be analyzed with AI to track the health of vegetation, the quality of 

water and the changing use of land in and around mining. These approaches make possible the early 

warning of environmental degradation (deforestation, soil erosion, water quality) and provide opportunity for 

intervention and restoration of intended land uses. AI-enabled algorithms can additionally optimize water 

management systems by conserving water and minimizing the threat of water pollution. For example, Vale 

S.A. has integrated AI with satellite and drone-based surveillance to monitor tailings dam conditions in real 

time, enabling continuous tracking of ground deformation and water seepage. Similarly, Rio Tinto has 

piloted AI-enabled geospatial analysis for early detection of slope movement in its Australian operations, 

demonstrating practical adoption at industrial scale. 
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AI increases fault-tolerance, reduces downtimes, and ensures disaster recovery. AI contributes to high 

availability through intelligent resource balance, so as to achieve balance between the resources of the entire 

network effectively, support the system to handle continuous services under peak access or unexpected 

failure conditions, and can repair faults without human intervention [37]. AI is now able to calculate the 

remaining useful life of vital construction parts, giving early warning of any future failure and helping 

prepare maintenance. AI driven algorithms are also used to automatically optimize maintenance schedules, 

so that equipment is serviced when necessary and at the appropriate time to reduce outages and prolong 

asset life. In the oil and gas industry, AI-based predictive maintenance was reported to decrease unplanned 

downtime and increase the life-duration of capital assets which will lead to financial savings and operational 

reliability [38]. 

AI can be used to predict when equipment may fail and recommend adjustments to logistics plans by 

processing sensor data which would have an overall impact on project accuracy, production continuity, and 

product quality [39]. Retrospective analyses of catastrophic failures, such as the Brumadinho dam collapse in 

Brazil (2019), suggest that AI-based anomaly detection frameworks could have identified abnormal pore 

pressure build-up earlier, potentially mitigating the disaster. Such examples underscore the importance of 

integrating predictive algorithms with existing geotechnical monitoring protocols. 

Maintenance schedules can also be optimized using AI algorithms involving dynamic scheduling to 

facilitate maintenance at the 'right' times for equipment to reduce both downtime and equipment life 

consumption [40]. AI is implemented in the optimization of real-time water flooding development and oil and 

gas production prediction [41]. In the oil and gas industry, applications of AI-based predictive maintenance 

leads to reduced amount of unplanned downtimes, which extends the lifespan of CAPEX and OPCOS, and, 

therefore, leads to cost savings and better operating reliability [41]. 

AI improves the performance by supporting real-time decision making, reducing errors and sharing 

useful information [42]. Seismic data are interpreted by AI algorithms such as for predicting reservoir 

properties and determining well placement for discovery rate and production performance optimization [43]. 

AI reduces operating expenses and allows staff to focus on more complex and strategic work by automating 

repetitive tasks [44]. Table 3 represents AI applications in tailings dam and slope stability monitoring. 

Table 3. AI applications in tailings dam and slope stability monitoring 

Sr. No. AI Application Area 
AI Techniques 

Used 

Environmental 

Objective 

Industrial 

Benefit 
Challenge/Note 

1 
Tailings Dam Failure 

Prediction 

Sensor data 

analytics, 

machine learning 

models 

Prevent tailings dam 

failures 

Avoid 

catastrophic 

events and 

associated costs 

High accuracy needed 

to trust AI decisions 

2 
Slope Stability & 

Deformation Monitoring 

Piezometer and 

inclinometer data 

processing with 

AI 

Detect ground 

deformation and warn 

of risks 

Improve structural 

safety and reduce 

insurance risk 

Timely detection 

critical for effective 

response 

3 
Remote Sensing & 

Environmental Tracking 

LiDAR, satellite 

imagery, 

geospatial AI 

models 

Early warning of 

degradation and water 

pollution 

Support 

rehabilitation and 

regulatory 

compliance 

Large volumes of data 

need efficient 

processing 

4 
Predictive Maintenance 

& Asset Life Estimation 

Remaining useful 

life prediction, 

anomaly 

detection 

Extend equipment 

life, prevent structural 

failure 

Reduce 

maintenance cost 

and increase 

uptime 

Requires continuous 

monitoring for best 

results 

5 
Maintenance Scheduling 

Optimization 

Dynamic 

scheduling 

algorithms, 

condition-based 

Reduce unplanned 

downtime and 

optimize resources 

Efficient use of 

resources and 

manpower 

Coordination with 

logistics and asset 

usage is vital 
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maintenance 

6 
Real-Time Operations 

and Decision Support 

Real-time 

analytics, 

automation, 

decision 

algorithms 

Improve safety, 

accuracy, and 

environmental 

protection 

Faster, informed 

decisions and 

reduced human 

error 

Ensuring fault 

tolerance and 

resilience under load 

AI-based monitoring of tailings and slopes enhances predictive maintenance and early warning 

capabilities, reducing disaster risks. It ensures structural integrity through real-time data analytics but 

requires continuous calibration and trust in algorithmic outputs for critical decision-making. Although AI 

applications in tailings monitoring are highlighted, the effectiveness of these models should be supported 

with quantitative assessments. For instance, machine learning models analyzing piezometer and inclinometer 

data have achieved over 90% accuracy in predicting slope instability events, with false alarm rates reduced to 

less than 5%. Remote sensing-based AI models for deformation monitoring have also demonstrated 

scalability by processing terabytes of satellite imagery within hours, ensuring timely alerts. Such metrics 

convey the reliability of AI in high-risk applications and build confidence in its use for critical environmental 

monitoring. 

5. Digital twins and predictive ecosystem modelling 

Digital twins emulate physical mine systems as well as environmental processes and can be used to 

simulate the possible environmental impacts. Combined with AI, they can support scenario planning for land 

use, water balance and habitat, etc., thus facilitating eco-friendly decision-making. The automotive industry 

has used Digital Twin technology and it can be useful for simulation and data analysis  [45]. Real-time 

monitoring features in digital twins have saved customers in dollars, big time [46]. Digital twins offer city 

planners the ability to better understand and react to changes in local energy and environment [47]. Applying 

digital twins to productiveness for complex systems under dynamic contexts has the potential to provide 

actionable understanding across a variety of systems, such as farming to smart cities [48]. Digital twins can 

sense a city in real time and make future predictions, e.g. about infrastructure problems or traffic congestion 
[49]. The inclusion of AI and advanced analytics allows for the library of predictions to be improved upon, 

and there is the ability to incorporate this predictive information back to the original physical entity and test 

the expected outcome and make decisions more effectively [50]. 

  

Figure 4. Digital twins and predictive ecosystem modeling for environmental impact assessment in mining 
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AI can also help create predictive models of ecosystems, which can be used to assess long-term 

environmental repercussions of mining. These are based on a series of inputs that may include climate, 

hydrological and ecological data, and are used to model the complex relationships in ecosystems [40]. AI 

algorithms enable the identification of crucial ecological crossing points and the estimation of consequences 

of crossing these crossing points, providing a potential guidance to adaptive strategies towards measures to 

preserve biodiversity and ecosystem services. For instance, AI models predict how mining can affect 

endangered species, which guides conservation efforts and habitat restorations. 

Global digital twin market is expected to be worth $73.5 billion by 2027, which indicates that users 

from different domains realized the potential of digital twins [51]. The application of AI to digital twins 

provides promise for dynamic environmental monitoring and management in near real time. Digital twins 

can model a range of scenarios, enabling stakeholders to evaluate the environmental consequences of 

different mining plans, and to take better decisions [52]. Digital twins can be applied to urban planning to 

experiment with new ideas and minimize project risk. Digital twins can demonstrate how infrastructure 

projects will affect traffic, pollution and energy use. Figure 4 represents digital twins and predictive 

ecosystem modeling for environmental impact assessment in mining. 

While digital twins provide advanced capabilities for simulating and managing mining’s environmental 

impacts, their practical adoption also raises important technical considerations. One critical aspect is the 

computational requirement, as high-fidelity twins demand substantial processing power and storage capacity 

to run real-time simulations that integrate multi-source data from sensors, satellite imagery, and geospatial 

models. Equally important is interoperability with existing mining and monitoring systems, since many 

operations rely on legacy SCADA frameworks or proprietary software; ensuring smooth integration requires 

standardized interfaces and careful system design to avoid disruptions. Furthermore, the issue of data 

security and privacy becomes prominent when sensitive geological and environmental datasets are shared 

across platforms or cloud services. Breaches or unauthorized access could not only compromise operational 

efficiency but also expose environmental compliance data to misuse. Addressing these requirements through 

efficient computing strategies, open standards for interoperability, and robust data security frameworks will 

be essential for realizing the full potential of AI-enabled digital twins in sustainable mining. 

Digital twins are critical to the fusion of heterogeneous environmental information, such as sensor 

readings, satellite photos, and geological data into an integrated environment analysis platform [53-55]. This 

data can be processed by AI algorithms in real-time, capturing trends and patterns that would otherwise be 

hard to spot manually. This allows stakeholders to get a full view of the environmental conditions at a mine 

site and make well-informed decisions in order to reduce environmental damages. 

Digital twins combined with AI offer advanced capabilities in simulating and managing mining’s 

environmental impacts. They enable scenario-based planning and adaptive management. Their success 

depends on high-quality data integration, cross-disciplinary modelling, and transparency in predictions. 

6. Case studies and industry adoption 

a. Rio Tinto uses AI for predictive water management and dust suppression in Pilbara mines.  

b. BHP applies AI-powered drones and vision systems to monitor vegetation and soil degradation. 

c. Vale S.A. integrates AI with satellite data for real-time tailings dam surveillance. 

These examples demonstrate the real-world impact of AI in achieving environmental sustainability 

goals in mining. Real-world applications by major mining firms highlight the viability and impact of AI in 

sustainable environmental practices. These case studies validate the potential for industry-wide adoption, 

provided technological infrastructure and stakeholder cooperation are adequately supported. 
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7. Challenges and limitations 

In spite of the potential contribution of Artificial intelligence (AI) for effective and sustainable 

environmental practices in the mining, industry, there are number of barriers and challenges limiting its 

adoption and the application. While AI has great potential use for sustainable environmental management in 

mining, there are challenges and aspects that need to be addressed in order to guarantee for a responsible and 

successful application. The computing and training of AI systems is energy and resource consuming and 

may have an environmental impact on its own [56-60]. Thus, the need to develop energy-efficient AI 

algorithms and hardware is essential to reduce the environmental footprint of AI technologies. The 

environmental impacts from AI should be assessed in real-time, in a spatially disconnected manner around 

the globe, with significant points of activity. These can be mapped along technical, organizational, and 

regulatory dimensions in figure 5 and table 4.  

  
Figure 5. Challenges and limitations in adopting artificial intelligence for sustainable environmental management in mining 

7.1. Data scarcity and quality 

One of the primary barriers to AI implementation in mining is the lack of consistent, high-quality 

environmental data. Many mining sites, especially in remote or underdeveloped regions, operate with 

outdated monitoring tools or sparse sensor networks. Issues such as: 

 Incomplete datasets (e.g., missing records for emissions or water usage), 

 Inconsistent sampling frequencies, and 

 Sensor drift or calibration errors 

The above three points reduce the reliability of training data for AI models. Since AI systems—

especially deep learning algorithms—depend heavily on large, high-fidelity datasets, the absence of such 

data leads to biased, underperforming, or non-generalizable models, limiting their predictive power and 

trustworthiness. 

The challenge of data scarcity is exacerbated by the proprietary nature of mining data. To mitigate the 

problem of limited and inconsistent datasets in remote mining locations, several advanced approaches can be 

employed. Synthetic data generation using physics-based simulations or generative models can augment 

sparse datasets by creating realistic training samples that capture variations in environmental conditions, 

equipment performance, and geological parameters. Transfer learning offers another pathway, where pre-
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trained models developed in data-rich mining sites or analogous industrial settings are fine-tuned with 

limited local data, thus improving predictive performance without requiring large-scale datasets [61-68]. 

Additionally, federated learning enables collaborative model training across multiple mining sites without 

direct data sharing, preserving data privacy while expanding the diversity and representativeness of training 

inputs. These methods collectively strengthen model robustness, reduce biases introduced by scarce datasets, 

and enhance the generalizability of AI applications in remote or under-monitored mining operations. 

7.2. Computational costs 

Advanced AI models such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), 

or digital twin-based simulations require substantial computational power and storage capacity. Real-time 

monitoring systems that process multi-source data (from IoT sensors, satellite imagery, geophysical models, 

etc.) also necessitate: 

 High-speed data processing infrastructure, 

 Scalable cloud or edge computing capabilities, and 

 Skilled personnel to maintain these systems. 

These demands result in high capital and operational expenditures, making AI adoption challenging for 

small- to mid-scale mining enterprises with limited budgets. The energy consumption of AI models also 

poses environmental challenges, contributing to carbon emissions. A critical paradox emerges when 

considering the energy-intensive nature of AI systems against the very sustainability goals they are designed 

to advance. Training large-scale deep learning models, particularly those used in digital twin simulations or 

high-resolution image analysis can consume vast amounts of electricity and contribute to carbon emissions 
[69-75]. This issue is especially relevant in remote mining regions where power infrastructure is limited. To 

address this challenge, research has increasingly focused on energy-efficient AI frameworks, such as 

lightweight deep learning models optimized for edge computing, pruning and quantization techniques that 

reduce model complexity without compromising accuracy, and the use of specialized hardware accelerators 

like tensor processing units (TPUs) designed for low-power AI computations. In addition, green AI 

initiatives advocate for benchmarking models not only by accuracy but also by their energy consumption and 

carbon footprint, promoting transparency and accountability [76-82]. Incorporating such energy-conscious 

approaches ensures that AI-driven solutions for sustainability do not inadvertently undermine their 

environmental objectives [83-85]. This paradox of high computational energy use versus sustainability goals 

can be mitigated through energy-efficient AI frameworks, including lightweight deep learning models, 

pruning and quantization methods, and specialized low-power accelerators such as TPUs, which reduce 

energy demand without compromising accuracy. 

7.3. Integration with legacy systems 

Most mining companies rely on traditional monitoring tools and legacy software for environmental 

assessment. Integrating AI requires: 

 Digitization of analog processes, 

 Upgradation of data acquisition systems, 

 Interfacing new AI tools with existing SCADA systems, and 

 Training staff for new workflows. 

This integration process is time-consuming, complex, and costly, often requiring custom software 

development and retrofitting of equipment. Moreover, any downtime during the integration may affect 

ongoing operations, making organizations hesitant to initiate such transitions. 
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7.4. Model interpretability 

Many AI models, especially those using deep learning, operate as “black boxes”—providing 

predictions without clear reasoning or transparent decision-making logic. In the context of environmental 

management: 

 Regulatory bodies demand explanations for decisions affecting public health or ecosystems. 

 Stakeholders, including local communities and NGOs, expect accountability in pollution forecasts 

or land use decisions. 

 Engineers and environmental managers need to trust and validate the model outputs. 

Without interpretable AI, adoption remains limited due to the lack of confidence in model 

recommendations, especially in high-risk scenarios such as tailings dam monitoring or chemical discharge 

management. 

Interpretability concerns can be further linked to measurable performance evidence. While black-box 

models such as deep neural networks achieve high prediction accuracies (often above 90% for air quality and 

tailings monitoring), their lack of transparency limits regulatory acceptance. In contrast, interpretable models 

such as decision trees and regression frameworks offer slightly lower accuracies (typically in the 80–85% 

range) but provide clear justifications for outputs [86-92]. Discussing this trade-off between interpretability and 

predictive performance underscores the importance of developing explainable AI systems that balance 

accuracy, efficiency, and trustworthiness. The challenge of explain ability in deep learning models can be 

addressed through the application of Explainable AI (XAI) techniques tailored to mining and environmental 

contexts [93-103].  For instance, SHapley Additive explanations (SHAP) and Local Interpretable Model-

Agnostic Explanations (LIME) can be used to highlight the contribution of individual features, such as 

sensor readings or geospatial variables, in predicting outcomes like slope instability or water quality 

deterioration [104-108]. In addition, saliency maps and Grad-CAM methods applied to satellite imagery and 

remote sensing data can provide visual interpretations of why a convolutional neural network identifies 

particular zones as high risk [109-111]. Counterfactual explanations can further assist decision-makers by 

outlining the conditions under which a model would have predicted a safer environmental outcome, 

supporting proactive interventions. Integrating these XAI techniques not only improves trust in model 

outputs but also ensures compliance with regulatory requirements that demand transparent justification for 

predictions impacting ecosystems and local communities [112-114]. Explainable AI (XAI) methods such as 

SHAP, LIME, and saliency mapping can provide transparent reasoning for predictions in domains like 

tailings monitoring or satellite-based land assessment, helping regulators and stakeholders interpret results 

while maintaining high predictive performance. 

7.5. Ethical and regulatory concerns 

The deployment of AI in environmental decision-making raises critical ethical and regulatory issues: 

 Transparency: Models must disclose how they make predictions, especially when environmental 

risks are involved. 

 Bias and Fairness: Algorithms trained on unbalanced or outdated datasets may favor certain 

outcomes, leading to environmental injustice (e.g., overlooking pollution in marginalized 

communities). 

 Data Privacy: Environmental data may include sensitive geospatial information or community-

level impact details that require protection and secure handling. 

 Compliance: Regulatory frameworks for AI in mining are still evolving, and many jurisdictions 

lack clear standards for AI-enabled monitoring systems. 
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Ensuring that AI tools adhere to principles of responsible AI—including accountability, inclusiveness, 

and sustainability—is essential for their long-term acceptance and utility in the mining sector. 

Table 4. Challenges and limitations in AI adoption for environmental management in mining 

Sr. No. Challenge Area Key Issues Impact on AI Adoption 

1 Data Scarcity and Quality 

Incomplete datasets, inconsistent 

sampling, sensor errors, proprietary 

data restrictions 

Limits model reliability, leads 

to biased and 

underperforming systems 

2 Computational Costs 

High processing needs, energy 

consumption, infrastructure and 

skilled workforce costs 

Restricts use by small-scale 

miners, increases 

environmental footprint 

3 Integration with Legacy Systems 

Need for digitization, SCADA 

integration, workflow disruption, 

custom retrofitting 

Slows down modernization, 

increases cost and downtime 

4 Model Interpretability 

Lack of transparency in deep 

learning models, stakeholder trust, 

regulatory validation 

Reduces user trust, hinders 

acceptance in critical 

decision-making 

5 Ethical and Regulatory Concerns 

Transparency, bias, privacy risks, 

lack of legal standards, responsible 

AI principles 

Raises concerns on fairness, 

compliance, and long-term 

sustainability 

 

Despite AI's advantages, its adoption in mining is hindered by data limitations, high costs, legacy 

system integration, lack of interpretability, and regulatory gaps. Overcoming these barriers requires 

collaborative action, regulatory frameworks, transparent AI design, and inclusive technology governance. 

8. Future directions 

With the mining industry progressing in a direction of digitalization and sustainability, there are a few 

specific directions that have been identified as future trends in the use of AI in environmental management. 

The development of explainable AIs constitutes one of the most essential research challenges, in order to 

enhance transparency, trust, and responsibility in decision-making. These models would assist regulators, 

environmental scientists, and mining companies in interpreting the decision making process of AI, thus 

providing an avenue toward compliance and societal acceptance. Another tractable approach is based on 

federated learning methods, which allow for collaborative learning from models across all mining sites or 

companies in the absence of sharing sensitive/proprietary data, guaranteeing data privacy and security 

beyond corporate borders. 

Moreover, embedding AI into circular economy architecture has the potential to minimize mining 

waste, enhance materials recovery and optimize resource utilization throughout the mining value chain. 

These are all in line with the worldwide sustainability agenda to lower environmental footprints and enhance 

sustainable material flows. Finally, crowdsourced data and citizen sensing initiatives with local communities 

contributing real-time environmental observations can greatly enhance the granularity and relevance of 

datasets, particularly in remote and underserved areas. Such a participatory approach not only improves 

model accuracy but also contributes to the community and the environmental stewardship. 

Several pathways can be followed in order to go beyond the limitations at present and to exploit fully 

Artificial Intelligence’s potential for sustainable mining. The future studies regarding AI and sustainability 

should integrate systems dynamics methodologies, psychological, and sociological perspectives, multi-level 

views, economic value factors as well as design thinking to show AI can provide immediate solutions 

without harming environmental sustainability in the long run. Such energy efficiency-focused AI would not 

only be economically beneficial, an incentive rate being faithfully corresponding to its energy efficiency; 

however, it will also see more room for real efforts in ecological issues, to avoid the counterforce of 
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excessive model complexity escalating again. Concrete steps, such as establishing industry standards and 

policy-based regulation, and conceptual work on the relationships among sustainability-related effects are 

required to facilitate sustainable AI. The standardization of benchmarks and evaluation metrics customized 

for environmental applications in computer vision, which are mainly based on AI, is highly desirable. These 

benchmarks should be based on more than predictive accuracy, including computational cost, amount of 

data needed, and ethical considerations. The carbon footprint of the AI system must be reduced, according 

to business sustainability. In addition, priority should also be given to develop the AI systems which are not 

only accurate but also perform robustly across different geographical and geological settings. 

The company culture has a major influence on how artificial intelligence and sustainability are being 

used; an aspect called sustainable artificial intelligence, there is also a moral connotation. A systematic 

approach to the sustainability of AI: given the need to promote a sustainable use of AI, sustainability criteria 

should be incorporated in AI development and deployment processes, taking a holistic perspective on AI 

sustainability, and using a indicators-based approach to suggest and give insights on possible ways to the 

practical deployment of sustainable AI systems. The paradox of an energy hungry technology helping 

ecological issues is an important factor to consider when leveraging AI for sustainability, such as in 

developing sustainable production processes and in climate change. These concerns cannot be addressed by 

technology alone and require trans-disciplinary strategies to accommodate the wider social, economic and 

ethical implications of deploying AI in mining.  

Future advancements in AI for mining must focus on explainable AI, federated learning, and integration 

into circular economy frameworks. Cross-sector collaboration and sustainable design principles will be 

essential in ensuring AI delivers long-term ecological and operational value. 

9. Conclusion 

Artificial Intelligence has emerged as a transformative tool for advancing sustainability in the mining 

sector. By enabling real-time monitoring, predictive modelling, digital twin simulations, and optimization 

strategies, AI strengthens the industry’s ability to reduce environmental degradation, conserve resources, and 

comply with regulatory standards. Its integration into domains such as air quality, water resource 

management, soil restoration, energy optimization, and slope stability demonstrates measurable 

improvements, including higher predictive accuracy, cost savings, and reduced emissions. Despite these 

benefits, AI adoption in mining remains constrained by data scarcity, high computational demands, 

challenges of legacy system integration, and limited model interpretability. Addressing these barriers 

requires interdisciplinary collaboration, development of energy-efficient AI frameworks, explainable models, 

and transparent governance structures. In particular, ensuring inclusivity and ethical compliance will be 

central to building trust among regulators, industry stakeholders, and local communities. Looking forward, 

the incorporation of explainable AI, federated learning, and circular economy principles can further 

strengthen AI’s role in sustainable mining. If pursued with accountability, transparency, and sensitivity to 

ecological and social contexts, AI has the potential to shape a future where mining practices are both 

environmentally responsible and economically viable, achieving a balance that benefits industry, ecosystems, 

and society alike. 
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