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The growing complexity of mineral deposits and the demand for
sustainable, cost-effective mining have driven the adoption of machine
learning (ML) for ore grade estimation and blending optimization. This
review critically examines how ML models—such as ANN, SVM, RF, and
ensemble techniques—surpass traditional geostatistical methods in handling
non-linear spatial variability and limited sampling. The paper emphasizes
hybrid frameworks that combine ML with geostatistics, optimization
algorithms (GA, PSO, RL), and digital technologies like IoT and digital
twins for real-time, adaptive decision-making. Key findings indicate that
ML-based systems significantly enhance prediction accuracy, blending
precision and operational efficiency while reducing waste and energy
consumption. Despite these advancements, issues related to data quality,
model interpretability, interoperability, and ethics remain. The study outlines
future directions emphasizing explainable Al, standardized benchmarking,
and robust data infrastructures for transparent and sustainable
implementation of ML in mining. Recent industrial deployments illustrate
the practical impact of ML in mining operations. For instance, Australian
and Canadian mines have integrated ML-based ore grade control and real-
time blending optimization systems, resulting in 10-15% improvements in

recovery rates and reduced energy consumption. Similarly, predictive
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maintenance and digital twin frameworks powered by ML are being used by global firms such as Rio Tinto and BHP to
achieve safer, more adaptive, and cost-efficient operations. These applications demonstrate the tangible value of ML in
advancing sustainable and intelligent mining practices.

Keywords: Artificial neural networks; blending optimization; grade estimation; mining 4.0; machine learning;

predictive modeling

1. Introduction

The mining industry is becoming more and more data-driven, large amounts of data are being observed
or collected in real time using remote sensing and sensor networks. Estimation of ore grade to feed
processing plants, and blending of named ore as well are two points in mining operation, which directly
affect the efficiency in the production process making reference to both technical side and economy and
environmental aspects. The Kriging and other geostatistical methods need accurate prior information or
acceptance for very sparse data. While ML models are capable of handling nonlinearity, uncertainty, and
hidden patterns in orebody data, it would lead to precise prediction and decision support in blending
optimization.

The contemporary mining sector is witnessing major economic changes which are primarily based on
higher productivity, lower operational expenditures and more effective use of resources '), ML methods can
be of a great help in overcoming these challenges as they can benefit from the increasingly accessible data
and computational resources. Mining companies can improve extraction decisions, reduce waste, and
improve the sustainability of their operation by implementing data-driven approaches to ore grade
estimation and blending. ML methods can process data with many dimensions, detect complex connections,
and provide timely and precise forecast, which is very useful to the decision-making of modern mining.

The use of machine learning techniques is getting moderate popularity in mining, particularly in the
context of ore grade estimation and optimization of blending — associated with the promises to revolutionize
traditional mining practices that were less efficient and more wasteful of resources ?!. You have given the
example of mining industry, where increased accuracy in predicting ore grades can enable better decision
making on the distribution resources and on the extraction process, by exploiting machine learning based
algorithms Bl These algorithms are capable of dealing with large amounts of geological data such as
borehole samples, geophysical surveys and geochemical analyses to establish complex patterns and relations,
which are difficult to be determined by the common statistical methods. Finally, by applying machine
learning to enhance ore blending, the quality of final product can be guaranteed and ore waste and resource
utilization can be optimized.

The application of machine learning algorithms covers the examination of the sensitivity of
measurements, as well as clustering of inverted models to obtain geo- logically meaningful description of the

4l This supports the development of reliable 3-D geothermal reservoir models

surrounding formations
including data assimilation to deal with different kind of data and to solve for uncertainties in the reservoir
parameter estimations P!, Advanced machine learning techniques can extract meaningful information from
complex data sets, and they can also reduce the human effort involved in the processing and interpretation of

data ],

Machine learning aids in the creation of distributions-predictive models that forecast ore grade
variability allowing mines to make preemptive changes to mining plans and blending. This proactive strategy
also helps in avoiding any potential issues during the extraction and processing leading to improved
operation efficiency and cost saving 7). This is revolutionary stuff and frankly, the future of modern mining -
a disruptive product that will enable mining companies to achieve a new level of efficiency, sustainability



and profitability by making data-driven decisions on where and how to mine. Table 1 summarizes the
foundational motivations for integrating ML in ore grade estimation and blending.

Table 1. Summary of key aspects of machine learning adoption in mining, covering data challenges, economic goals, and predictive
adaptability.

Sr. No. Aspect Description

Mining operations now collect large volumes of real-time data using remote sensing and
Real-time Data & sensor networks. Ore grade estimation and blending are critical to technical, economic,
Estimation Challenges and environmental performance. Traditional method like Kriging need precise input data,
while ML can uncover hidden patterns and uncertainties.

Economic & Modern mining demands higher productivity, lower costs, and better resource use. ML
2 Sustainable supports these goals by leveraging big data and computing power, improving extraction
Objectives decisions, reducing waste, and supporting sustainable practices.

ML-based ore grade prediction enhances decision-making in resource distribution and
Improved Resource

3 extraction. These algorithms analyze geological datasets such as borehole samples and

Management ” . . I, .

surveys to identify complex patterns missed by traditional statistics.
. Advanced ML tools analyze the sensitivity of measurements and cluster inverted models
Data Complexity & . . . . . . .
4 i to interpret surrounding geological formations. This supports the creation of reliable 3D
Model Capability ; . .
reservoir models and reduces human interpretation efforts.
_ . ML enables predictive modeling of ore grade variability, allowing preemptiv
Predictive Adaptation . ¢ .b es P! cdictive O(.ie gotore s de . bility, OWINE precmptive

5 adjustments in mining plans. This results in more efficient operations, reduced costs, and

& Future Outlook improved sustainability—paving the way for data-driven modern mining.

1.1. Machine learning for ore grade estimation

The well-known Kriging-type geostatistical methods employed for determining the ore grades are often
ill-suited to the complexities of geological occurrences that are non-linear in the different geometrical
properties which can be ascribed to them. Most of these methods are the approaches to spatial interpolation
related with small sample, so it can't fully present the spatial distribution regularity and uncertainty of mine
deposit when there are high ore body heterogeneities. On the other hand, ML algorithms, due to their ability
to learn from large data sets, may find obscure patterns that classic approaches could overlook.

The ML models provide competitive advantages for ore-grade estimation due to their capability of
efficiently processing high-dimensional data, capturing complex domain-knowledge relationships and
dealing with the uncertainty inherent in ore deposits. Methods such as the Artificial Neural Networks, the
Support Vector Machines and the Random Forests have been proved to be efficient for ore grades prediction
compared with the geostatistical methods ™. ANNs can capture complex nonlinear relationships between
explanatory variables (such as geology, geophysics, and geochemistry parameters) and ore grade and the
SVMs can handle high-dimensional data and discover important features to make more accurate predictions.

RFs are particularly effective at modelling complex interrelations among geological characteristics and
are conducive for making stable and consistent predictions. Additionally, ensemble techniques, such as
Gradient Boosting, aggregate the output of numerous weak learners to generate a strong one, increasing
prediction accuracy and reliability. These algorithms can be used to incorporate different types of
information, including geological maps, geophysical surveys and geochemical measurements to make more
complete estimates of the ore grade.

By effectively dealing with data complexities, ML results in better predictions and decisions; hence, the
spatial correlations between data points can be captured, and predictions can be performed regarding the
space-varying reservoir property 1.

The pipeline for introducing ML into ore grade estimation generally includes the data pre-processing,
the feature selection, the model training and the validation. Data Preprocessing Data preprocessing is the
procedure of cleaning the raw data, converting it into a format for input to a Machine Learning (ML) model
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and normalizing it so that it is reusable for future use. Feature selection reveals the most important
geological features that contribute significantly to the ore grade, leading to the simplification of the model
and higher prediction accuracy. A fraction of the data is used to train the ML algorithm how to recognize the
relationships between input features and ore grade: this is known as model training. Model validation tests
the trained model performance on an independent dataset in order to measure the accuracy and the
generalization capacity of the classifier 1,

MACHINE LEARNING FOR ORE GRADE ESTIMATION

~ N

Kriging s Machine Learning
. Competitive )
GeostatisticaLrethod Ad t Capable of processing
suitable for small vantages large datasets and
sample sizes but limted identifying hidden
in capturing complex, patterns in ore bonata
nonlinear geological data
ML Models
Artificial Neural Support Vector Random Gradient
Networks Machines Forests Boosting
v
ML Pipeline
Data Feature Model Model
Preprocessing Selection Training Validation
Handles high-dimensional data, captures complex
relationships, and addresses uncertainty in ore edeposits

Figure 1. Comparative framework of kriging and machine learning approaches for ore grade estimation

As illustrated in Figure 1, the comparative framework highlights how machine learning overcomes the
linear limitations of Kriging by capturing nonlinear spatial patterns and uncertainties in ore grade estimation.
There is also an approach, which is known as employing self- adaptive neural network, can prove to be
beneficial in classifying The application of rock types for selective cutting, which can be done, learning from
the data set coming from new cutting operations generation ['!],

Genetic algorithms and artificial neural networks can be integrated to model the complicated and
nonlinear relationships between the factors of the mining system for optimal cut-off grade and crude ore
grade "2, ML algorithms can be adapted to continuously update the model as new information is accrued,
preserving the accuracy of the ore grade estimates in real time as mining progresses [,

2. Machine learning techniques for ore grade estimation
2.1. Artificial neural networks (ANN)

ANNSs hold great potential for representing the nonlinear structures between geological structures and
ore grades. In mineralized areas with rapid geological variation, ANN trained based on drill hole and assay
results have been shown more accurate than Kriging. ANNs can then be trained via backpropagation to learn
complex patterns from hundreds of thousands of examples, producing more accurate predictions of ore
grades. ANNs has been used in the estimation of the grade of ore by designing a network structure which
represents the tectonic factors that are thought to relate with the ore grade ¥, The attributes of the deposit
that the model uses as input are generally those describing the deposit geologically: lithology, alteration,
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mineralization, etc., the output being an estimation of the ore grades at the mine face. The ANN is developed
using historical data and is assessed by statistical measures that include the mean square error and R2.

Reducing the number of the hidden layers, the number of units in each layer, and the learning rate [
can all help attain better ANNs. Different algorithms performed best in different models, yet two hidden
layers neural network had the best predicting and generalizing ability simultaneously for three rock

(18] Deep learning, a class of ANNs with more than one hidden layer, has attracted much attention

properties
due to its efficiency for processing complicated geological data. The sequential process of data
preprocessing, feature selection, model training, and validation applied to ore grade prediction is shown in

Figure 2, demonstrating how ML pipelines are structured for geological data analysis.

Machine Learning Techniques
for Ore Grade Estimation

Avrtificial Support Random Forests Gradient Boosting
Neural Vector and Decision Machines

Networks Machines Trees and XGBoost
(ANN) (SVM)

Bayesian Hybrid
Methods Models

Figure 2. Flowchart of machine learning techniques for ore grade estimation

2.2. Support vector machines (SVM)

In small datasets, SVMs are capable of distinguishing mineral types and predicting grades with great
accuracy. Nonlinearity can be appended using kernel functions, and thus they are adequate to model
heterogeneous ore bodies. Due to the high-dimensional data, and preventing overfitting, SVMs are suitable
for ore grade prediction. The use of support vector machines in estimating ore grade is to map the measured
variables in a high-dimension feature space via kernel functions then to find the optimal hyperplane which
maximizes the separation of the various ore grades ['7],

The SVM is learned on past information and its performance is assessed through accuracy, precision,
recall and so on. SVMs can also be refined by altering parameters like the kernel, regularization and kernel
coefficient.

2.3. Random forests and decision trees

Ensemble techniques, such as Random Forests, are resistant to overfitting and increase prediction
confidence intervals. These models are especially effective in the analysis of high-dimensional geological
and geochemical data. These models also provide a measure of the importance of different input variables,
facilitating a more comprehensive comprehension of the geological ore grade controls.

Random Forests consist of inducing several decision trees based on random samples of the data and
averaging their predictions to form the final ore grade estimate. In the context of estimating the grade of ores,
Random Forests learn an ensemble of decision trees where each tree is based on a random sample of the data
and a random set of the input variables used in building the tree ['¥l, The Random Forest is trained using
historical data, and its performance is evaluated using metrics such as mean squared error and R-squared.
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2.4. Gradient boosting machines (GBM) and XG boost

These ensemble methods achieve a high level of accuracy in grade prediction by using weak learners
and incrementally reducing prediction error. Stochastic gradient descent can be combined with Ada Boost to
enhance the effectiveness of landslide predictive models ). Regularization can increase the robustness
(decrease overfitting) of the model by using the regularization technique present in XG Boost.

Gradient boosting machines and XG Boost are machine learning algorithms which make use of
ensemble learning, forming a strong predictive model by assembling many weak models. Gradient Boosting
Machines and XG Boost work on the principle of ensemble learning and have found wide popularity in ore
grade mapping for their capability to model complex datasets and generate precise predictions %, These
methods train a series of weak classifiers (e.g decision trees) in an iterative and additive way to form a
strong predictive model. Referring to the disadvantages of the previous model, Gradient Boosting Machines
and XG Boost can manage nonlinear relationships between geological features and ore grades on the one
hand %%, XG Boost adopts the second-order Taylor expansion of the loss function and introduces a
regularize to balance the complexity of the model and the reduction of loss, which prevents overfitting [2*!,

2.5. Bayesian methods

Provided by Bayesian approaches, the estimation of ore grades becomes more probabilistic and the
uncertainty can be quantitatively accessed. By including pre-existing geological information and then
conditioning on new information, Bayesian methodologies offer a natural approach to grade estimation.
Posterior distributions are simulated using Markov Chain Monte Carlo techniques, thereby allowing for an
evaluation of the uncertainty in the predictions. This method is a fusion of ensemble methods with the base
classifier of Multiple Perceptron Neural Networks 241,

2.6. Hybrid models

Hybrid models that integrate machine learning algorithms and geostatistical techniques may be able to
take advantage of the strengths of both methods and provide better long-term and more reliable estimation
of ore grades. The use of geostatistics is seconded to machine learning in order to improve ore reserve
estimates because the issue of spatial smoothing is minimized when novel techniques are used *!. For
instance, machine learning techniques can be utilized to model the complex nonlinear relationships between
geological features and ore grade, while geostatistics can interpolate and extrapolate ore grades in
unobserved places. The best estimates of Construction Cost across accuracy, uncertainty and training time
indicators were from the hybrid light gradient boosting/natural gradient boosting model *%.. Hybrid models
can provide a more holistic and more accurate evaluation of ore resources, and therefore better mine
planning and decision making can be expected 7,

Optimization of blending is a key process in modern mining to realize optimal value of the ore extracted
by mixing of different ore types to prepare desired quality specifications to fulfill market requirements 281,
The difficulty is how to cope with the extreme variability of the ore grades as well as the mineral
compositions and at the same time comply with mining equipment and processing facility restrictions and
environmental legislation. Machine learning methods provide great potential to resolve these challenges, by
development of predictive models that could be used to optimize blending strategies online %32,

Across studies on ore grade estimation, model performance is typically assessed using statistical
indicators such as the coefficient of determination (R?), mean absolute error (MAE), and root mean square
error (RMSE). ANN-based models generally exhibit higher R? values (often > 0.90) and lower RMSE
compared to Kriging and SVM, reflecting their strong ability to capture nonlinear geological relationships.
SVM models, while performing well on smaller datasets, tend to yield moderate R? (0.80—0.88) and slightly
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higher MAE due to sensitivity to kernel selection and parameter tuning. Random Forest and XG Boost
models consistently show balanced performance, achieving both high predictive accuracy (R? = 0.88-0.94)
and low error values, indicating robust generalization to heterogeneous orebody data. Hybrid ML-
geostatistical models often outperform standalone algorithms by reducing residual variance and improving
spatial continuity in predictions. Overall, R? provides an understanding of model fit, MAE indicates the
average deviation, and RMSE highlights the magnitude of large errors—together offering a comprehensive
comparison of prediction reliability across methods applied in ore grade estimation. Different ML methods
used in ore grade estimation are compared in Table 2.

Table 2. Comparison of major ML techniques applied in ore grade estimation highlighting their features, applications, and
performance insights

Application in Ore Grade

Sr. No. Technique Key Features s . Remarks
q y Estimation
Excellent for modeling Predicts ore grade based on
. . . L Best performance
nonlinear relationships; geological inputs such as . :
e . . . observed with two hidden
Artificial Neural trained using lithology and .
1 o . s layers; suitable for deep
Networks (ANN) backpropagation; mineralization. Proven . .
. . learning with large
customizable network more accurate than Kriging
. . datasets.
architecture. in complex zones.
Effective with small datasets; Map S fea'tures into high Performance is enhanced
. dimensional space to .
Support Vector uses kernel functions to by tuning kernel type,
2 . . . ) separate ore grades s
Machines (SVM) manage nonlinearity; resists . . regularization, and
. optimally using a .
overfitting. coefficients.
hyperplane.
Ensemble-based; robust to Creatgs multiple decision Well-suited for high-
Random Forests & oo . trees using random subsets; . . .
3 . overfitting; highlights input dimensional geological
Decision Trees . averages results for final
feature importance. . data.
grade estimation.
. . Combines weak learners Sequential learning of XG Boost uses second-
Gradient Boosting . . . L
4 Machines (GBM) & iteratively; includes models for ore grade order optimization and
XG Boost regularization to reduce mapping and prediction regularization for better
overfitting. under complex conditions. generalization.
Probabilistic modeling; US?S posterior probab} lity Useful when confidence
. . . ; via MCMC to quantify . .
5 Bayesian Methods incorporates prior geological o intervals and risk
uncertainty in grade ..
knowledge. . assessment are critical.
predictions.
Combines ML with ML captures nonlinear Improves reserve
6 Hybrid Models geostatistics for enhanced patterns while geostatistics estimation accuracy and

spatial estimation and
generalization.

interpolates grades in
unsampled areas.

supports better mine
planning.

2.7. Blending optimization in modern mining

Ore blending is an important series of operations in the current mining industry for achieving stable
feed grade to the plant, mitigating the effects of variability in grade in the feed, and thereby enhancing the
performance of the plant. The significance of ore blending is that it creates an optimal feed in terms of
recovery and energy, reduction of operating costs. Poor blending practices can result in inconsistent feed
grades, process inefficiencies and overall financial losses. To overcome these, models based on machine
learning (ML) are adopted lately in the field of predictive control of ore blending. These models process
data from mine schedules, stockpile properties and material transport systems to forecast feed composition
effectively. According to these predictions mixing ratios are optimized to fulfill both quantity and quality
requirements. Sophisticated optimization algorithms such as (GA) and (PSO) are usually coupled with the
ML algorithms in order to seek the optimal ore combination. Moreover, the reinforcement learning (RL) in
blending tasks can also be an outstanding choice for dynamically optimizing the blending plan according to
real-time feedback from processing actions, leading to improved adaptability and process efficiency. Such
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optimization methodologies can also to involve more than one objective such as minimizing cost,
maximizing throughput, and adhering to grade constraints.

The objective of mixing optimization is to obtain a homogeneous mixture of ores that have the expected
chemical and physical properties, taking into account economic and operational issues **1. Machine learning
methods could help to interpret continuous data provided by sensors, assays, and historical data on-the-fly, to
forecast the efficacy of different blending strategies. Through robust characterization of the blending process,
machine learning can determine the optimum combination of blends to achieve specific target qualities at
minimum cost. By the use of predictive modeling, we are able to make conscious, proactive adjustments to
the blending process to the detriment of ore supply variability.

Optimization in blending is an important issue for the mining industry that is directly related to
maximizing the value of the ore extracted by combining qualities with different grades to supply a simplistic
and quality of ore 4. Conventional blending strategies are usually based on linear programming algorithms
and heuristic methods, which cannot effectively address the complexity and uncertainty of ore variability,
processing limits, and market conditions, as noted by . Predictive models such as ore characterization
models can be created in the use of ML algorithms to forecast the characteristics of an ore from different
operational parameters to make proactive changes to blending strategies and improved decision-making 3¢,
Through learning from historical data and adjusting to the changing environment, ML models can guarantee
that the mixed product always meets the desired specification while consuming the least cost and achieving
the greatest profit 7). Instead of aiming to maximize one target and then minimizing several others,
nonlinear optimization can combine the blending objectives with their respective constraints as well as

uncertainties. It could allow the mining operations to be more sustainable %,

Figure 3 provides an overview of the blending optimization process using ML, where predictive
modeling and feedback loops dynamically adjust blend ratios based on real-time data inputs.

Blending Objectives

* Minimizing cost Reinforcement
* Maximize throughput Learning

* Adhering to grade

constraints Real-Time
Feedback
ML-Based
Prediction and

Optimization

ML Model for
Ore Biending
ML-M-baed ‘l'
Preduction and Reinforcement
Optimization Feedback
Real-Time
Mine Stockpile Material

Schedules Properties Transport

l I J
v

Blending Process

Figure 3. Flowchart of machine learning-driven blending optimization in modern mining
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Application of machine learning methods has significantly advanced the process of optimization of ore
blending for modern mining that will potentially result in better and timely decision-making.

Blending is an important procedure in mining, used to sustain stable feed composition for a target
flotation, particularly for ores which strongly impact flotation after treatment 1*°!,

The great results that have been obtained from machine learning in different industries, have motivated
the development of specialized algorithms in the context of mineral processing, such as optimizers to the
blending of ores 10,

Learning algorithms has gained popularity as an advanced tool for optimization of the ore blending
process, which allows mining companies to increase the efficiency, lower costs and improve product quality.

1. Example predictors include various regression and classification models to predict ore blend
quality and other characteristics from charges, while clustering and other unsupervised learning
approaches can be used to uncover patterns and groupings within ore data and suggest optimal
blending ratios

2. One can use reinforcement learning (RL) to model dynamic blending strategies that account for the
varying ore composition and market conditions maximizing overall mine profitability.

3. The application of ML for blend optimization can be summarized in the following major stages:
data collection and preprocessing, model building and training, and model testing and validation.

4. Data gathering consists of collecting appropriate data on grade of ore, mineralized composition,
processing characteristics, and market needs.

Preprocessing Fabrics Cleans, transforms, and integrates the data to the compatible with ML algorithms.

3. Industrial implementations and case studies

A notable industrial case is from the Chingola Open-Pit Copper Mine in Zambia, where a Random
Forest-based predictive model was trained on ten years of production and assay data to forecast feed grade
and impurity fluctuations. The model was coupled with a PSO algorithm to compute optimal blending ratios
across multiple stockpiles. Real-time feedback from conveyor belt analyzers allowed the system to
automatically adjust blend proportions, maintaining the target copper grade within +0.3%. The
implementation led to a 12% improvement in recovery efficiency and an 8% reduction in milling energy
consumption, demonstrating the measurable benefits of data-driven blending optimization.

Similarly, Rio Tinto’s Mine of the Future™ program in Australia employs Al-integrated blending and
scheduling systems that combine geological modeling, sensor-based ore tracking, and predictive analytics.
These systems enhance ore quality control and minimize variability during transport and processing, leading
to significant gains in throughput stability and reduced waste.

Another example is from Vale S.A. in Brazil, which has implemented Al-enabled stockpile management
and blending systems across its iron ore operations. These models use real-time geochemical and
geometallurgical data to adjust blending decisions dynamically, improving Fe content uniformity and
reducing silica variation in the final product.

Table 3 summarizes key aspects of ML-based blending optimization, highlighting its predictive
capabilities, real-time adaptability, and practical benefits in industrial mining.



Table 3. Blending optimization in modern mining

Sr. No. Aspect Key Features ML Role in Optimization Outcome/Benefits
Importance of Ore 'Stablhzes feed grade, Pr'edlcts feed composition Reduces cost and enhances
1 . improves recovery and using sensor and historical
Blending . plant performance.
energy efficiency. data.
Predictive Blending  Integrates real-time data from Combines ML with GA.’ Enablqs ! cal-time
2 . PSO, and RL for dynamic adaptability to feed
Models stockpiles and conveyors. . LT
blending. variability.
Examples: Chingola Copper Uses Random Forest, PSO,
. . . o . Improved recovery (10—
Industrial Mine (Zambia), Rio Tinto and deep learning for
3 S . _ . 15%), reduced energy use,
Applications (Australia), Vale S.A. predictive blending and g .
(Brazil). process feedback. consistent product quality.
Operational Balances cost, throughput, Supports decision-making Achieves gustamgb} e and
4 . . data-driven mining
Benefits and grade quality. under uncertainty.

operations.

3.1. Predictive modeling on ore properties

Predictive models to predict the ore characterization can be developed using ML algorithms according
to different operational criteria. These can predict ore grades, mineral content and other properties from
drilling, sampling and online sensors. Machine learning is a disruptive technology in present day mining and
has introduced novel approaches for ore grade estimation and blending, increased production, minimizing
operation cost and ultimately optimizing productivity (9.

The mining industry is becoming more and more challenging and the demand on mineral resources has
also increased which led to the requirement of efficient and advanced data-driven methods for managing as
well as optimizing different issues across the mining value chain. Machine learning models have been
known to uncover non-linear associations across large datasets, leading to predictions that are more accurate
and relevant than those made by traditional approaches !, Data mining and machine learning also present
cost-effective technology for actionable intelligence on material flow properties and process production 42,
As depicted in Figure 4, ML-based predictive modeling connects ore characterization data from drilling and
sensors to production and blending outcomes, ensuring data-driven optimization across mining stages.

' S
Drilling &
sampling

—

Predictive Ore
> model property

Online | predictions
Sensors h_

—— :

e ———
Machine
learning

—

' Model
evaluation

Figure 4. Predictive modeling on ore properties using machine learning

Furthermore, the introduced machine learning models could be interconnected with on-line monitoring
systems to update the blending parameters as the blended product is maintained at the set-point even if ore
feed changes. The use of machine learning in mining is not limited to ore grade estimation and blending
optimization but covers also predictive maintenance, process control and mineral exploration 31, The true
power of machine learning is to find latent patterns and relationships between the components of a complex
database, and to develop predictive models that can then be utilized to optimize diverse mining activities

(44451 ‘Machine learning, a specific area of artificial intelligence, aims to give computers the ability to learn
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from data without being explicitly programmed for each task 1?8, Algorithms based on supervised learning,
such as support vector machines and neural networks, can be trained with respect of labeled datasets to
forecast ore grades considering geological and geochemical information 7). Unsupervised learning methods,
such as clustering and dimension reduction, can help in revealing patterns and relations among ore data in
order to recognize several classes of ores and to optimize blending strategies 4],

By processing huge geological, geochemical and operational information volumes, ML algorithms can
compute precise ore grade predictions. Such estimates are critical for resource modelling, mine planning
and production scheduling. That way, mining companies can analyze and update estimates on ore grade with
newly-harvested data, which would result in more iterative, response-driven decision making when done so
via machine learning models and RTD. The performance of machine learning models is highly dependent on
the amount and quality of training data; the availability of good quality, representative data is essential to
build reliable models.

Model evaluation should be followed periodically so that the models are tested and validated and also
recalibrated for optimal performance to look good over time. *'The proliferation of high-quality data and
advancement in the machine-learning technology is fueling ore grade estimation and blending for further
advances.

By combining such machine learning with automation, robotics and other technologies, mining can be
revamped to be more efficient, sustainable and profitable. Applications of machine-learning-based
optimization methods (50) have been demonstrated in a variety of scientific domains, where significant
improvements have been achieved with respect to the optimization of complex experimental protocols.
Fortunately, computers can learn from experience and one of the forms such learning makes is called deep
learning; by learning from experience, computers can learn much like humans, and this technology is used in
self-driving cars to recognize traffic lights and tell the difference between pedestrians and obstacles P!, ML
comprises techniques that are of scientific nature and concentrate on helping computers learn to identify
relationships hidden inside data 2. ML is popular for analyzing intricate data sets 531, It is able to learn
patterns that are too rare for humans and it can make predictions based on these **. Industry be damned,
now ML models are analyzing huge volumes of data in prey of all sectors: banking/finance, cybersecurity,
advertising/marketing, healthcare. Table 4 lists diverse applications of ML for predictive modeling and
operational intelligence.

Table 4. Summary of ML-driven predictive modeling applications across ore characterization, operational optimization, and
monitoring integration.

Sr. No. Aspect Key Features ML Application Outcome/Impact
ML algorithms predict ore Devel'opment of
. supervised models Improved resource
grade, mineral content, and . . .
oy . . . (e.g., SVMs, ANNs)  modeling, mine planning,
1 Ore Characterization geochemical properties using . .
e . and unsupervised and production
drilling, sampling, and sensor .
data methgds (e.g., scheduling accuracy.
’ clustering, PCA).
Mining sector requires ML identifies Boosts production,
. S advanced data-driven nonlinear patterns and  reduces operational costs,
2 Operational Optimization . .
strategies for performance enhances process and increases
improvement. intelligence. profitability.
L . ML models integrated .
Integration with Real- Dynarplc adjustmentg n with IoT and RTD Ensgres product guahty
3 : o blending and processing . consistency despite feed
Time Monitoring . b systems for automatic A
using real-time data. variability.
updates.
ML also supports predictive Algorithms uncover Enables proactive
4 Expanded Applications maintenance, process control, hidden patterns in maintenance and efficient

and exploration.

complex data across

exploration planning.
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Sr. No. Aspect Key Features ML Application Outcome/Impact

mining operations.

Periodic recalibration Drives future
. Dependent on data .
Scalability and Future RN . and performance advancements via
5 . availability, quality, and . .
Potential . S assessment ensure automation, robotics, and
continual model validation. . .
reliability. deep learning.

Table 4. (Continued)

3.2. Integration of machine learning with traditional methods

The use of ML combined with classical techniques like geostatistics and linear programming provides a
complementary way to estimate block grades and optimize its blending. Although ML is a superior technique
to discover complex structures and to make predictions based on large training sets, it may not be as
interpretable and robust as classical methods.

Geostatistics can be used as a way of analyzing spatial data and providing quantitative and realistic
modeling, and linear programming can be used to optimize resource allocation and blending strategy. By
integrating ML with such classical methods, mining practices can benefit from the advantages of both and
achieve more accurate, reliable and interpretable outcomes.

For instance, ML algorithms could assist to upgrade traditional geostatistical models by integrating
other sources of information, like remote sensing data or geochemical exploring to achieve more accurate
estimation of ore grade. Figure 5 visualizes the integrated framework combining ML algorithms with
geostatistical and linear programming methods, demonstrating how hybrid modeling enhances both
predictive accuracy and interpretability.

: ™ 2N
Machine Learning Traditional Methods
L v S
W h
T "sl Y
Enhance estimation Geostatistics
of ore grade Li :
: ; inear programmin
(e.g.,integrating Ared gj
! additional data) 1 J

!

More accurate, reliable, and
interpretable outcomes

y

4 ™
Optimize blending strategy
(e.g.,capturing nonlinear
relationships)

b 4

]
Adapt to dynamic conditions
(e.g., adjusting operating

parameters)

-

Figure 5. Integration of machine learning with traditional methods in mining
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Likewise, the combination of ML and LP can be utilized to improve blending strategies by capturing
nonlinearity associated with types of ore and product quality relationships that are difficult to express in
terms of linear model. Despite their potential performance, classical methods, especially exact methods,
often face difficulties in scalability, computational efficiency, and adaptability to dynamic and uncertain
environments in modern mining %, Furthermore, ML can be integrated in the conventional techniques to
provide instantaneous feedback and adaptation. By maintaining process performance on line and by
modifying operating variables on the basis of ML predictions, the mining process can optimize blending
strategies and consistent specification quality of the final product in deviation of ore characteristics variation
and processing conditions. ML can address the nonlinear problems and the fact that so much data in the
supply chain is massive and unstructured and comes from different sources *°. Many retailers already use
ML to optimize inventory management in each of their global warehouses Bl. According to 7 ML
outperforms the conventional forecasting methods by the use of various demand factors for precise
generation of demand forecast.

3.3. Integrated frameworks and digital twins

Recent years have seen the emergence of advanced integrated machine learning (ML) frameworks
within mining, where various state-of-the-art technologies are employed together in synergy to increase
operational efficiency and facilitate decision-making. Such frameworks employ IoT sensors to provide up-to-
date data from the mine-to-mill value chain and real-time process monitoring of ore properties and process
variables. Scalable data storage and rapid computation are supported by cloud-based platforms, which can
be used for the deployment of sophisticated ML algorithms and analytics. Digital twins—real-time operator-
controlled replicas of mine-to-mill systems—are developed to experiment with different scenarios, minimize
uncertainties, and predict the performances in response to changes. Moreover, Geographical Information
System (GIS) software is a convenient tool for the presentation of orebody data in a spatial context, enabling
more precise and efficient field decision process. Through those components, a high degree of automation
and versatility helps you to learn and act on blending and grade consistent even under evolving geological
and operational conditions. The use of ML for manufacturing applications benefited from its high utility

(381, The application of ML in manufacturing

value and relatively easy development provided by ML models
introduces new methods, reduces time, cost and energy ). ML contributes to sustainability by improving
resource efficiency and reducing waste ). In the manufacturing industry, ML is applied to defect detection

and prediction of maintenance 1,

4. Research gaps

Although machine learning in mining is increasingly adopted there are both challenges and gaps in the
research that limit the utilization of machine learning to its full extent. One is related to the available data
and whether it is of the right sufficient quality and quantity. Most mining activities have to deal with sparse,
noisy or biased sampling that imposes difficulties on both the accuracy and generalization of ML models.
Furthermore, while these models are likely to be more interpretable than transformer models in general,
interpretability would continue to be an issue. There are already black-box algorithms in that are quite
accurate but are difficult for mine planners and geologists to have the trust and confidence to use the
information generated from them. Other significant issues are the implementation of ML solutions into mine
planning legacy decisional systems that frequently necessitates complex customizations and generates
interoperability questions. Moreover, the absence of publicly available benchmark datasets with well-
established performance metrics for ore grade prediction significantly hinders the evaluation and
comparison of the effectiveness of different models, which impedes the development in this direction. It is
important to close these gaps for the development of dependable, interpretable, and seamless ML
applications in mining. More research is needed to understand how data quality can be evaluated and
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enhanced for ML driven design and manufacturing [¢!l. Such research provides the means to applying ML to
resolve challenging supply chain issues that may revolutionize business operations and increase profits 6%
631, This study shows how ML can optimize supply chain, providing valuable recommendations to firms who
are seeking ways to enhance their logistics and inventory in a fast evolving market . With the development
of machine learning, it has been applied in many fields, and data-driven decision is replacing traditional
decision. The capacity of ML to distill patterns from complex data and make predictions with high levels of
accuracy has disrupted many industries helping efficiency and introducing new possibilities for creative

ideas [0,

4.1. Current limitations, challenges, and future research trajectories

Notwithstanding that significant progress has been made towards deploying ML in OGE and blending
optimization worldwide, several limitations and challenges need to be overcome before its full potential can
be realized within the mining realm. One big problem is the data available and the quality of this data.
Algorithms in ML always require training on large and representative sets of data to learn accurate models,
which is particularly problematic in mining given the high degree of variance in ore bodies and in mining
processes and the high cost of acquiring and labelling such data. Good data quality is key, as biased or
incomplete data can interfere with powerful prediction and decision-making.

Second is the interpretation and explainability of ML models. A variety of ML methods, like deep
learning models, are black boxes, making predictions without explanations of underlying relationships
between input features and predictions. This lack of interpretability can inhibit the use of ML in mining,
since decision makers may be hesitant to trust models they cannot interpret.

Future research directions include

(1) Designing better ML algorithms, which are more robust and interpretable,
(1) Removing noise and outlier data as well as

(1i1) Having more complex, high-quality data (availability).

Approaches such as explainable Al and causal inference could be applied in order to enhance the
interpretability of ML modeling by aiding to identify the possible controlling factors on ore grade estimation
and blending optimization.

Moreover, more studies are required to address the summarization of missing information (or uncertain
information) and to further fuse knowledge from several information sources into more complete training
datasets. Also research needs to be done in the relative economic value of the adoption of ML techniques
combined with the early hype being tempered !¢, In addition, we need to stress the significance of legal and
regulatory approaches to address challenges related to bias, transparency, and data protection characterized

(671 The analysis of the promising future of ML

by ML for the better utilization of ML in governance
techniques has sharply increased in recent years, largely fueled by the announcement of national policies
about it, which has driven the spotlight to think of it as a fertile ground for applications in general [,
However, obstacles of this approach also need to be faced including capital cost of ML implementation,
difficulty of finding and teaching AI/ML experts and no simple interpreting issues when dealing with
predictive results [%*1. Ethics is also critical, especially when dealing with privacy issues that stem from the

huge data demands of the Al and ML technologies !,

Medical area serves as an example of how powerful Al could shape the future of healthcare as well
domain adaptation challenge. Challenges in these tasks arise from the differences between patient
populations, disease prevalence, and practice patterns in various geographic areas, which can undermine the
robustness of ML-based models > 71, The development of reliable AI/ML tools depend on strong
evaluation and data augmentation tools [\, Such new training rounds may need human ethical supervision as
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new ethical issues and new treatment options are discovered. Figure 6 summarizes the major challenges and
emerging research directions identified in this study, emphasizing issues of data quality, interpretability, and
ethical implementation.

Emerging approaches such as federated learning and transfer learning are increasingly seen as
promising solutions to challenges related to data scarcity, privacy, and model generalization in mining
applications. Federated learning enables multiple mining sites to collaboratively train shared predictive
models without exchanging raw data, thus maintaining confidentiality of sensitive geological and operational
information. This decentralized framework helps improve model robustness by learning from distributed
datasets representing diverse orebody and process conditions. Similarly, transfer learning allows pre-trained
models developed for one mineral deposit or region to be fine-tuned for another with limited data,
significantly reducing the computational and data requirements for new sites. These techniques not only
enhance scalability and adaptability of ML systems but also promote cross-site collaboration and faster
deployment of intelligent mining solutions.

=

Data Availability and Quality Interpretability of Models
« High variability and cost »| © Black-box nature of some
of data acquisition ML algorithms
¢ Necessity of large » Decision-makers may distrust
representative dataseats opaque models
L v

_____ T l

Future Research Directions
¢ Better ML algorithms design « Data privacy and security
¢ Handling more complex <«——  concerns
datasets * Bias and fairness
¢ Explainabiliity and causality considerations
approaches e Costs and skills for

implementation

Figure 6. Challenges and future research directions for machine learning applications in mining

Deployment Issues on Machine Learning in Contemporary Mining. "Operationalizing machine learning
in mining industry might be seen as an exciting and transformative opportunity to improve operational
efficiency and safety, but is also riddled with pressing concerns that need to be addressed for progressing
responsible and effective use of machine learning." An important issue is the ethical considerations for the
adoption of ML for decision-making, especially in workforce dynamics and environmental sustainability. As
ML algorithms replace human labor in their tasks, the problem emerges of a rapid development of
unemployed and alternatives for the retraining and reskilling of workforce. Moreover, the potential bias in
ML models is a concern with respect to fairness and equity in resource allocation and environmental impact
evaluations 4],

Data protection and security are also pressing issues due to large amounts of sensitive data being
collected and processed during the mining operations. Maintaining the confidentiality and integrity of this
information is critical to prevent unauthorized access and fraudulent use. A further important concern is the
difficulty of ML algorithms capturing the complexity of actual mine environments. The quality of ML
algorithms depends on the quality of their training data, and if the training data does not capture the full
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breadth of the conditions experienced at mine sites, the models they generate might not produce accurate or
trustworthy predictions. Table 5 highlights data, interpretability, and ethical challenges that guide future
research priorities.

Table 5. Summary of current challenges in ML implementation for mining and corresponding future research directions

Sr. No. Challenge/Issue Description Future Research Direction Implication

Better model

ML needs large, diverse, and  Develop techniques for better
accuracy, broader

Data Quality and well-labeled datasets, which data curation, augmentation, Lo
1 A . applicability, and
Availability are costly and hard to and handling .
LT o . . improved confidence
acquire in mining. missing/uncertain information. . S
in predictions.
Complex ML models (e.g., Increases trust among

decp learning) act as black Use explainable Al and causal ~ decision-makers and

2 Model Interpretability boxes. limitine trust in inference to make models encourages wider
’ decisior%s more transparent. adoption in mining
’ workflows.
High costs, legacy system Informs ROI-based

Integration and Economic  compatibility, and difficulty Study economic value of ML decision making and

adoption and develop modular,

Viabilit in model deployment hinder scalable integration
Y . ployme scalable ML systems. . . grat
implementation. into mine operations.
Issues of bias. privac Promotes responsible
. . b ¥ Establish regulatory Al practices and
Ethical and Legal fairness, and regulatory 1o
4 . frameworks and guidelines for ensures data
Concerns compliance must be . L .
ethical ML use in mining. protection and
addressed.
transparency.
. . . o Ensur ial
Automation may displace Invest in reskilling programs SUTES $0C
. o . . sustainability and
Operationalization and workers; real mine and improve model
5 .. L more robust ML
Workforce Impact conditions may not be well generalization to real-world .
. . o models for practical
represented in training data. variability.

use.

5. Discussion

The application of machine learning (ML) for ore grade estimation and blending optimization is
transforming the mining industry by replacing conventional rule-based and deterministic approaches with
data-driven intelligence. This shift is particularly vital in modern mining, where declining ore grades,
complex geological formations, and sustainability requirements demand greater predictive precision and
operational efficiency [*7”), ML models offer the capability to capture nonlinear, high-dimensional, and
uncertain geological relationships that are often overlooked by traditional geostatistical methods such as
Kriging.

Across the studies reviewed, algorithms including Artificial Neural Networks (ANN), Support Vector
Machines (SVM), Random Forests (RF), Gradient Boosting Machines (GBM), and hybrid geostatistical-ML
models have demonstrated significant improvements in prediction accuracy and robustness. ANN and deep
learning architectures effectively capture complex geological dependencies, while ensemble methods such as
RF and GBM enhance stability by reducing overfitting and improving generalization. Hybrid frameworks
that combine ML and geostatistics balance predictive power with spatial continuity, leading to more accurate
ore reserve estimation and better mine planning outcomes %), Optimization algorithms such as Genetic
Algorithms (GA), Particle Swarm Optimization (PSO), and Reinforcement Learning (RL) further strengthen
the blending process by allowing dynamic and adaptive decision-making in real time. These models
efficiently manage multiple objectives, including minimizing cost, maintaining product quality, and
maximizing throughput, while responding to variations in ore characteristics and processing constraints. The
integration of ML-based predictive control into blending operations has shown measurable improvements in
plant stability, recovery efficiency, and energy consumption reduction. The rise of sustainable and intelligent
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technologies has reshaped ore grade estimation and blending optimization in mining. Growing ore
complexity and the push for energy efficiency have led to the use of machine learning (ML), artificial
intelligence (Al), and optimization frameworks for better accuracy and sustainability. Studies by Upadhe et
al. 8% on water-saving design and by Kurhade and Murali [81, 82] on CFD-based thermal control with PCMs
demonstrate resource-efficient and predictive approaches similar to ML-based mining systems. Research on
heat transfer, fuzzy modeling, and hybrid computational methods [83-87] shows how intelligent tools
enhance efficiency and multivariable analysis. Dynamic simulation, biocarbon adsorption, and vortex
combustor optimization [88—90] reflect digital twin, eco-friendly, and Al-driven principles. CFD studies on
heat exchangers ! and hybrid GA-NN systems [92, 93] highlight adaptive modeling and IoT-based control
relevant to mining. Further works on microchannel optimization, biodiesel, solar systems, and structural
analysis [94-98] parallel predictive maintenance and sustainable mining practices. Patil et al. ®! directly
applied Al to minimize environmental impact and improve recovery efficiency. Later studies [100—105] on
heat transfer enhancement, material optimization, and real-time monitoring continue to align computational
intelligence with data-driven mining operations.

Digital transformation in mining is also supported by the integration of ML with Internet of Things (IoT)
sensors, real-time telemetry systems, and cloud-based computing platforms. These integrated digital
frameworks enable continuous monitoring and adjustment of ore grades and blending ratios, ensuring
uniform feed quality and process adaptability. The emerging use of digital twins allows simulation of mine-
to-mill operations, enabling virtual experimentation and optimization of mining and processing activities
without interrupting production. Despite these advancements, several challenges remain. The primary
limitation lies in data quality and availability. Many mining datasets are sparse, noisy, or incomplete,
affecting the accuracy and reliability of predictive models. Additionally, the interpretability of complex ML
models, especially deep learning systems, remains a concern among practitioners who rely on transparent
decision-making. Integration with existing legacy systems and software platforms also poses technical
barriers to large-scale deployment. Ethical considerations, including data privacy, algorithmic bias, and
workforce implications due to automation, must be addressed through responsible Al frameworks.

To advance industrial adoption, there is a need for standardized datasets, open benchmarking protocols,
and transparent model validation methods. Collaborative efforts among mining engineers, data scientists, and
software developers can accelerate the creation of explainable, reliable, and field-adaptable ML tools.
Research should further explore explainable Al, federated learning, and transfer learning to enhance
interpretability, data efficiency, and cross-site model adaptability. These emerging strategies can promote
secure data collaboration and reduce dependence on large centralized datasets.

Overall, machine learning is reshaping the future of the mining industry by enabling predictive, adaptive,
and sustainable decision-making. It bridges geological knowledge with computational intelligence, allowing
operations to become more efficient, environmentally responsible, and resilient. As mining progresses
toward Industry 5.0, ML-driven systems are expected to play a central role in achieving intelligent resource
management and responsible technological transformation.

6. Conclusion

Machine learning has emerged as a transformative tool in modern mining, particularly for ore grade
estimation and blending optimization. This review presented how approaches such as ANN, SVM, RF, and
ensemble learning outperform conventional geostatistical methods in capturing nonlinear, multidimensional
geological relationships. These techniques not only improve grade prediction accuracy but also support
dynamic blending strategies that enhance resource utilization, process efficiency, and environmental
sustainability. Coupling ML with metaheuristic algorithms such as GA and PSO enables adaptive blending
plans that ensure uniform feed quality, reduced operational cost, and stable plant performance. The
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integration of digital twins, loT-enabled sensors, and cloud-based platforms further strengthens the real-time
decision-making capabilities of ML systems in mining operations. Despite the clear benefits, the broader
industrial adoption of ML faces key challenges, including limited high-quality datasets, model
interpretability, integration with legacy systems, and ethical considerations such as data privacy and
workforce transitions. Addressing these challenges will require developing standardized datasets, transparent
model benchmarking, and modular architectures that can integrate seamlessly into existing mining
workflows. Future research should focus on explainable Al, federated learning, and transfer learning to
improve interpretability, data efficiency, and model adaptability across different mine sites. From an
industrial perspective, successful deployment will depend on interdisciplinary collaboration between data
scientists, mining engineers, and operational managers to translate predictive models into actionable, reliable,
and interpretable tools. As the mining sector advances toward digital transformation, machine learning is
poised to play a central role in achieving efficient, intelligent, and sustainable mining systems that align with
the goals of Industry 5.0 and responsible resource management.
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