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ABSTRACT 
The rapid growth of bio-energy production is closely aligned with 

global sustainability agendas, particularly the Sustainable Development 
Goals (SDGs) related to Affordable and Clean Energy (SDG 7), Industry, 
Innovation and Infrastructure (SDG 9), and Climate Action (SDG 13). 
Effective pollution monitoring across the bio-energy production chain is 
essential to ensure that renewable energy expansion does not lead to 
unintended environmental burdens. Current research largely treats artificial 
intelligence (AI) applications in environmental monitoring and bio-energy 
systems as separate domains, creating a research gap in integrated, process-
wide frameworks that connect emission sources, sensor networks, data 
pipelines, and AI models across all production stages. The objective of this 
study is to critically review AI-based pollution monitoring approaches for 
bio-energy systems and to assess their capability to support sustainable and 
responsible energy production in line with SDG targets. The methodology 
involves a structured synthesis of recent literature on sensing technologies, 
data acquisition and preprocessing, machine learning and deep learning 
models, and hybrid physics-informed approaches applied from biomass 
handling to biofuel refining. The key findings show that AI-enabled 
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monitoring improves real-time emission estimation, early detection of abnormal events, and short-term forecasting, 
supporting cleaner production pathways. At the same time, challenges related to sensor drift, data scarcity, model 
transferability, and interpretability limit large-scale adoption. The implications of this review highlight the need for 
open benchmark datasets, robust calibration strategies, and explainable AI models to strengthen regulatory trust, 
promote sustainable industrial practices, and contribute directly to achieving SDG-linked environmental and energy 
objectives. 
Keywords: AI Monitoring, Bio-Energy, Emissions, Hybrid Modelling, Sensor Networks, Affordable and Clean Energy; 
Climate Action 

1. Introduction 
Bioenergy production involves several stages, including biomass collection and pre-treatment, anaerobic 

digestion, thermochemical conversion (combustion and gasification), and liquid biofuel processing. Pollution 
may arise at each stage. Typical examples include fugitive methane emissions and odor release from 
digesters, particulate matter (PM) and nitrogen oxides (NOₓ) from combustion units, and volatile organic 
compounds (VOCs) and liquid effluents during refining operations. Monitoring these emissions is essential 
for regulatory compliance, effective process control, and protection of public health. Recent advances in low-
cost sensors, IoT-based data transmission, and artificial intelligence provide new opportunities for improved, 
continuous monitoring and early mitigation of environmental impacts. Existing reviews on AI applications in 
environmental monitoring and bioenergy systems indicate rapid growth in sensor–AI integration and 
predictive control modelling. Environmental monitoring of bioenergy systems has attracted significant 
interest due to the temporal variability and complex behavior of pollutants [1]. AI-based approaches can offer 
faster response and higher reliability than manual sampling, which is often constrained by cost, scalability, 
and time, particularly in resource-limited regions [2,3]. AI systems support automated data acquisition, 
processing, and interpretation, shifting monitoring practices from static measurements toward predictive and 
real-time assessment of environmental impacts associated with bioenergy production [1,3,4]. Methods such as 
inductive learning, computer vision, and advanced sensor networks enable high-level data analysis and 
improve the accuracy, efficiency, and spatial coverage of environmental monitoring activities [4,5]. This 
integration strengthens risk prediction and environmental control across bioenergy supply chains [2]. AI-
based models also support the analysis of complex natural and ecological phenomena that are difficult to 
capture using classical analytical tools, including habitat assessment, wildlife monitoring, and deforestation 
detection [4,6]. In the bioenergy context, AI is applied to multiple operational aspects, including feedstock 
management, optimization of conversion efficiency, and continuous environmental monitoring at both bio 
refineries and distributed bioenergy plants. Neural network models linked with air and water sensor networks 
are increasingly used for pollution estimation, waste treatment monitoring, and sustainability assessment [7,8]. 
Recent review studies summaries a wide range of AI techniques applied specifically to bioenergy process 
monitoring and environmental management [9]. Deep learning plays a central role by extracting complex 
patterns from large-scale environmental datasets, which is critical for climate modelling, pollution detection, 
and dynamic monitoring of bioenergy systems [10,11]. It improves classification accuracy for high-resolution 
satellite, drone, and ground-based sensor imagery used in land-use analysis and ecosystem surveillance 
within bioenergy landscapes [10,12]. These capabilities support assessments of land suitability for biofuel 
production and evaluation of associated environmental impacts [13]. Machine learning methods also assist in 
waste sorting and routing for bioenergy applications [14] and support planning and optimization of 
bioconversion processes through data-driven, adaptive decision-making in refinery environments [15,16].  

Although there have been several state-of-the-art reviews on the use of artificial intelligence for 
environmental monitoring or bioenergy system optimization alone, this review is unique in providing a 
process-integrated, chain-wide context for pollution monitoring throughout the entire production pathway of 
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bio-energy. More specifically, it connects the sources of emission, sensing devices and data transformation 
into AI models at every stage -from biomass handling to anaerobic digestion as well as from 
thermochemical conversion and biofuel processing-into a single analytic framework. The review goes 
beyond prior works by critically deciphering the hybrid and physics-informed AI models to improve 
adaptability under varying operating conditions, as well as consolidating deployment-level issues including 
sensor drift, calibration consistency, domain shift, and regulatory acceptances. By identifying targeted 
research priorities in the form of open benchmark datasets, transferable calibration pipelines, explainable 
models, and closed-loop field validation, this work makes a focused contribution to the translation from AI-
based pollution monitoring in experimental studies to reliable industrial practice. 

 

Figure 1. Overview of Bioenergy Production Stages and Points of Pollution with AI-Based Environmental Monitoring Integration 

Figure 1 sets the scene for pollution monitoring as a chain-level rather than unit-level problem. Here, 
the figure shows the mapped emission sources across biomass handling, digestion, thermochemical 
conversion and refining to demonstrate why single approach monitoring is not enough. It further illustrates 
the visual concept of continuous, AI-driven sensing and data integration along stages where emissions are 
intermittent, diffuse, and operationally coupled. Application of AI driven analytics to Earth observation data 
is enhancing monitoring by providing rich spatiotemporal insights into land-use change, biomass growth and 
pollution associated with bio-energy production [17]. These approaches can be used to enhance resource 
management and conservation planning and also inform ecosystem health assessment determination as well 
as the prediction of ecological response to bio-energy practices [6,18]. One of the typical examples is the 
application of AI models for detecting deforestation through satellite images in order to identify illegal 
logging which impacts carbon balance and biodiversity [4]. Remote sensing techniques, for instance satellite 
imagery, LiDAR and hyperspectral, have permitted the AI in forest composition studies at a large scale and 
have an impact on biomass resource surveillance [19]. AI plays a significant role in predicting the properties 
of biomass, optimizing conversion processes and facilitating biofuel characterization, which aids in the 
improved efficiency and environmental profile of bioenergy systems [20]. Integrating AI and EO data also 
aids in early detection of environmental anomalies and understanding temporal trends, which are necessary 
for decision-making processes and sustainable development [17]. This integrated approach allows surveillance 
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from broad land-use trends to specific pollutant signals, favoring risk-based and adaptive management 
across bio-energy chains. Among them, there are multi-criterion decision making tools where AI is able to 
evaluate the environmental, economic and social aspects of bio-energy projects [21]. AI Over the Horizon AI 
predictive spatial data can assist farmers and planners in adaptive management at bioenergy landscapes by 
accounting for carbon sequestration, species distribution and ecosystem conditions [22]. Responsible 
application of such systems is essential to ensure that they are used for beneficial purposes in sustainability 
rather than exacerbating inequality and new environmental stresses [17]. That would require strong 
frameworks around data governance, model transparency and ethical protection. Clear description of recent 
advances, the present status and barriers of AI based pollution monitoring for bio-energy systems is required 
to foster environmental sustainability and technological advancement. This review provides an in-depth 
description of the state-of-the-art along the bio-energy production chain, including AI supported pollution 
monitoring as well as applications for air, water and soil and future research directions. Table 1 describes the 
way in which AI can be applied to environmental monitoring through the bioenergy chain, connecting each 
step of processes to a set of received pollution problems and responses according with appropriate AI 
methods and applications. It also outlines the main research deficiencies, particularly demand for adaptive 
models and multi-source data integration, along with transparent governance structures. 

Table 1. AI-Based Environmental Monitoring in Bioenergy Production 

Aspect Bioenergy 
Processes Pollution Sources Role of AI Applications & 

Examples 
Key Insights / 

Research Gaps 

Process Chain & 
Context 

Biomass 
collection, pre-

treatment, 
anaerobic 
digestion, 

combustion, 
gasification, liquid 

biofuel refining 

Fugitive methane, 
odour emissions, 
PM, NOx, VOCs, 

wastewater 

AI improves 
tracking of 

dynamic, complex 
pollution patterns 

Use of sensor 
networks, IoT 

telemetry, 
inductive learning, 

computer vision 

Need for 
systematic AI-

based monitoring 
across each 

production stage 

Monitoring 
Challenges 

Manual sampling, 
laboratory testing, 

low temporal 
resolution 

Limited scalability 
in developing 

regions 

AI handles large, 
heterogeneous, 

real-time datasets 

Automated data 
gathering, 
adaptive 

algorithms 

Research gap in 
affordable, high-

resolution 
environmental 

monitoring 

AI Techniques 

Applied 
throughout 
bioenergy 
operations 

Identifying hidden 
pollution trends 

Deep learning for 
pattern detection, 

classification, 
forecasting 

Satellite imagery, 
drones, ground 

sensors, LiDAR, 
hyperspectral 

imaging 

Integration of 
multi-source data 
remains limited in 

many chains 

Environmental 
Applications 

Feedstock 
logistics, land use 

assessment 

Pollution during 
conversion, 

transport, waste 
handling 

Predictive analytics 
for early warnings 

Land cover 
classification, 
deforestation 

tracking, biomass 
estimation 

Lack of unified 
models linking 

land-use change 
and real-time 

pollution 

Operational 
Benefits 

Improved 
conversion yield, 

optimized 
bioconversion 

Reduction of 
emissions and 
resource loss 

Data-driven 
decision support 
for sustainable 

processes 

Waste sorting, 
routing, resource 

allocation, process 
optimization 

Need for adaptive 
models that react 
to rapid system 

fluctuations 

Ethical & 
Governance Needs 

Sustainable 
production 
planning 

Potential bias in 
environmental 

decision systems 

Fair, explainable 
and transparent AI 

frameworks 

Multi-criteria 
decision analysis 

for socio-
environmental 

balance 

Research gap in 
ethical guidelines 
and governance 

for AI deployment 
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2. Measurement hardware and data pipelines 
Bio-energy plants require a variety of sensors and different measurement principles, drift behaviors and 

cross-sensitivities need to be dealt with in one way. These discrepancies underscore the importance for 
combined pipelines which unify all readings from optical, electrochemical (EC), oxidised metals and 
reference-grade instruments into a common approach. Here, in conjunction with hybrid networks and AI-
based calibration, this joint work further enhances the accuracy of pollutant measurement results, making 
monitoring more continuous across combustion, digestion and fuel-processing units. 

2.1. Sensor types and characteristics 
Bio-energy applications use a number of sensor types to monitor gas emissions, particulate activity and 

component status along components including the economizer, exhaust line and ash-handling units. NDIR 
sensors are typically used for CO and CH₄ because they are sufficiently stable in humid condition and 
readily suitable for continuous field measurement. These sensors are also popular for methane because they 
offer the rapid detection required in applications such as leak detection Industrial and commercial 
applications catalytic bead sensors are used for industrial and commercial only not residential. For NOₓ, SO₂ 
and O₃, electrochemical sensors are commonly recommended because of selectivity [and power requirements 
plus they are suitable for deployment in networks]23. 

Particulate concentrations (PM₂. ₅, PM₁₀) are determined by optical counters providing real-time and 
gravimetric samplers (reference methods). Sensors that measure VOCs are usually metal-oxide, but their 
readings may change depending on temperature or humidity. In these cases, laboratory methods for chemical 
speciation (e.g., gas chromatograph or FTIR) are still necessary to determine more detailed components of 
the reaction mixture that low-cost sensors are not able to distinguish [23]. The AI-enhanced sensor networks 
are designed for compensating the individual sensors biases, through aggregating data from different sources 
to form more complete pollution and source estimations. The infrared gas sensors are crucial for the carbon-
based gases due to their ability to detect a specific absorption wavelength, and presents with sensitive and 
accurate readouts and low interference towards other species [24]. Flow monitoring, despite its importance in 
interpreting energy use measurement and verification is still expensive and technically demanding, which 
justify the demand for models based on hybrid measurement–modelling methods [25]. Other alternative 
techniques including infrared absorption spectroscopy and optical interferometry also provide choices, and 
have their working range and limitation [26]. Low-cost sensor networks are now being deployed in proximity 
of combustion and digestion units to map pollutant concentrations at high spatial resolution. Low price 
allows dense monitoring, but problems like drift and cross-sensitivity limit its reliability. "Master special of 
many families-Master special for all-more or less obsolete now Reference standards are still needed for 
calibration and long-term validation. A number of investigations propose hybrid networks, where low-cost 
sensors share the coverage function with a few well-located reference monitors, can provide an effective 
trade-off between network extension and accuracy for bio-energy applications. Real-time online detection 
can compensate for the deficiencies of the casualty-based instrument and offline laboratory devices which 
are expensive to use and work in stops and starts [27]. To make such hybrid systems more reliable, AI 
solutions that can compensate sensor drift and cross-sensitivities, as well as fusion multimodal datasets into 
a single monitoring structure, must be developed [24,28]. 

 

2.2. Data acquisition and pre-processing 
Contemporary bio-energy facilities store high-frequency data sampled by on-board loggers using IoT 

telemetry into time-series databases for later analysis. For most pipelines calibration is performed by field 
co-location of sensors and reference instruments applying simple linear correction factors or more advanced 
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drift correction techniques. For smaller (< 1mW) plants and farms, which may be reliant on uncalibrated 
sensors, hierarchical validation: synthetic-benchmark-trained-and-real-microdata-refined improves model 
accuracy [29]. This method enables strong AI modelling even if sensor data is heterogeneous or noisy [30]. 
Calibration Technically, AI models also refine calibration by training on co-located reference monitors and 
employing additional parameters such as temperature and humidity to correct for drift [31]. After calibration, 
data cleaning removes missing values and noise via statistical or machine learning based methods for 
preparing the dataset for analysis [32]. Outlier removal compensates for electrical noise, warm-up behavior 
and abrupt system changes; interpolation retains temporal coherence. Features like rolling averages, 
variance, gradients and frequency-based features are frequently taken out of these studies and combined with 
plant-level information as feedstock composition, the feed rate of the digester, and temperature in the 
digester, combustion load and flow rates were used together with meteorology. These manual inputs are 
designed to assist in the interpretability of global emission estimates and to refine high emission activity 
periods. Clean, high-quality data is of crucial importance as poor quality data can impact on model accuracy 
in a dynamic plant environment [33]. Those virtual sensors, based on machine learning models, also correct 
distorted readings and ensure that the data is continuous [34]. Robust pre-processing is still crucial; even 
sophisticated models don't work well when trained with uncalibrated or noisy input. Table 2 lists the 
principal hardware and data-pipeline components with a focus on sensor roles, typical limitations, and the 
necessity of hybrid systems together with AI methods to achieve an accurate and reliable monitoring 
throughout different parts of plants. 

Table 2. Hardware, Sensors, and Data Pipeline Structure in Bioenergy Monitoring 

Component Purpose Sensor / Tools Key Issues Role of AI / Hybrid 
Systems 

Measurement 
Hardware 

Track gases, PM, and 
operating conditions 

NDIR, catalytic bead, 
EC, metal-oxide, 

optical PM, 
gravimetric, GC/FTIR 

Drift, cross-sensitivity, 
humidity effects, high 

cost 

Unifies signals, 
compensates drift, 

improves continuity 

Sensor Characteristics Provide pollutant-
specific measurements 

NDIR (CO/CH₄), EC 
(NOx/SO₂/O₃), metal-

oxide (VOCs), PM 
counters, FTIR/GC 

Humidity effects, 
limited speciation 

Multisensor fusion and 
calibration improve 

accuracy 

Low-Cost Sensor 
Networks 

Enable dense spatial 
monitoring 

Low-cost multi-
pollutant nodes 

Strong drift, low 
stability 

Combine with 
reference stations for 

balanced accuracy 

Data Acquisition Collect and store high-
frequency readings 

IoT loggers, cloud 
databases 

Noise, missing data, 
communication gaps 

Supports hierarchical 
validation pipelines 

Calibration & Pre-
Processing 

Prepare clean and 
reliable datasets 

Drift correction, 
imputation, outlier 

removal 

Heterogeneous and 
noisy industrial data 

AI correction, virtual 
sensors, feature 

extraction 

Overall Outcome Achieve stable and 
continuous monitoring — Mixed pollutants and 

dynamic conditions 
Reliable long-term 

monitoring across units 

3. AI methods: tasks and algorithms 
This section outlines the main AI tasks and algorithmic families used for pollution monitoring in bio-

energy systems. It focuses on how prediction, forecasting, and anomaly detection are matched with process 
data and sensor characteristics. Emphasis is placed on selecting methods that remain reliable under dynamic 
operating conditions. 

3.1. Tasks 
AI approaches for bio-energy involve prediction and diagnostic tasks to provide real-time monitoring & 

operational planning. A central task is regression, in which models learn the connection between multimodal 
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sensor inputs (process settings), and measured pollutant values. It enables low-cost sensor arrays together 
with process data to emulate reference-quality measurements. Many works focus on predicting trends, by 
short-term (minutes to days) forecasting of time series. These predictions provide an early alarm that 
emissions may be increasing, and allow the operator to take action on air–fuel ratios, feedstock input or on 
digester conditions. Anomaly detection is also quite crucial, as it detects abnormal trends or noise present in 
sensor readings that could help to identify equipment failures or process upsets which can lead to high 
emissions [29, 35]. 

 

Figure 2. Input–Task–Algorithm Framework for AI Applications in Bio-Energy Systems 

The logical relationship between AI tasks, algorithm selection and heterogeneous sensor inputs are 
described in Figure 2. It demonstrates that model selection is a function of task demand—either prediction, 
novelty detection or source identification—and not simply an algorithmic whim. The approach corresponds 
to the notion of aligning data semantics with an appropriate learning target and is supportive of the widely 
accepted view that good pollution monitoring entails that data-specific will effectively mediate between 
mission goals and collected input. Anomalies make it possible to detect abnormal emission spikes, 
equipment failures or sensor malfunctions. These models are trained on normal patterns of behavior and 
produce notifications when sensor behavior deviates from the learned pattern. In plants that must be 
monitored constantly is the operator to ensure safe operating limits are not exceeded, this is useful. 
Advanced AI approaches take this further by identifying and correcting drifts to increase the quality of 
sensor data, thus enhancing for example prediction tasks and control actions downstream [36]. Several 
approaches employ unsupervised learning for the anomaly detection based on the deviation from operational 
baselines, enabling effective real-time monitoring and more accurate predictive maintenance [35]. ALE 
source allocation and classification techniques can identify which unit (combustion, digestion or storage) is 
responsible for an emission event - a particularly valuable function for facilities with several combustion, 
digestion or storage units. Classification algorithms tie sensor signatures to likely sources, simplifying 
targeted abatement and supporting regulators in understanding the contribution of each process. And in the 
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field of transformers, instead of stacking different layers, self-attention is applied to extract fine features 
from industrial data for refining pollution source identification and prediction [37]. Predictive emissions 
monitoring systems can be substituted for traditional continuum monitoring by employing AI to predict 
pollutant concentrations from process variables, e.g. by using machine-learning techniques such as gradient 
boosting machines [38]. AI models are also stand-ins for process enhancements. They predict emissions given 
different operating conditions, and facilitate multi-objective optimization between power generation, 
operational stability and the environment. Such surrogate models are especially useful when the physical 
simulations are slow or computationally expensive. 

3.2. Algorithms and hybrid approaches 
In bio-energy research, a variety of ML techniques are implemented. Older methods like linear 

regression, random forests, gradient boosting (XGBoost, LightGBM) and SVMs are ubiquitous because they 
work well and are interpretable. Tree ensembles are particularly attractive in this regard, because they model 
nonlinear dependencies, and cope well with noisy input data while these models offer transparent variable-
importance assessments. Random forests have found promising results in biomass-to-biochar prediction [39], 
whereas gradient-boosting techniques and XGBoost have provided precise NOₓ predictions for combustion 
and boiler systems [38,40]. Deep learning-based models are more appropriate for temporal patterns when 
system behavior is predominantly sampled in interval timing. LSTMs are able to capture long-term time-
series dependencies, while transformers work well with irregular or multivariate data. They can be 
employed for short-term prediction in AD (Anaerobic Digestion), biomass combustion and upgrading of 
biogas. Hyper parameter tuning is also widely realized with the Bayesian optimization, by which more 
accurate prediction programs for gasification outputs / engine emissions can be obtained as a result Hybrid 
models are gaining popularity. Some methods marry mechanistic process models with a data-driven 
component to compensate for the remaining errors, and full physics-informed learning which encapsulates 
process constraints into neural networks. Human-in-the-loop AI can benefit from expert judgment in the 
course of model refinement, which is useful especially for complex bio-energy processes where laws of 
physics and domain knowledge enhance reliability and interpretability [42]. AutoML solutions automate 
feature processing and model choice. Additionally, ensemble stacking improves prediction stability. 
Research on anaerobic digestion demonstrates that tree-based AutoML models, when joined with neural 
networks, yields higher accuracy. Hybrid systems combining ML and metaheuristic optimization also 
underpin optimal operating conditions and pollutant mitigation for enhanced system efficiency and 
environmental acceptability. These models allow for improved accuracy, robustness, and generalization in 
the context of renewable-energy and biofuel applications [43]. Deep-learning–mechanistic hybrids model 
nonlinear behavior while enforcing physical consistency by reducing reliance on large dataset [44]. 

This section shows the technical depth of HPC through an extensive discussion of hybrid and physics-
informed AI models. The paper describes how data-driven approaches are integrated with scales in mass 
balance, thermodynamic relationships and process kinetics. Moreover, it demonstrates how in human-in-the-
loop techniques expert knowledge is also leveraged to enhance robustness, interpretability, and reliability 
under changing bio-energy operating conditions. 

4. Applications across the bio-energy chain 
This section examines how AI-based monitoring is applied at different stages of the bio-energy 

production chain. Applications are reviewed from biomass handling to biofuel refining, with attention to 
pollution sources and process variability. The discussion highlights differences in maturity across stages. 

4.1. Biomass collection and pre-processing 
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Operations for biomass—chipping, drying, conveying and transport—are a source of suspended 
dust/particulates. AI models connect equipment variables (e.g., conveyor speed, moisture content and 
mechanical load) with meteorological conditions in order to predict particulate release for varying operating 
conditions. Research has shown that integrated models can predict for periods of high dust generation. 
Drones or fixed camera sensors allow the online remote sensing and visual examination of biomass piles, 
where image features such as color changes, surface cracking and local heating are useful for detecting 
degradation (or early self-heating). High VOC and CO events occur under similar meteorological conditions 
and therefore early notification may be useful for preventive action. AI methods such as ML and neural 
networks further enhance the prediction of feedstock quality for optimum anaerobic digestion conditions 
with the production of biofuels at higher efficiency with a better sustainability [45]. The tools contribute to 
limit the environmental pollution, optimize the logistics of biomass, and that waste is reduced simultaneously 
with the increase in material quality. Above and beyond these, AI can also facilitate biodiesel production 
prediction, engine-emission model estimation and biofuel quality forecasting [40]. Furthermore, AI based 
approaches help in microbial or crop selection, and conducting genetic engineering for maximizing biofuel 
yields, and allow early stage techno-economic & life-cycle studies of a biomass-to-biofuel process [46]. 

4.2. Anaerobic digestion and biogas facilities 
Artificial intelligence (AI) methods have been employed for explanation and control analysis AI 

methods are employed to investigate emissions from the AD process by developing a methane yield model 
as a function of feedstock characteristics, OLR, digester temperature and indicators about microbial activity. 
They also allow for the estimation of methane slip, i.e., the unintentional release of methane before 
combustion or upgrading. Such sensor-based classifiers can focus on pH, redox potential or temperature as 
well as gas composition to detect the occurrence of unstable states such as acidification or overloading. 
Regression models are developed up to the prediction of methane, CO₂ and total gas production first to 
design an early intervention strategy. Predictions of these emissions in real time can be interfaced with 
modern control systems for controlling processes to minimize GHG emissions automatically. Machine 
learning exhibits better predictive accuracy for methane yield from AKR than linear regression, however it is 
less reliable [47], demonstrating the potential application in WWTP models. ANN and SVM methods are also 
employed to optimize running states and predict biogas production for sustained, efficient AD operation 
[29,35]. AI-driven models also aid in optimization of that processes and reduction in pyrolysis, gasification, 
and combustion toward better system performance through the improvement in BE aspect [35]. Deep learning 
integrating with neural networks is a further method to enhance methane prediction by overcoming the 
disadvantages of classical models (dealing with complicated inputs and having slow characteristics in 
responding biogas systems) [48]. Figure 3 summarizes how AI tools are applied in various links of the bio-
energy chain, and highlights that pollution benefit is achieved through holistic application rather than 
isolated optimization. It shows disparities in research maturity: among available biomass-based technologies, 
anaerobic digestion and combustion have attracted much more interest than upstream (e.g., biomass pre-
treatment) or downstream (e.g., bio-oil upgrading) processes showing the future studies gaps. 
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Figure 3. AI Applications across the Bio-Energy Chain 

4.3. Combustion and thermochemical conversion 
Regulated pollutants NOx, SOx, CO and PM are emitted when biomass is combusted in bio-energy 

plants. These emissions are estimated by the machine learning models, which considers the fuel type, 
moisture content, air–fuel ratio, furnace temperature and load variations as inputs. Such models are used to 
determine operating windows for emissions compliance at a cost of low energy generation. Computer vision 
has been applied to the analysis of flame shape, color and flicker (which relate to combustion quality) while 
acoustic signals help identify noise patterns related to/mismatch in combustion or burner damages. Early 
diagnosis of the abnormalities is possible by both these techniques. AI methods, e.g. ANN and machine 
learning models predict stability and conversion rates of thermochemistry reactions for bio-oil and syngas 
production with lower experimental requirements [47]. These instruments also provide a better understanding 
of waste-to-energy processes, such as incineration by determining optimum erosion conditions for high 
energy recovery with minimal emissions [35]. Moreover, AI enables the comprehension of intricate 
biochemical paths to biofuel production and assists shifting to advanced- or next-generation nonfood biofuels 
[40]. These strategies enhance the biofuel value chain from feedstock generation to ultimate conversion [40]. 
Above and beyond process optimization, AI enables adaptive and predictive maintenance for emissions-
control systems. It is also possible to combine it with GIS in order to identify and monitor polluted areas 
suitable for bioremediation, boosting environmental management [49]. 

4.4. Biofuel refinery and biochemical conversion 
Processing biofuels (e.g., production of ethanol from fermentation, of biodiesel from transesterification, 

and biochemical upgrading) create three waste products including compounds in gaseous form, waste water 
and off-gases. Solvent loss and VOCs emissions are monitored by the AI platforms via sensors in the vent 
lines and process units. Multivariable models are constructed, taking into account temperature, pressure, 
flow rate, solvent composition and reaction indicators to predict pollutant loads online. These predictions 
assist operators to detect abnormalities in time, making them respond before having an impact on emissions 
or effluent quality. Through early prediction, AI enhances the environmental performance and improves 
process stability in biofuel refining. Similarly, machine learning methods are also used to measure and tune 
the associated chemical parameters for conversion of waste oils to biodiesel whose output yield and quality 
is increased [49]. These optimization approaches also help with removing impurities from feedstocks and 
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compost, leading to reduced environmental load and higher economic returns [48]. These prediction tools aid 
in regulatory compliance and development of an environmentally and economically sustainable bio 
economy [35]. Machine learning with predictive modelling facilitates automatic and real time monitoring in 
the biomass conversion process and thus reduces labor cost as well as improves its efficiency [50]. AI also 
scales to the broader strategic control of systems in bio refineries, where digital twins represent and optimize 
processes systems to optimize resource consumption and waste minimization [51-60]. The role in which AI can 
play at different stages of the bioenergy chain for improved efficiency, process stability and emissions 
management is summarized in Table 3. 

Table 3. Role of AI in Biomass, Biogas, Combustion, and Biofuel Refinery Processes 

Stage / Process Key Activities AI / ML Applications Benefits Examples / Outcomes 

Biomass Collection & 
Pre-Processing 

Chipping, drying, 
conveying, transport, 

storage pile 
monitoring 

Dust forecasting; 
drone/camera 

inspections; feedstock 
quality prediction; 
biodiesel & engine 

performance modelling; 
microbial/plant selection 

Early detection of 
dust/VOC events; 
improved quality; 

optimized logistics; 
reduced wastage 

Predicting dust peaks; 
detecting pile 

degradation; ANN for 
digestion feed quality; 
AI for biodiesel and 

emissions 

Anaerobic Digestion 
& Biogas Facilities 

Biogas yield 
monitoring; stability 
assessment; methane 

slip detection 

Regression, ANN/SVM 
for methane yield & 
CO₂; classifiers for 

overload/acidification; 
deep learning for 

digestion dynamics 

Stable operation; 
reduced methane slip; 
early fault detection; 
real-time emission 

prediction 

ML-based methane 
yield estimation; AI 

control to reduce GHG; 
optimization of 

pyrolysis/gasification 

Combustion & 
Thermochemical 

Conversion 

Combustion control; 
flame analysis; 

emission monitoring 

ML for 
NOx/SOx/CO/PM; 
computer vision for 

flame patterns; acoustic 
burner fault detection; 

ANN for 
thermochemical 

reactions 

Controlled emissions; 
early abnormality 

detection; improved 
bio-oil/syngas 

production 

AI optimization of 
waste-to-energy units; 

predictive 
maintenance; GIS-AI 

for remediation 

Biofuel Refinery & 
Biochemical 
Conversion 

Fermentation; 
transesterification; 

biochemical upgrading 

Multivariate 
VOC/solvent models; 

ML for process 
optimization; impurity 
removal; digital twins 

for control 

Lower emissions; 
early upset warnings; 

improved yields; 
reduced cost 

AI for biodiesel yield; 
automated monitoring; 
refinery digital twins 

 

5. Evaluation metrics and benchmarking 
The assessment of AI models in the application of bio-energy emission studies employs commonly used 

metrics for model evaluation that assess prediction accuracy, classification reliability and forecasting skill. 
For regression purposes, RMSE, MAE and R² are the three measures used to express respectively total error, 
average deviation and goodness of fit. For classification tasks, precision, recall and F1 score are commonly 
used, particularly to find rare events like faults, emission spikes or sensor anomalies. Or similarly, in time 
series forecasting comparison of fit to simple baseline methods is usually done using skill values or relative 
errors. Biomass’ higher heating value, for instance, can be accurately estimated by advanced machine 
learning techniques contributing to the determination of complicated biomass arrangements [61-75]. Cross-
validation and external validation will help to improve the robustness of models, which is necessary as bio-
energy feedstocks and operations are in general diverse (and often heterogeneous) [76-83]. The feedback from a 
variety of sensors in real time must also be combined correctly in order to maintain coherence when 
predicting with AI in systems featuring movement. Strong validation procedures are going to ensure that AI-
engine based monitoring tools have a solid base for their use and will effectively contribute to wider 
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adoption in bio-energy industries. In work that focuses on temporal patterns, time-order-based validation is 
due for a requirement furthermore, techniques like temporal blocking and rolling-window splits are 
necessary. The former prevent leakage of information from the future while providing an estimate how a 
model would behave in practice. In imbalanced data classification, the model performance is commonly 
monitored by sensitivity, specificity, accuracy, precision, F1 score and Matthews’s correlation coefficient [84-

88]. Recent evaluation measures involve spatiotemporal out-of-distribution scores, sensitivity scores related to 
aleatory uncertainty and outlier scores for biased subgroups [89-90]. One considerate limitation is the absence 
of standardize data sets and most of the works use sensor logs from each plant, making them difficult to 
compare. Some recent work has made codes, sample data or synthetic benchmarks available to ease 
transparency. The lack of open source data is still crucial, and the usage of standard benchmarks would help 
making comparison more consistent. It is important to generate available and standardized data set with 
reference implementations, which can make a widely researched while AI-based bioprocess engineering in 
designing reliable [91-101]. To establish robust models, such data should cover a wide spectrum of operating 
conditions and pollutant characteristics [102-104]. Comprehensive benchmarks for accuracy, robustness and 
fairness of AI models are also critical as with other ML subfields [105-107], e.g., as initiated by NREL for 
biogas algorithms. These benchmarks should provide the community with public datasets and standard 
classification, regression and prediction challenges, applicable across bio-processing studies [108-116]. Shared 
data sets and evaluation methodologies enhance reproducibility and promote the development of powerful, 
generalizing predictive models [117-120]. Developing benchmark data sets containing documented sources of 
uncertainty is also critical to advance uncertainty quantification in the context of bio-energy [121-123]. Even 
though diverse AI models have been reported for pollution prediction in bio-energy systems, the validation 
techniques applied in each study vary. Cross-validation is the most frequently used method that provides 
robust internal performance estimates and is preferable when there is limited data, although such a method 
tends to assume stationarity and can lead to an overestimate of generalization in highly dynamical bio-
energy processes. External testing, based on data from other independent plants or operating periods, 
provides more evidence of transferability, but this is infrequently applied because requisite data are rarely 
available and limitations on confidentiality. Temporal validation techniques, such as rolling-window or 
blocked time-series splits, are of special interest to emission forecasting and anomaly detection; since they 
maintain the causal nature of process data and prevent information leakage from future states. A systematic 
comparison reveals that none of these strategies is universally effective on its own; however, a combination 
of cross-validation for model selection with temporal and external testing for deployment-level assessment 
can provide a more accurate profile of model robustness and generalization. 

6. Case studies (selected) 
This section presents selected case studies that demonstrate practical implementations of AI-based 

monitoring in bio-energy systems. The examples illustrate how different modelling approaches perform 
under real operational conditions. Attention is given to both achieved benefits and observed limitations 
during deployment. 

6.1. Auto ML by tree for the prediction of biogas 
In the last few years, a number of studies have utilized automatic machine learning algorithms in biogas 

producing systems with emphasis on lignocellulosic substrates. AutoML frameworks for tree-based models 
can explore an enormous search space of ensemble learners and hyperparameters, relying on a simple 
operational protocol to discover the best model without a significant amount of human intervention. These 
models have performed well in predicting methane yield for a range of feedstock characteristics, loading 
rates and digester conditions. Besides reliable predictions, in this case they also yield ranked feature 
importance estimates which are useful to understand the relative impact of variables like fiber content, 
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volatile solids, and temperature and retention time. The resulting balance of accuracy and interpretability 
makes tree-based AutoML a valuable method for plant operators who want to change feedstock mixes while 
keeping gas stability. 

6.2. IoT and deep learning for industrial air detection 
Another strand of research involves combining inexpensive sensor networks with deep learning on air 

emissions detection in industrial bio-energy environments. Dense distributions of gas, particulate and 
meteorological sensors are these deployed interconnected to IoT platforms for real time data streaming. 
Highly accurate sequence models, typically LSTM- or transformer based, can predict in the short-term range, 
that is to say forecast emission levels ahead of time such that operators still have a reaction time until 
threshold values are crossed. There are works that have claimed advancements in the early detection of 
spikes in emissions [5, 4]. However, there is a need for periodic calibration and model retraining as degraded 
environmental conditions can cause the sensors to drift. Such practical experiences the difficulties and 
opportunities of operating large AI-enabled monitoring systems in production. 

6.3. AI for optimization of organic waste treatment 
Studies in bio-waste treatment show how AI is applicable to a broader range of bioenergy processes. 

Composting, aerobic digestion, and other treatment systems were shown to exhibit instabilities when the 
temperature, moisture, aeration rate, and gas composition trends were analyzed using data-driven models. 
Predictive models can be used to optimize the operating parameters, ensuring desired microbial activity will 
not be lost or odor formation/ emitted. From the case studies, enhanced stability results in more efficient 
processing with corresponding reduction in environmental burden. These results indicate the scalability of 
AI-based monitoring and control concepts for use cases also outside the specific scenario of the biogas plant, 
helping to achieve a further sustainable tech-supported transformation. 

7. Challenges and gaps 
This section identifies key technical and operational barriers that limit the deployment of AI-based 

monitoring systems. It focuses on sensor reliability, data quality, model transferability, and interpretability. 
These issues are discussed in relation to long-term industrial use. Figure 4 illustrates the systemic barriers 
hindering the deployment of AI in bio-energy monitoring, starting with sensor inaccuracies and data scarcity 
that compromise model reliability.  

 

Figure 4.  The "Pipeline of Barriers" in AI-Based Bio-Energy Monitoring 
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These upstream flaws, combined with poor cross-site generalization and a lack of interpretability 
("black box" issues), create a trust gap for operators and regulators. Consequently, these technical and safety 
constraints prevent the integration of predictive AI into real-time, closed-loop control systems. 

7.1. Accuracy of the sensors and burden of calibration 
Affordable sensors are the preferred choice for high-density monitoring, but suffer from systematic bias, 

drift and cross-sensitivity. These problems result in non-robust datasets unless the calibration is 
accomplished frequently. Many studies continue to use ad hoc calibration procedures or do not consistently 
follow best practices (such as regular co-location with reference instrumentation or correction model based 
on transfer learning). If calibration is less than perfect, downstream ML models may be fed garbage input 
and will produce biased estimates or low confidence in predicted emissions or anomaly alerts. Inter-
instrument calibration inconsistency further hampers inter-site comparison and long-term deployment 
reliability. The manuscript's power lies in its symptomatic dealing with calibration problems. This section 
covers all aspects of sensor drift, cross-sensitivity and long-term stability issues that could indirectly affect 
AI models due to inappropriate calibration. The emphasis on hybrid-sensor networks and AI assisted 
recalibration is indicative in pragmatic constraints for field deployment. 

7.2. Availability, representativeness and labelling of data 
Reliable datasets representing a wide spectrum of the feedstocks, seasonal variations, and process 

upsets are still scarce. The bulk of the works presented in the literature are based on data collected at one 
plant or equivalent short campaigns. For this reason models trained using a narrow scope generally does not 
generalize at other plants. In particular, the lack of labelled data for rare events such as digester upsets, 
combustion faults, or emission spikes is severe. This hampers the design of reliable classification and 
anomaly detection methods. Further systematic sampling, long-term observation and experiment are 
required to acquire representative data sets. 

7.3. Robustness to model and domain shift 
Design and operational characteristics of bio-energy systems differ widely in terms of style, size, and 

feedstock type, leading to a common source-shift issue. Models that work adequately with one feeding 
regime, feed energy types (mob and roughage balance), moisture/energy content may not behave as such 
when feed mix/feed energy types, load patterns, or environment conditions change. There is a growing body 
of knowledge in transfer learning, domain adaptation and physics-guided model designs, but very few such 
techniques are used in practice. Dealing with domain shift is necessary to construct models that are robust 
across plants and for extended operating periods. Here, the manuscript offers a transparent and rigorous 
examination of domain shift due to variations in feedstock, plant design, operation regimes or environmental 
conditions. The discussion reveals why models trained on site-specific data tend to generalize poorly and 
emphasizes that transfer learning and physics-informed methodologies are necessary for cross-site robustness. 

7.4. Interpretability and regulatory acceptance 
Regulations are focused on transparent and traceable decision processes. Interpretations via models like 

tree-based models result in partial interpretability via feature importance; however, many modern high-
performing deep learning frameworks act as black boxes. Methods of XAI - For instance SHAP, 
counterfactual reasoning or structured surrogate models are scarcely used in emissions work. It’s hard, 
though for operators and regulators to trust in AI-provided advisory without easy insight into why it made 
various predictions, especially if actions could impact a company’s compliance with the law or safety. 
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7.5. Interface to control systems and decision process 
Most of the reported work is predictive rather than closed-loop control. One subset are those that have 

some form of integration with AI predictions and automated actions, such as air–fuel ratio changes, digester 
feeding pattern changes, or the initiating safety procedures. Real decision-friendly workflows are built on 
trustworthy models, verified control strategies and intuitive operator interfaces. Fully integrated AI–control 
system demonstrations are limited, and there is still work left to be done in converting predictive outputs into 
operational guidance that can be acted upon. 

Despite several studies with excellent predictions, few applications pass from a simple prediction to 
closed-loop operational control in the bio reporting area of air pollution assessments powered by bio-energy. 
A primary obstruction is computational burden; more sophisticated models, especially deep learning based 
and compositional sensitive-rigorous method could infeasible under the real-time control time frame or 
incompatible with the legacy plant hardware. Integration into existing systems is yet another challenge to 
overcome, as the AI model has to reliably communicate with supervisory control and data acquisition 
(SCADA) systems, programmable logic controllers and safety interlocks all of which require deterministic 
response time and high fault tolerance. Data latency, sensor fault and the necessity of periodical recalibration 
also bring great concerns to be in use under a dynamic plant environment. From an organizational point of 
view, mechatronic service operators and regulators may need explicit decision logic and reliable fail-safe 
mechanisms to authorize AI-exerted control actions. These are the reasons why most of the works reported in 
the literature never go beyond advisory or alarm-based systems, and motivate the pursuit than lightweight, 
interpretable models, edge-computable/adjustable computations, and incremental human-in-the-loop control 
strategies can be practical paths towards closed loop adoption. 

7.6. Standardization and benchmarking 
The lack of common test platforms hinders progress on the comparison of algorithms, validation of 

claims, and determination of best practices. Different types of sensors, pre-processing of data, evaluation of 
the models, and reporting hinder the ability to judge what methods carry over across contexts. Common 
tasks, public data sets, and clearer reporting instructions would improve replication and facilitate the 
generation of new methods. Creating such benchmarks is a necessary step in an effort to establish robust, 
comparable work in AI-based bio-energy monitoring. 

The lack of available data is partially compensated by a few new initiatives that contribute with partial 
benchmarks for AI-based monitoring on bio-energy and in environmental systems closely related to it. These 
span from plant-specific open data provided with particular studies, over synthetic / semi-synthetic 
benchmarks derived from process simulations, to domain-adjacent repositories established for air-quality 
prediction, biogas production, or industrial emissions monitoring. Although such resources are still 
fragmented and not standardized, they depict realistic avenues for reproducible evaluation. Prospective 
research could in practice help bridge this gap by publishing calibrated multi-sensor datasets with well- 
defined operating scenarios, embracing common evaluation criteria and providing to be used as reference 
selected baseline results for facilitating comparative analysis across the studies. Cooperative benchmarking 
using field-data from numerous bio-energy facilities, enabled by shared pre-processing and validation 
pipelines, would enhance model generalization to new sites, and greatly reduce the time from site-specific 
pilot demonstrations to deployable monitoring systems. 

8. Research priorities and recommendations 
This section proposes research directions aimed at improving the robustness and applicability of AI-

based pollution monitoring. Priority areas include data availability, calibration practices, and hybrid 
modelling approaches. The recommendations are grounded in the gaps identified earlier. 
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8.1. Open benchmark datasets 
Development in AI for emissions is hindered by the absence of openly available high-quality datasets. 

A priority is to develop multi-site, multi-sensor data collections with co-located reference measurements 
provided for e.g. CH₄, CO, NOₓ, PM and VOCs. The operational meta information for these datasets should 
also be available, that is, feedstock properties, load pattern and biogas plant conditions as well as 
timestamps, of what was referred to in Sect. Such resources would facilitate benchmarking of algorithms, 
provide for replicability and assist in discovering methods that generalize to a range of bio-energy systems. 

8.2. Calibration and transfer learning pipelines 
Affordable sensors need to be calibrated regularly in order to stay consistent over time. Automatic 

algorithms with drift correction, cross-sensor transfer learning, and context-aware recalibration would 
alleviate the manual burden on operators and increase data reliability. Research in this field should then 
look into scalable methods to adapt calibration models on the sensor aging and, possibly, environmental 
changes. This would also help to standardize practices across different sites if these pipelines are made open 
and modular. 

8.3. Physics-aware and hybrid modelling 
Combining knowledge based on physical process and machine learning is a trend to enhance robustness 

under varying operating conditions. Hybrid approaches are able to incorporate mass-balance relationships, 
thermodynamic laws or reactor kinetics into the learning process, making the approach’s performance less 
dependent on large sets of data and enhancing extrapolation capabilities as feedstock or load conditions vary. 
Further research is also needed to develop generally applicable frameworks that trade off physical 
limitations against data-driven flexibility. 

8.4. Explainability for regulatory use 
AI models need to be transparent, and predictions must have uncertainty estimates to be deployable in 

regulation/operation. Interpretability tools specific to emissions surveillance – e.g., structured surrogates, 
feature attribution methods, and uncertainty bands – should be automatically appended to model pipelines. 
This would explain to operators why a model had made a given prediction and give regulators the certainty 
needed for decisions on compliance. 

8.5. Closed-loop field trials 
However, in current deployments, a gap between modelled and active control is left out after the 

prediction step. Field tests are necessary to make links between AI predictions and actual control actions, for 
example, modulating air–fuel ratios, changing feedstock blends or actuating ventilation systems. These tests 
need to account for emissions reductions as well as operational both fuel consumption, stability and 
maintenance burden. There would be clear case studies as an example to stimulate it in industry. 

9. Conclusion 
This review presents a comprehensive and process-integrated analysis of AI-based pollution monitoring 

across the complete bio-energy production chain, spanning biomass handling, anaerobic digestion, 
thermochemical conversion, and biofuel refining. The discussion shows that artificial intelligence, when 
combined with modern sensing systems and data pipelines, can significantly improve real-time emission 
estimation, short-term forecasting, and anomaly detection under highly dynamic operating conditions. Such 
capabilities are essential for regulatory compliance, process stability, and the reduction of environmental 
impacts associated with bio-energy systems. The review also highlights that current progress is constrained 
by practical challenges, including sensor drift, inconsistent calibration practices, scarcity of representative 
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multi-site datasets, and limited robustness of models under domain shift. While advanced machine learning 
and deep learning models demonstrate strong predictive performance, their deployment remains limited by 
issues of interpretability, transferability, and weak integration with operational decision-making and control 
systems. Hybrid and physics-informed AI approaches emerge as a promising pathway to address these 
limitations by embedding process knowledge into data-driven models and improving reliability under 
variable conditions. Future research should prioritize the development of open benchmark datasets, 
standardized calibration and validation protocols, and explainable AI frameworks suitable for regulatory use. 
Equally important is the transition from prediction-focused studies to closed-loop, field-tested 
implementations that directly link AI outputs with operational control actions. Strengthening these areas will 
support the translation of AI-based pollution monitoring from experimental demonstrations to reliable 
industrial practice, contributing to cleaner bio-energy production and measurable progress toward sustainable 
energy and climate objectives. 
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Abbreviation Full Form 

AI Artificial Intelligence 
ML Machine Learning 
DL Deep Learning 
IoT Internet of Things 

SDGs Sustainable Development Goals 
GHG Greenhouse Gas 
PM Particulate Matter 

PM₂.₅ Particulate Matter ≤ 2.5 µm 
PM₁₀ Particulate Matter ≤ 10 µm 
NOₓ Nitrogen Oxides 
SO₂ Sulfur Dioxide 
CO Carbon Monoxide 
CO₂ Carbon Dioxide 
CH₄ Methane 

VOCs Volatile Organic Compounds 
NDIR Non-Dispersive Infrared 
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EC Electrochemical 
FTIR Fourier Transform Infrared Spectroscopy 
GC Gas Chromatography 

ANN Artificial Neural Network 
SVM Support Vector Machine 
LSTM Long Short-Term Memory 

XGBoost Extreme Gradient Boosting 
AutoML Automated Machine Learning 
RMSE Root Mean Square Error 
MAE Mean Absolute Error 

R² Coefficient of Determination 
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