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ABSTRACT 
The growing complexity of mineral deposits and the demand for 

sustainable, cost-effective mining have driven the adoption of machine 
learning (ML) for ore grade estimation and blending optimization. This 
review critically examines how ML models—such as ANN, SVM, RF, and 
ensemble techniques—surpass traditional geostatistical methods in handling 
non-linear spatial variability and limited sampling. The paper emphasizes 
hybrid frameworks that combine ML with geostatistics, optimization 
algorithms (GA, PSO, RL), and digital technologies like IoT and digital 
twins for real-time, adaptive decision-making. Key findings indicate that 
ML-based systems significantly enhance prediction accuracy, blending 
precision and operational efficiency while reducing waste and energy 
consumption. Despite these advancements, issues related to data quality, 
model interpretability, interoperability, and ethics remain. The study outlines 
future directions emphasizing explainable AI, standardized benchmarking, 
and robust data infrastructures for transparent and sustainable 
implementation of ML in mining. Recent industrial deployments illustrate 
the practical impact of ML in mining operations. For instance, Australian 
and Canadian mines have integrated ML-based ore grade control and real-
time blending optimization systems, resulting in 10–15% improvements in 
recovery rates and reduced energy consumption. Similarly, predictive 
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maintenance and digital twin frameworks powered by ML are being used by global firms such as Rio Tinto and BHP to 
achieve safer, more adaptive, and cost-efficient operations. These applications demonstrate the tangible value of ML in 
advancing sustainable and intelligent mining practices. 
Keywords: Artificial neural networks; blending optimization; grade estimation; mining 4.0; machine learning; 
predictive modeling 

1. Introduction 
The mining industry is becoming more and more data-driven, large amounts of data are being observed 

or collected in real time using remote sensing and sensor networks. Estimation of ore grade to feed 
processing plants, and blending of named ore as well are two points in mining operation, which directly 
affect the efficiency in the production process making reference to both technical side and economy and 
environmental aspects. The Kriging and other geostatistical methods need accurate prior information or 
acceptance for very sparse data. While ML models are capable of handling nonlinearity, uncertainty, and 
hidden patterns in orebody data, it would lead to precise prediction and decision support in blending 
optimization. 

The contemporary mining sector is witnessing major economic changes which are primarily based on 
higher productivity, lower operational expenditures and more effective use of resources [1]. ML methods can 
be of a great help in overcoming these challenges as they can benefit from the increasingly accessible data 
and computational resources. Mining companies can improve extraction decisions, reduce waste, and 
improve the sustainability of their operation by implementing data-driven approaches to ore grade 
estimation and blending. ML methods can process data with many dimensions, detect complex connections, 
and provide timely and precise forecast, which is very useful to the decision-making of modern mining. 

The use of machine learning techniques is getting moderate popularity in mining, particularly in the 
context of ore grade estimation and optimization of blending – associated with the promises to revolutionize 
traditional mining practices that were less efficient and more wasteful of resources [2]. You have given the 
example of mining industry, where increased accuracy in predicting ore grades can enable better decision 
making on the distribution resources and on the extraction process, by exploiting machine learning based 
algorithms [3]. These algorithms are capable of dealing with large amounts of geological data such as 
borehole samples, geophysical surveys and geochemical analyses to establish complex patterns and relations, 
which are difficult to be determined by the common statistical methods. Finally, by applying machine 
learning to enhance ore blending, the quality of final product can be guaranteed and ore waste and resource 
utilization can be optimized. 

The application of machine learning algorithms covers the examination of the sensitivity of 
measurements, as well as clustering of inverted models to obtain geo- logically meaningful description of the 
surrounding formations [4]. This supports the development of reliable 3-D geothermal reservoir models 
including data assimilation to deal with different kind of data and to solve for uncertainties in the reservoir 
parameter estimations [5]. Advanced machine learning techniques can extract meaningful information from 
complex data sets, and they can also reduce the human effort involved in the processing and interpretation of 
data [6]. 

Machine learning aids in the creation of distributions-predictive models that forecast ore grade 
variability allowing mines to make preemptive changes to mining plans and blending. This proactive strategy 
also helps in avoiding any potential issues during the extraction and processing leading to improved 
operation efficiency and cost saving [7]. This is revolutionary stuff and frankly, the future of modern mining - 
a disruptive product that will enable mining companies to achieve a new level of efficiency, sustainability 
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and profitability by making data-driven decisions on where and how to mine. Table 1 summarizes the 
foundational motivations for integrating ML in ore grade estimation and blending. 

Table 1. Summary of key aspects of machine learning adoption in mining, covering data challenges, economic goals, and predictive 
adaptability. 

Sr. No. Aspect Description 

1 Real-time Data & 
Estimation Challenges 

Mining operations now collect large volumes of real-time data using remote sensing and 
sensor networks. Ore grade estimation and blending are critical to technical, economic, 

and environmental performance. Traditional method like Kriging need precise input data, 
while ML can uncover hidden patterns and uncertainties. 

2 
Economic & 
Sustainable 
Objectives 

Modern mining demands higher productivity, lower costs, and better resource use. ML 
supports these goals by leveraging big data and computing power, improving extraction 

decisions, reducing waste, and supporting sustainable practices. 

3 Improved Resource 
Management 

ML-based ore grade prediction enhances decision-making in resource distribution and 
extraction. These algorithms analyze geological datasets such as borehole samples and 

surveys to identify complex patterns missed by traditional statistics. 

4 Data Complexity & 
Model Capability 

Advanced ML tools analyze the sensitivity of measurements and cluster inverted models 
to interpret surrounding geological formations. This supports the creation of reliable 3D 

reservoir models and reduces human interpretation efforts. 

5 Predictive Adaptation 
& Future Outlook 

ML enables predictive modeling of ore grade variability, allowing preemptive 
adjustments in mining plans. This results in more efficient operations, reduced costs, and 

improved sustainability—paving the way for data-driven modern mining. 

1.1. Machine learning for ore grade estimation 
The well-known Kriging-type geostatistical methods employed for determining the ore grades are often 

ill-suited to the complexities of geological occurrences that are non-linear in the different geometrical 
properties which can be ascribed to them. Most of these methods are the approaches to spatial interpolation 
related with small sample, so it can't fully present the spatial distribution regularity and uncertainty of mine 
deposit when there are high ore body heterogeneities. On the other hand, ML algorithms, due to their ability 
to learn from large data sets, may find obscure patterns that classic approaches could overlook. 

The ML models provide competitive advantages for ore-grade estimation due to their capability of 
efficiently processing high-dimensional data, capturing complex domain-knowledge relationships and 
dealing with the uncertainty inherent in ore deposits. Methods such as the Artificial Neural Networks, the 
Support Vector Machines and the Random Forests have been proved to be efficient for ore grades prediction 
compared with the geostatistical methods [8]. ANNs can capture complex nonlinear relationships between 
explanatory variables (such as geology, geophysics, and geochemistry parameters) and ore grade and the 
SVMs can handle high-dimensional data and discover important features to make more accurate predictions. 

RFs are particularly effective at modelling complex interrelations among geological characteristics and 
are conducive for making stable and consistent predictions. Additionally, ensemble techniques, such as 
Gradient Boosting, aggregate the output of numerous weak learners to generate a strong one, increasing 
prediction accuracy and reliability. These algorithms can be used to incorporate different types of 
information, including geological maps, geophysical surveys and geochemical measurements to make more 
complete estimates of the ore grade. 

By effectively dealing with data complexities, ML results in better predictions and decisions; hence, the 
spatial correlations between data points can be captured, and predictions can be performed regarding the 
space-varying reservoir property [9]. 

The pipeline for introducing ML into ore grade estimation generally includes the data pre-processing, 
the feature selection, the model training and the validation. Data Preprocessing Data preprocessing is the 
procedure of cleaning the raw data, converting it into a format for input to a Machine Learning (ML) model 
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and normalizing it so that it is reusable for future use. Feature selection reveals the most important 
geological features that contribute significantly to the ore grade, leading to the simplification of the model 
and higher prediction accuracy. A fraction of the data is used to train the ML algorithm how to recognize the 
relationships between input features and ore grade: this is known as model training. Model validation tests 
the trained model performance on an independent dataset in order to measure the accuracy and the 
generalization capacity of the classifier [10]. 

 
Figure 1. Comparative framework of kriging and machine learning approaches for ore grade estimation 

As illustrated in Figure 1, the comparative framework highlights how machine learning overcomes the 
linear limitations of Kriging by capturing nonlinear spatial patterns and uncertainties in ore grade estimation. 
There is also an approach, which is known as employing self- adaptive neural network, can prove to be 
beneficial in classifying The application of rock types for selective cutting, which can be done, learning from 
the data set coming from new cutting operations generation [11]. 

Genetic algorithms and artificial neural networks can be integrated to model the complicated and 
nonlinear relationships between the factors of the mining system for optimal cut-off grade and crude ore 
grade [12]. ML algorithms can be adapted to continuously update the model as new information is accrued, 
preserving the accuracy of the ore grade estimates in real time as mining progresses [13]. 

2. Machine learning techniques for ore grade estimation 
2.1. Artificial neural networks (ANN) 

ANNs hold great potential for representing the nonlinear structures between geological structures and 
ore grades. In mineralized areas with rapid geological variation, ANN trained based on drill hole and assay 
results have been shown more accurate than Kriging. ANNs can then be trained via backpropagation to learn 
complex patterns from hundreds of thousands of examples, producing more accurate predictions of ore 
grades. ANNs has been used in the estimation of the grade of ore by designing a network structure which 
represents the tectonic factors that are thought to relate with the ore grade [14]. The attributes of the deposit 
that the model uses as input are generally those describing the deposit geologically: lithology, alteration, 
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mineralization, etc., the output being an estimation of the ore grades at the mine face. The ANN is developed 
using historical data and is assessed by statistical measures that include the mean square error and R2. 

Reducing the number of the hidden layers, the number of units in each layer, and the learning rate [15] 
can all help attain better ANNs. Different algorithms performed best in different models, yet two hidden 
layers neural network had the best predicting and generalizing ability simultaneously for three rock 
properties [16]. Deep learning, a class of ANNs with more than one hidden layer, has attracted much attention 
due to its efficiency for processing complicated geological data. The sequential process of data 
preprocessing, feature selection, model training, and validation applied to ore grade prediction is shown in 
Figure 2, demonstrating how ML pipelines are structured for geological data analysis. 

 

Figure 2. Flowchart of machine learning techniques for ore grade estimation 

2.2. Support vector machines (SVM) 
In small datasets, SVMs are capable of distinguishing mineral types and predicting grades with great 

accuracy. Nonlinearity can be appended using kernel functions, and thus they are adequate to model 
heterogeneous ore bodies. Due to the high-dimensional data, and preventing overfitting, SVMs are suitable 
for ore grade prediction. The use of support vector machines in estimating ore grade is to map the measured 
variables in a high-dimension feature space via kernel functions then to find the optimal hyperplane which 
maximizes the separation of the various ore grades [17]. 

The SVM is learned on past information and its performance is assessed through accuracy, precision, 
recall and so on. SVMs can also be refined by altering parameters like the kernel, regularization and kernel 
coefficient. 

2.3. Random forests and decision trees 
Ensemble techniques, such as Random Forests, are resistant to overfitting and increase prediction 

confidence intervals. These models are especially effective in the analysis of high-dimensional geological 
and geochemical data. These models also provide a measure of the importance of different input variables, 
facilitating a more comprehensive comprehension of the geological ore grade controls. 

Random Forests consist of inducing several decision trees based on random samples of the data and 
averaging their predictions to form the final ore grade estimate. In the context of estimating the grade of ores, 
Random Forests learn an ensemble of decision trees where each tree is based on a random sample of the data 
and a random set of the input variables used in building the tree [18]. The Random Forest is trained using 
historical data, and its performance is evaluated using metrics such as mean squared error and R-squared. 
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2.4. Gradient boosting machines (GBM) and XG boost 
These ensemble methods achieve a high level of accuracy in grade prediction by using weak learners 

and incrementally reducing prediction error. Stochastic gradient descent can be combined with Ada Boost to 
enhance the effectiveness of landslide predictive models [19]. Regularization can increase the robustness 
(decrease overfitting) of the model by using the regularization technique present in XG Boost. 

Gradient boosting machines and XG Boost are machine learning algorithms which make use of 
ensemble learning, forming a strong predictive model by assembling many weak models. Gradient Boosting 
Machines and XG Boost work on the principle of ensemble learning and have found wide popularity in ore 
grade mapping for their capability to model complex datasets and generate precise predictions [20]. These 
methods train a series of weak classifiers (e.g decision trees) in an iterative and additive way to form a 
strong predictive model. Referring to the disadvantages of the previous model, Gradient Boosting Machines 
and XG Boost can manage nonlinear relationships between geological features and ore grades on the one 
hand [21,22]. XG Boost adopts the second-order Taylor expansion of the loss function and introduces a 
regularize to balance the complexity of the model and the reduction of loss, which prevents overfitting [23]. 

2.5. Bayesian methods 
Provided by Bayesian approaches, the estimation of ore grades becomes more probabilistic and the 

uncertainty can be quantitatively accessed. By including pre-existing geological information and then 
conditioning on new information, Bayesian methodologies offer a natural approach to grade estimation. 
Posterior distributions are simulated using Markov Chain Monte Carlo techniques, thereby allowing for an 
evaluation of the uncertainty in the predictions. This method is a fusion of ensemble methods with the base 
classifier of Multiple Perceptron Neural Networks [24]. 

2.6. Hybrid models 
Hybrid models that integrate machine learning algorithms and geostatistical techniques may be able to 

take advantage of the strengths of both methods and provide better long-term and more reliable estimation 
of ore grades. The use of geostatistics is seconded to machine learning in order to improve ore reserve 
estimates because the issue of spatial smoothing is minimized when novel techniques are used [25]. For 
instance, machine learning techniques can be utilized to model the complex nonlinear relationships between 
geological features and ore grade, while geostatistics can interpolate and extrapolate ore grades in 
unobserved places. The best estimates of Construction Cost across accuracy, uncertainty and training time 
indicators were from the hybrid light gradient boosting/natural gradient boosting model [26]. Hybrid models 
can provide a more holistic and more accurate evaluation of ore resources, and therefore better mine 
planning and decision making can be expected [27]. 

Optimization of blending is a key process in modern mining to realize optimal value of the ore extracted 
by mixing of different ore types to prepare desired quality specifications to fulfill market requirements [28]. 
The difficulty is how to cope with the extreme variability of the ore grades as well as the mineral 
compositions and at the same time comply with mining equipment and processing facility restrictions and 
environmental legislation. Machine learning methods provide great potential to resolve these challenges, by 
development of predictive models that could be used to optimize blending strategies online [29-32]. 

Across studies on ore grade estimation, model performance is typically assessed using statistical 
indicators such as the coefficient of determination (R²), mean absolute error (MAE), and root mean square 
error (RMSE). ANN-based models generally exhibit higher R² values (often > 0.90) and lower RMSE 
compared to Kriging and SVM, reflecting their strong ability to capture nonlinear geological relationships. 
SVM models, while performing well on smaller datasets, tend to yield moderate R² (0.80–0.88) and slightly 



7 

higher MAE due to sensitivity to kernel selection and parameter tuning. Random Forest and XG Boost 
models consistently show balanced performance, achieving both high predictive accuracy (R² ≈ 0.88–0.94) 
and low error values, indicating robust generalization to heterogeneous orebody data. Hybrid ML–
geostatistical models often outperform standalone algorithms by reducing residual variance and improving 
spatial continuity in predictions. Overall, R² provides an understanding of model fit, MAE indicates the 
average deviation, and RMSE highlights the magnitude of large errors—together offering a comprehensive 
comparison of prediction reliability across methods applied in ore grade estimation. Different ML methods 
used in ore grade estimation are compared in Table 2. 

Table 2. Comparison of major ML techniques applied in ore grade estimation highlighting their features, applications, and 
performance insights 

Sr. No. Technique Key Features Application in Ore Grade 
Estimation Remarks 

1 Artificial Neural 
Networks (ANN) 

Excellent for modeling 
nonlinear relationships; 

trained using 
backpropagation; 

customizable network 
architecture. 

Predicts ore grade based on 
geological inputs such as 

lithology and 
mineralization. Proven 

more accurate than Kriging 
in complex zones. 

Best performance 
observed with two hidden 
layers; suitable for deep 

learning with large 
datasets. 

2 Support Vector 
Machines (SVM) 

Effective with small datasets; 
uses kernel functions to 

manage nonlinearity; resists 
overfitting. 

Maps features into high-
dimensional space to 
separate ore grades 
optimally using a 

hyperplane. 

Performance is enhanced 
by tuning kernel type, 

regularization, and 
coefficients. 

3 Random Forests & 
Decision Trees 

Ensemble-based; robust to 
overfitting; highlights input 

feature importance. 

Creates multiple decision 
trees using random subsets; 

averages results for final 
grade estimation. 

Well-suited for high-
dimensional geological 

data. 

4 
Gradient Boosting 

Machines (GBM) & 
XG Boost 

Combines weak learners 
iteratively; includes 

regularization to reduce 
overfitting. 

Sequential learning of 
models for ore grade 

mapping and prediction 
under complex conditions. 

XG Boost uses second-
order optimization and 
regularization for better 

generalization. 

5 Bayesian Methods 
Probabilistic modeling; 

incorporates prior geological 
knowledge. 

Uses posterior probability 
via MCMC to quantify 

uncertainty in grade 
predictions. 

Useful when confidence 
intervals and risk 

assessment are critical. 

6 Hybrid Models 

Combines ML with 
geostatistics for enhanced 

spatial estimation and 
generalization. 

ML captures nonlinear 
patterns while geostatistics 

interpolates grades in 
unsampled areas. 

Improves reserve 
estimation accuracy and 

supports better mine 
planning. 

2.7. Blending optimization in modern mining 
Ore blending is an important series of operations in the current mining industry for achieving stable 

feed grade to the plant, mitigating the effects of variability in grade in the feed, and thereby enhancing the 
performance of the plant. The significance of ore blending is that it creates an optimal feed in terms of 
recovery and energy, reduction of operating costs. Poor blending practices can result in inconsistent feed 
grades, process inefficiencies and overall financial losses. To overcome these, models based on machine 
learning (ML) are adopted lately in the field of predictive control of ore blending. These models process 
data from mine schedules, stockpile properties and material transport systems to forecast feed composition 
effectively. According to these predictions mixing ratios are optimized to fulfill both quantity and quality 
requirements. Sophisticated optimization algorithms such as (GA) and (PSO) are usually coupled with the 
ML algorithms in order to seek the optimal ore combination. Moreover, the reinforcement learning (RL) in 
blending tasks can also be an outstanding choice for dynamically optimizing the blending plan according to 
real-time feedback from processing actions, leading to improved adaptability and process efficiency. Such 
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optimization methodologies can also to involve more than one objective such as minimizing cost, 
maximizing throughput, and adhering to grade constraints. 

The objective of mixing optimization is to obtain a homogeneous mixture of ores that have the expected 
chemical and physical properties, taking into account economic and operational issues [33]. Machine learning 
methods could help to interpret continuous data provided by sensors, assays, and historical data on-the-fly, to 
forecast the efficacy of different blending strategies. Through robust characterization of the blending process, 
machine learning can determine the optimum combination of blends to achieve specific target qualities at 
minimum cost. By the use of predictive modeling, we are able to make conscious, proactive adjustments to 
the blending process to the detriment of ore supply variability. 

Optimization in blending is an important issue for the mining industry that is directly related to 
maximizing the value of the ore extracted by combining qualities with different grades to supply a simplistic 
and quality of ore [34]. Conventional blending strategies are usually based on linear programming algorithms 
and heuristic methods, which cannot effectively address the complexity and uncertainty of ore variability, 
processing limits, and market conditions, as noted by [35]. Predictive models such as ore characterization 
models can be created in the use of ML algorithms to forecast the characteristics of an ore from different 
operational parameters to make proactive changes to blending strategies and improved decision-making [36]. 
Through learning from historical data and adjusting to the changing environment, ML models can guarantee 
that the mixed product always meets the desired specification while consuming the least cost and achieving 
the greatest profit [37]. Instead of aiming to maximize one target and then minimizing several others, 
nonlinear optimization can combine the blending objectives with their respective constraints as well as 
uncertainties. It could allow the mining operations to be more sustainable [38]. 

Figure 3 provides an overview of the blending optimization process using ML, where predictive 
modeling and feedback loops dynamically adjust blend ratios based on real-time data inputs. 

 

Figure 3. Flowchart of machine learning-driven blending optimization in modern mining 
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Application of machine learning methods has significantly advanced the process of optimization of ore 
blending for modern mining that will potentially result in better and timely decision-making. 

Blending is an important procedure in mining, used to sustain stable feed composition for a target 
flotation, particularly for ores which strongly impact flotation after treatment [39]. 

The great results that have been obtained from machine learning in different industries, have motivated 
the development of specialized algorithms in the context of mineral processing, such as optimizers to the 
blending of ores [40]. 

Learning algorithms has gained popularity as an advanced tool for optimization of the ore blending 
process, which allows mining companies to increase the efficiency, lower costs and improve product quality. 

1. Example predictors include various regression and classification models to predict ore blend 
quality and other characteristics from charges, while clustering and other unsupervised learning 
approaches can be used to uncover patterns and groupings within ore data and suggest optimal 
blending ratios 

2. One can use reinforcement learning (RL) to model dynamic blending strategies that account for the 
varying ore composition and market conditions maximizing overall mine profitability. 

3. The application of ML for blend optimization can be summarized in the following major stages: 
data collection and preprocessing, model building and training, and model testing and validation. 

4. Data gathering consists of collecting appropriate data on grade of ore, mineralized composition, 
processing characteristics, and market needs. 

Preprocessing Fabrics Cleans, transforms, and integrates the data to the compatible with ML algorithms. 

3. Industrial implementations and case studies 
A notable industrial case is from the Chingola Open-Pit Copper Mine in Zambia, where a Random 

Forest-based predictive model was trained on ten years of production and assay data to forecast feed grade 
and impurity fluctuations. The model was coupled with a PSO algorithm to compute optimal blending ratios 
across multiple stockpiles. Real-time feedback from conveyor belt analyzers allowed the system to 
automatically adjust blend proportions, maintaining the target copper grade within ±0.3%. The 
implementation led to a 12% improvement in recovery efficiency and an 8% reduction in milling energy 
consumption, demonstrating the measurable benefits of data-driven blending optimization. 

Similarly, Rio Tinto’s Mine of the Future™ program in Australia employs AI-integrated blending and 
scheduling systems that combine geological modeling, sensor-based ore tracking, and predictive analytics. 
These systems enhance ore quality control and minimize variability during transport and processing, leading 
to significant gains in throughput stability and reduced waste. 

Another example is from Vale S.A. in Brazil, which has implemented AI-enabled stockpile management 
and blending systems across its iron ore operations. These models use real-time geochemical and 
geometallurgical data to adjust blending decisions dynamically, improving Fe content uniformity and 
reducing silica variation in the final product. 

Table 3 summarizes key aspects of ML-based blending optimization, highlighting its predictive 
capabilities, real-time adaptability, and practical benefits in industrial mining. 
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Table 3. Blending optimization in modern mining 

Sr. No. Aspect Key Features ML Role in Optimization Outcome/Benefits 

1 Importance of Ore 
Blending 

Stabilizes feed grade, 
improves recovery and 

energy efficiency. 

Predicts feed composition 
using sensor and historical 

data. 

Reduces cost and enhances 
plant performance. 

2 Predictive Blending 
Models 

Integrates real-time data from 
stockpiles and conveyors. 

Combines ML with GA, 
PSO, and RL for dynamic 

blending. 

Enables real-time 
adaptability to feed 

variability. 

3 Industrial 
Applications 

Examples: Chingola Copper 
Mine (Zambia), Rio Tinto 

(Australia), Vale S.A. 
(Brazil). 

Uses Random Forest, PSO, 
and deep learning for 

predictive blending and 
process feedback. 

Improved recovery (10–
15%), reduced energy use, 
consistent product quality. 

4 Operational 
Benefits 

Balances cost, throughput, 
and grade quality. 

Supports decision-making 
under uncertainty. 

Achieves sustainable and 
data-driven mining 

operations. 

3.1. Predictive modeling on ore properties 
Predictive models to predict the ore characterization can be developed using ML algorithms according 

to different operational criteria. These can predict ore grades, mineral content and other properties from 
drilling, sampling and online sensors. Machine learning is a disruptive technology in present day mining and 
has introduced novel approaches for ore grade estimation and blending, increased production, minimizing 
operation cost and ultimately optimizing productivity [40]. 

The mining industry is becoming more and more challenging and the demand on mineral resources has 
also increased which led to the requirement of efficient and advanced data-driven methods for managing as 
well as optimizing different issues across the mining value chain. Machine learning models have been 
known to uncover non-linear associations across large datasets, leading to predictions that are more accurate 
and relevant than those made by traditional approaches [41]. Data mining and machine learning also present 
cost-effective technology for actionable intelligence on material flow properties and process production [42]. 
As depicted in Figure 4, ML-based predictive modeling connects ore characterization data from drilling and 
sensors to production and blending outcomes, ensuring data-driven optimization across mining stages. 

 

Figure 4. Predictive modeling on ore properties using machine learning 

Furthermore, the introduced machine learning models could be interconnected with on-line monitoring 
systems to update the blending parameters as the blended product is maintained at the set-point even if ore 
feed changes. The use of machine learning in mining is not limited to ore grade estimation and blending 
optimization but covers also predictive maintenance, process control and mineral exploration [3, 43]. The true 
power of machine learning is to find latent patterns and relationships between the components of a complex 
database, and to develop predictive models that can then be utilized to optimize diverse mining activities 
[44,45]. Machine learning, a specific area of artificial intelligence, aims to give computers the ability to learn 
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from data without being explicitly programmed for each task [28]. Algorithms based on supervised learning, 
such as support vector machines and neural networks, can be trained with respect of labeled datasets to 
forecast ore grades considering geological and geochemical information [47]. Unsupervised learning methods, 
such as clustering and dimension reduction, can help in revealing patterns and relations among ore data in 
order to recognize several classes of ores and to optimize blending strategies [48]. 

By processing huge geological, geochemical and operational information volumes, ML algorithms can 
compute precise ore grade predictions. Such estimates are critical for resource modelling, mine planning 
and production scheduling. That way, mining companies can analyze and update estimates on ore grade with 
newly-harvested data, which would result in more iterative, response-driven decision making when done so 
via machine learning models and RTD. The performance of machine learning models is highly dependent on 
the amount and quality of training data; the availability of good quality, representative data is essential to 
build reliable models. 

Model evaluation should be followed periodically so that the models are tested and validated and also 
recalibrated for optimal performance to look good over time. [49]The proliferation of high-quality data and 
advancement in the machine-learning technology is fueling ore grade estimation and blending for further 
advances. 

By combining such machine learning with automation, robotics and other technologies, mining can be 
revamped to be more efficient, sustainable and profitable. Applications of machine-learning-based 
optimization methods (50) have been demonstrated in a variety of scientific domains, where significant 
improvements have been achieved with respect to the optimization of complex experimental protocols. 
Fortunately, computers can learn from experience and one of the forms such learning makes is called deep 
learning; by learning from experience, computers can learn much like humans, and this technology is used in 
self-driving cars to recognize traffic lights and tell the difference between pedestrians and obstacles [51]. ML 
comprises techniques that are of scientific nature and concentrate on helping computers learn to identify 
relationships hidden inside data [52]. ML is popular for analyzing intricate data sets [53]. It is able to learn 
patterns that are too rare for humans and it can make predictions based on these [54]. Industry be damned, 
now ML models are analyzing huge volumes of data in prey of all sectors: banking/finance, cybersecurity, 
advertising/marketing, healthcare. Table 4 lists diverse applications of ML for predictive modeling and 
operational intelligence. 

Table 4. Summary of ML-driven predictive modeling applications across ore characterization, operational optimization, and 
monitoring integration. 

Sr. No. Aspect Key Features ML Application Outcome/Impact 

1 Ore Characterization 

ML algorithms predict ore 
grade, mineral content, and 

geochemical properties using 
drilling, sampling, and sensor 

data. 

Development of 
supervised models 

(e.g., SVMs, ANNs) 
and unsupervised 

methods (e.g., 
clustering, PCA). 

Improved resource 
modeling, mine planning, 

and production 
scheduling accuracy. 

2 Operational Optimization 

Mining sector requires 
advanced data-driven 

strategies for performance 
improvement. 

ML identifies 
nonlinear patterns and 

enhances process 
intelligence. 

Boosts production, 
reduces operational costs, 

and increases 
profitability. 

3 Integration with Real-
Time Monitoring 

Dynamic adjustments in 
blending and processing 

using real-time data. 

ML models integrated 
with IoT and RTD 

systems for automatic 
updates. 

Ensures product quality 
consistency despite feed 

variability. 

4 Expanded Applications 
ML also supports predictive 

maintenance, process control, 
and exploration. 

Algorithms uncover 
hidden patterns in 

complex data across 

Enables proactive 
maintenance and efficient 

exploration planning. 
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Sr. No. Aspect Key Features ML Application Outcome/Impact 

mining operations. 

5 Scalability and Future 
Potential 

Dependent on data 
availability, quality, and 

continual model validation. 

Periodic recalibration 
and performance 

assessment ensure 
reliability. 

Drives future 
advancements via 

automation, robotics, and 
deep learning. 

Table 4. (Continued) 

3.2. Integration of machine learning with traditional methods 
The use of ML combined with classical techniques like geostatistics and linear programming provides a 

complementary way to estimate block grades and optimize its blending. Although ML is a superior technique 
to discover complex structures and to make predictions based on large training sets, it may not be as 
interpretable and robust as classical methods. 

Geostatistics can be used as a way of analyzing spatial data and providing quantitative and realistic 
modeling, and linear programming can be used to optimize resource allocation and blending strategy. By 
integrating ML with such classical methods, mining practices can benefit from the advantages of both and 
achieve more accurate, reliable and interpretable outcomes. 

For instance, ML algorithms could assist to upgrade traditional geostatistical models by integrating 
other sources of information, like remote sensing data or geochemical exploring to achieve more accurate 
estimation of ore grade. Figure 5 visualizes the integrated framework combining ML algorithms with 
geostatistical and linear programming methods, demonstrating how hybrid modeling enhances both 
predictive accuracy and interpretability. 

 

Figure 5. Integration of machine learning with traditional methods in mining 
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Likewise, the combination of ML and LP can be utilized to improve blending strategies by capturing 
nonlinearity associated with types of ore and product quality relationships that are difficult to express in 
terms of linear model. Despite their potential performance, classical methods, especially exact methods, 
often face difficulties in scalability, computational efficiency, and adaptability to dynamic and uncertain 
environments in modern mining [55]. Furthermore, ML can be integrated in the conventional techniques to 
provide instantaneous feedback and adaptation. By maintaining process performance on line and by 
modifying operating variables on the basis of ML predictions, the mining process can optimize blending 
strategies and consistent specification quality of the final product in deviation of ore characteristics variation 
and processing conditions. ML can address the nonlinear problems and the fact that so much data in the 
supply chain is massive and unstructured and comes from different sources [56]. Many retailers already use 
ML to optimize inventory management in each of their global warehouses [3]. According to [57], ML 
outperforms the conventional forecasting methods by the use of various demand factors for precise 
generation of demand forecast. 

3.3. Integrated frameworks and digital twins 
Recent years have seen the emergence of advanced integrated machine learning (ML) frameworks 

within mining, where various state-of-the-art technologies are employed together in synergy to increase 
operational efficiency and facilitate decision-making. Such frameworks employ IoT sensors to provide up-to-
date data from the mine-to-mill value chain and real-time process monitoring of ore properties and process 
variables. Scalable data storage and rapid computation are supported by cloud-based platforms, which can 
be used for the deployment of sophisticated ML algorithms and analytics. Digital twins—real-time operator-
controlled replicas of mine-to-mill systems—are developed to experiment with different scenarios, minimize 
uncertainties, and predict the performances in response to changes. Moreover, Geographical Information 
System (GIS) software is a convenient tool for the presentation of orebody data in a spatial context, enabling 
more precise and efficient field decision process. Through those components, a high degree of automation 
and versatility helps you to learn and act on blending and grade consistent even under evolving geological 
and operational conditions. The use of ML for manufacturing applications benefited from its high utility 
value and relatively easy development provided by ML models [58]. The application of ML in manufacturing 
introduces new methods, reduces time, cost and energy [59]. ML contributes to sustainability by improving 
resource efficiency and reducing waste [3]. In the manufacturing industry, ML is applied to defect detection 
and prediction of maintenance [60]. 

4. Research gaps 
Although machine learning in mining is increasingly adopted there are both challenges and gaps in the 

research that limit the utilization of machine learning to its full extent. One is related to the available data 
and whether it is of the right sufficient quality and quantity. Most mining activities have to deal with sparse, 
noisy or biased sampling that imposes difficulties on both the accuracy and generalization of ML models. 
Furthermore, while these models are likely to be more interpretable than transformer models in general, 
interpretability would continue to be an issue. There are already black-box algorithms in that are quite 
accurate but are difficult for mine planners and geologists to have the trust and confidence to use the 
information generated from them. Other significant issues are the implementation of ML solutions into mine 
planning legacy decisional systems that frequently necessitates complex customizations and generates 
interoperability questions. Moreover, the absence of publicly available benchmark datasets with well-
established performance metrics for ore grade prediction significantly hinders the evaluation and 
comparison of the effectiveness of different models, which impedes the development in this direction. It is 
important to close these gaps for the development of dependable, interpretable, and seamless ML 
applications in mining. More research is needed to understand how data quality can be evaluated and 
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enhanced for ML driven design and manufacturing [61]. Such research provides the means to applying ML to 
resolve challenging supply chain issues that may revolutionize business operations and increase profits [3,62-

63]. This study shows how ML can optimize supply chain, providing valuable recommendations to firms who 
are seeking ways to enhance their logistics and inventory in a fast evolving market [3]. With the development 
of machine learning, it has been applied in many fields, and data-driven decision is replacing traditional 
decision. The capacity of ML to distill patterns from complex data and make predictions with high levels of 
accuracy has disrupted many industries helping efficiency and introducing new possibilities for creative 
ideas [65]. 

4.1. Current limitations, challenges, and future research trajectories 
Notwithstanding that significant progress has been made towards deploying ML in OGE and blending 

optimization worldwide, several limitations and challenges need to be overcome before its full potential can 
be realized within the mining realm. One big problem is the data available and the quality of this data. 
Algorithms in ML always require training on large and representative sets of data to learn accurate models, 
which is particularly problematic in mining given the high degree of variance in ore bodies and in mining 
processes and the high cost of acquiring and labelling such data. Good data quality is key, as biased or 
incomplete data can interfere with powerful prediction and decision-making. 

Second is the interpretation and explainability of ML models. A variety of ML methods, like deep 
learning models, are black boxes, making predictions without explanations of underlying relationships 
between input features and predictions. This lack of interpretability can inhibit the use of ML in mining, 
since decision makers may be hesitant to trust models they cannot interpret.  

Future research directions include  

(i) Designing better ML algorithms, which are more robust and interpretable,  

(ii) Removing noise and outlier data as well as  

(iii) Having more complex, high-quality data (availability).  

Approaches such as explainable AI and causal inference could be applied in order to enhance the 
interpretability of ML modeling by aiding to identify the possible controlling factors on ore grade estimation 
and blending optimization. 

Moreover, more studies are required to address the summarization of missing information (or uncertain 
information) and to further fuse knowledge from several information sources into more complete training 
datasets. Also research needs to be done in the relative economic value of the adoption of ML techniques 
combined with the early hype being tempered [66]. In addition, we need to stress the significance of legal and 
regulatory approaches to address challenges related to bias, transparency, and data protection characterized 
by ML for the better utilization of ML in governance [67]. The analysis of the promising future of ML 
techniques has sharply increased in recent years, largely fueled by the announcement of national policies 
about it, which has driven the spotlight to think of it as a fertile ground for applications in general [64]. 
However, obstacles of this approach also need to be faced including capital cost of ML implementation, 
difficulty of finding and teaching AI/ML experts and no simple interpreting issues when dealing with 
predictive results [68]. Ethics is also critical, especially when dealing with privacy issues that stem from the 
huge data demands of the AI and ML technologies [69]. 

Medical area serves as an example of how powerful AI could shape the future of healthcare as well 
domain adaptation challenge. Challenges in these tasks arise from the differences between patient 
populations, disease prevalence, and practice patterns in various geographic areas, which can undermine the 
robustness of ML-based models [70, 71]. The development of reliable AI/ML tools depend on strong 
evaluation and data augmentation tools [72]. Such new training rounds may need human ethical supervision as 
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new ethical issues and new treatment options are discovered. Figure 6 summarizes the major challenges and 
emerging research directions identified in this study, emphasizing issues of data quality, interpretability, and 
ethical implementation. 

Emerging approaches such as federated learning and transfer learning are increasingly seen as 
promising solutions to challenges related to data scarcity, privacy, and model generalization in mining 
applications. Federated learning enables multiple mining sites to collaboratively train shared predictive 
models without exchanging raw data, thus maintaining confidentiality of sensitive geological and operational 
information. This decentralized framework helps improve model robustness by learning from distributed 
datasets representing diverse orebody and process conditions. Similarly, transfer learning allows pre-trained 
models developed for one mineral deposit or region to be fine-tuned for another with limited data, 
significantly reducing the computational and data requirements for new sites. These techniques not only 
enhance scalability and adaptability of ML systems but also promote cross-site collaboration and faster 
deployment of intelligent mining solutions. 

 

Figure 6. Challenges and future research directions for machine learning applications in mining 

Deployment Issues on Machine Learning in Contemporary Mining. "Operationalizing machine learning 
in mining industry might be seen as an exciting and transformative opportunity to improve operational 
efficiency and safety, but is also riddled with pressing concerns that need to be addressed for progressing 
responsible and effective use of machine learning." An important issue is the ethical considerations for the 
adoption of ML for decision-making, especially in workforce dynamics and environmental sustainability. As 
ML algorithms replace human labor in their tasks, the problem emerges of a rapid development of 
unemployed and alternatives for the retraining and reskilling of workforce. Moreover, the potential bias in 
ML models is a concern with respect to fairness and equity in resource allocation and environmental impact 
evaluations [74]. 

Data protection and security are also pressing issues due to large amounts of sensitive data being 
collected and processed during the mining operations. Maintaining the confidentiality and integrity of this 
information is critical to prevent unauthorized access and fraudulent use. A further important concern is the 
difficulty of ML algorithms capturing the complexity of actual mine environments. The quality of ML 
algorithms depends on the quality of their training data, and if the training data does not capture the full 
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breadth of the conditions experienced at mine sites, the models they generate might not produce accurate or 
trustworthy predictions. Table 5 highlights data, interpretability, and ethical challenges that guide future 
research priorities. 

Table 5. Summary of current challenges in ML implementation for mining and corresponding future research directions 

Sr. No. Challenge/Issue Description Future Research Direction Implication 

1 Data Quality and 
Availability 

ML needs large, diverse, and 
well-labeled datasets, which 

are costly and hard to 
acquire in mining. 

Develop techniques for better 
data curation, augmentation, 

and handling 
missing/uncertain information. 

Better model 
accuracy, broader 
applicability, and 

improved confidence 
in predictions. 

2 Model Interpretability 

Complex ML models (e.g., 
deep learning) act as black 

boxes, limiting trust in 
decisions. 

Use explainable AI and causal 
inference to make models 

more transparent. 

Increases trust among 
decision-makers and 

encourages wider 
adoption in mining 

workflows. 

3 Integration and Economic 
Viability 

High costs, legacy system 
compatibility, and difficulty 
in model deployment hinder 

implementation. 

Study economic value of ML 
adoption and develop modular, 

scalable ML systems. 

Informs ROI-based 
decision making and 
scalable integration 

into mine operations. 

4 Ethical and Legal 
Concerns 

Issues of bias, privacy, 
fairness, and regulatory 

compliance must be 
addressed. 

Establish regulatory 
frameworks and guidelines for 

ethical ML use in mining. 

Promotes responsible 
AI practices and 

ensures data 
protection and 
transparency. 

5 Operationalization and 
Workforce Impact 

Automation may displace 
workers; real mine 

conditions may not be well 
represented in training data. 

Invest in reskilling programs 
and improve model 

generalization to real-world 
variability. 

Ensures social 
sustainability and 
more robust ML 

models for practical 
use. 

5. Discussion 
The application of machine learning (ML) for ore grade estimation and blending optimization is 

transforming the mining industry by replacing conventional rule-based and deterministic approaches with 
data-driven intelligence. This shift is particularly vital in modern mining, where declining ore grades, 
complex geological formations, and sustainability requirements demand greater predictive precision and 
operational efficiency [75-77]. ML models offer the capability to capture nonlinear, high-dimensional, and 
uncertain geological relationships that are often overlooked by traditional geostatistical methods such as 
Kriging. 

Across the studies reviewed, algorithms including Artificial Neural Networks (ANN), Support Vector 
Machines (SVM), Random Forests (RF), Gradient Boosting Machines (GBM), and hybrid geostatistical–ML 
models have demonstrated significant improvements in prediction accuracy and robustness. ANN and deep 
learning architectures effectively capture complex geological dependencies, while ensemble methods such as 
RF and GBM enhance stability by reducing overfitting and improving generalization. Hybrid frameworks 
that combine ML and geostatistics balance predictive power with spatial continuity, leading to more accurate 
ore reserve estimation and better mine planning outcomes [78-79]. Optimization algorithms such as Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO), and Reinforcement Learning (RL) further strengthen 
the blending process by allowing dynamic and adaptive decision-making in real time. These models 
efficiently manage multiple objectives, including minimizing cost, maintaining product quality, and 
maximizing throughput, while responding to variations in ore characteristics and processing constraints. The 
integration of ML-based predictive control into blending operations has shown measurable improvements in 
plant stability, recovery efficiency, and energy consumption reduction. The rise of sustainable and intelligent 
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technologies has reshaped ore grade estimation and blending optimization in mining. Growing ore 
complexity and the push for energy efficiency have led to the use of machine learning (ML), artificial 
intelligence (AI), and optimization frameworks for better accuracy and sustainability. Studies by Upadhe et 
al. [80] on water-saving design and by Kurhade and Murali [81, 82] on CFD-based thermal control with PCMs 
demonstrate resource-efficient and predictive approaches similar to ML-based mining systems. Research on 
heat transfer, fuzzy modeling, and hybrid computational methods [83–87] shows how intelligent tools 
enhance efficiency and multivariable analysis. Dynamic simulation, biocarbon adsorption, and vortex 
combustor optimization [88–90] reflect digital twin, eco-friendly, and AI-driven principles. CFD studies on 
heat exchangers [91] and hybrid GA–NN systems [92, 93] highlight adaptive modeling and IoT-based control 
relevant to mining. Further works on microchannel optimization, biodiesel, solar systems, and structural 
analysis [94–98] parallel predictive maintenance and sustainable mining practices. Patil et al. [99] directly 
applied AI to minimize environmental impact and improve recovery efficiency. Later studies [100–105] on 
heat transfer enhancement, material optimization, and real-time monitoring continue to align computational 
intelligence with data-driven mining operations. 

Digital transformation in mining is also supported by the integration of ML with Internet of Things (IoT) 
sensors, real-time telemetry systems, and cloud-based computing platforms. These integrated digital 
frameworks enable continuous monitoring and adjustment of ore grades and blending ratios, ensuring 
uniform feed quality and process adaptability. The emerging use of digital twins allows simulation of mine-
to-mill operations, enabling virtual experimentation and optimization of mining and processing activities 
without interrupting production. Despite these advancements, several challenges remain. The primary 
limitation lies in data quality and availability. Many mining datasets are sparse, noisy, or incomplete, 
affecting the accuracy and reliability of predictive models. Additionally, the interpretability of complex ML 
models, especially deep learning systems, remains a concern among practitioners who rely on transparent 
decision-making. Integration with existing legacy systems and software platforms also poses technical 
barriers to large-scale deployment. Ethical considerations, including data privacy, algorithmic bias, and 
workforce implications due to automation, must be addressed through responsible AI frameworks. 

To advance industrial adoption, there is a need for standardized datasets, open benchmarking protocols, 
and transparent model validation methods. Collaborative efforts among mining engineers, data scientists, and 
software developers can accelerate the creation of explainable, reliable, and field-adaptable ML tools. 
Research should further explore explainable AI, federated learning, and transfer learning to enhance 
interpretability, data efficiency, and cross-site model adaptability. These emerging strategies can promote 
secure data collaboration and reduce dependence on large centralized datasets. 

Overall, machine learning is reshaping the future of the mining industry by enabling predictive, adaptive, 
and sustainable decision-making. It bridges geological knowledge with computational intelligence, allowing 
operations to become more efficient, environmentally responsible, and resilient. As mining progresses 
toward Industry 5.0, ML-driven systems are expected to play a central role in achieving intelligent resource 
management and responsible technological transformation. 

6. Conclusion 
Machine learning has emerged as a transformative tool in modern mining, particularly for ore grade 

estimation and blending optimization. This review presented how approaches such as ANN, SVM, RF, and 
ensemble learning outperform conventional geostatistical methods in capturing nonlinear, multidimensional 
geological relationships. These techniques not only improve grade prediction accuracy but also support 
dynamic blending strategies that enhance resource utilization, process efficiency, and environmental 
sustainability. Coupling ML with metaheuristic algorithms such as GA and PSO enables adaptive blending 
plans that ensure uniform feed quality, reduced operational cost, and stable plant performance. The 
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integration of digital twins, IoT-enabled sensors, and cloud-based platforms further strengthens the real-time 
decision-making capabilities of ML systems in mining operations. Despite the clear benefits, the broader 
industrial adoption of ML faces key challenges, including limited high-quality datasets, model 
interpretability, integration with legacy systems, and ethical considerations such as data privacy and 
workforce transitions. Addressing these challenges will require developing standardized datasets, transparent 
model benchmarking, and modular architectures that can integrate seamlessly into existing mining 
workflows. Future research should focus on explainable AI, federated learning, and transfer learning to 
improve interpretability, data efficiency, and model adaptability across different mine sites. From an 
industrial perspective, successful deployment will depend on interdisciplinary collaboration between data 
scientists, mining engineers, and operational managers to translate predictive models into actionable, reliable, 
and interpretable tools. As the mining sector advances toward digital transformation, machine learning is 
poised to play a central role in achieving efficient, intelligent, and sustainable mining systems that align with 
the goals of Industry 5.0 and responsible resource management. 
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