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ABSTRACT

The rapid growth of bio-energy production is closely aligned with
global sustainability agendas, particularly the Sustainable Development
Goals (SDGs) related to Affordable and Clean Energy (SDG 7), Industry,
Innovation and Infrastructure (SDG 9), and Climate Action (SDG 13).
Effective pollution monitoring across the bio-energy production chain is
essential to ensure that renewable energy expansion does not lead to
unintended environmental burdens. Current research largely treats artificial
intelligence (AI) applications in environmental monitoring and bio-energy
systems as separate domains, creating a research gap in integrated, process-
wide frameworks that connect emission sources, sensor networks, data
pipelines, and Al models across all production stages. The objective of this
study is to critically review Al-based pollution monitoring approaches for
bio-energy systems and to assess their capability to support sustainable and
responsible energy production in line with SDG targets. The methodology
involves a structured synthesis of recent literature on sensing technologies,
data acquisition and preprocessing, machine learning and deep learning
models, and hybrid physics-informed approaches applied from biomass
handling to biofuel refining. The key findings show that Al-enabled
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monitoring improves real-time emission estimation, early detection of abnormal events, and short-term forecasting,
supporting cleaner production pathways. At the same time, challenges related to sensor drift, data scarcity, model
transferability, and interpretability limit large-scale adoption. The implications of this review highlight the need for
open benchmark datasets, robust calibration strategies, and explainable AI models to strengthen regulatory trust,
promote sustainable industrial practices, and contribute directly to achieving SDG-linked environmental and energy
objectives.

Keywords: Al Monitoring, Bio-Energy, Emissions, Hybrid Modelling, Sensor Networks, Affordable and Clean Energy;
Climate Action

1. Introduction

Bioenergy production involves several stages, including biomass collection and pre-treatment, anaerobic
digestion, thermochemical conversion (combustion and gasification), and liquid biofuel processing. Pollution
may arise at each stage. Typical examples include fugitive methane emissions and odor release from
digesters, particulate matter (PM) and nitrogen oxides (NOy) from combustion units, and volatile organic
compounds (VOCs) and liquid effluents during refining operations. Monitoring these emissions is essential
for regulatory compliance, effective process control, and protection of public health. Recent advances in low-
cost sensors, loT-based data transmission, and artificial intelligence provide new opportunities for improved,
continuous monitoring and early mitigation of environmental impacts. Existing reviews on Al applications in
environmental monitoring and bioenergy systems indicate rapid growth in sensor—Al integration and
predictive control modelling. Environmental monitoring of bioenergy systems has attracted significant
interest due to the temporal variability and complex behavior of pollutants . Al-based approaches can offer
faster response and higher reliability than manual sampling, which is often constrained by cost, scalability,
and time, particularly in resource-limited regions >3l Al systems support automated data acquisition,
processing, and interpretation, shifting monitoring practices from static measurements toward predictive and
real-time assessment of environmental impacts associated with bioenergy production ¥4, Methods such as
inductive learning, computer vision, and advanced sensor networks enable high-level data analysis and
improve the accuracy, efficiency, and spatial coverage of environmental monitoring activities . This
integration strengthens risk prediction and environmental control across bioenergy supply chains 2. Al-
based models also support the analysis of complex natural and ecological phenomena that are difficult to
capture using classical analytical tools, including habitat assessment, wildlife monitoring, and deforestation
detection ¢, In the bioenergy context, Al is applied to multiple operational aspects, including feedstock
management, optimization of conversion efficiency, and continuous environmental monitoring at both bio
refineries and distributed bioenergy plants. Neural network models linked with air and water sensor networks
are increasingly used for pollution estimation, waste treatment monitoring, and sustainability assessment !"%),
Recent review studies summaries a wide range of Al techniques applied specifically to bioenergy process
monitoring and environmental management . Deep learning plays a central role by extracting complex
patterns from large-scale environmental datasets, which is critical for climate modelling, pollution detection,
and dynamic monitoring of bioenergy systems %!l Tt improves classification accuracy for high-resolution
satellite, drone, and ground-based sensor imagery used in land-use analysis and ecosystem surveillance
within bioenergy landscapes '“!'?]. These capabilities support assessments of land suitability for biofuel

[13

production and evaluation of associated environmental impacts ['*. Machine learning methods also assist in

(141 and support planning and optimization of

bioconversion processes through data-driven, adaptive decision-making in refinery environments [15:16],

waste sorting and routing for bioenergy applications

Although there have been several state-of-the-art reviews on the use of artificial intelligence for
environmental monitoring or bioenergy system optimization alone, this review is unique in providing a
process-integrated, chain-wide context for pollution monitoring throughout the entire production pathway of
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bio-energy. More specifically, it connects the sources of emission, sensing devices and data transformation
into Al models at every stage -from biomass handling to anaerobic digestion as well as from
thermochemical conversion and biofuel processing-into a single analytic framework. The review goes
beyond prior works by critically deciphering the hybrid and physics-informed Al models to improve
adaptability under varying operating conditions, as well as consolidating deployment-level issues including
sensor drift, calibration consistency, domain shift, and regulatory acceptances. By identifying targeted
research priorities in the form of open benchmark datasets, transferable calibration pipelines, explainable
models, and closed-loop field validation, this work makes a focused contribution to the translation from Al-
based pollution monitoring in experimental studies to reliable industrial practice.
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Figure 1. Overview of Bioenergy Production Stages and Points of Pollution with AI-Based Environmental Monitoring Integration

Figure 1 sets the scene for pollution monitoring as a chain-level rather than unit-level problem. Here,
the figure shows the mapped emission sources across biomass handling, digestion, thermochemical
conversion and refining to demonstrate why single approach monitoring is not enough. It further illustrates
the visual concept of continuous, Al-driven sensing and data integration along stages where emissions are
intermittent, diffuse, and operationally coupled. Application of Al driven analytics to Earth observation data
is enhancing monitoring by providing rich spatiotemporal insights into land-use change, biomass growth and

(7

pollution associated with bio-energy production ['7!. These approaches can be used to enhance resource

management and conservation planning and also inform ecosystem health assessment determination as well

(6181 One of the typical examples is the

as the prediction of ecological response to bio-energy practices
application of Al models for detecting deforestation through satellite images in order to identify illegal
logging which impacts carbon balance and biodiversity . Remote sensing techniques, for instance satellite
imagery, LIDAR and hyperspectral, have permitted the Al in forest composition studies at a large scale and
have an impact on biomass resource surveillance ["°). Al plays a significant role in predicting the properties
of biomass, optimizing conversion processes and facilitating biofuel characterization, which aids in the
s 291 Integrating Al and EO data also

aids in early detection of environmental anomalies and understanding temporal trends, which are necessary

improved efficiency and environmental profile of bioenergy system

for decision-making processes and sustainable development !'”!. This integrated approach allows surveillance
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from broad land-use trends to specific pollutant signals, favoring risk-based and adaptive management
across bio-energy chains. Among them, there are multi-criterion decision making tools where Al is able to
evaluate the environmental, economic and social aspects of bio-energy projects 2! AI Over the Horizon Al
predictive spatial data can assist farmers and planners in adaptive management at bioenergy landscapes by

(221 Responsible

accounting for carbon sequestration, species distribution and ecosystem conditions
application of such systems is essential to ensure that they are used for beneficial purposes in sustainability
rather than exacerbating inequality and new environmental stresses 7. That would require strong
frameworks around data governance, model transparency and ethical protection. Clear description of recent
advances, the present status and barriers of Al based pollution monitoring for bio-energy systems is required
to foster environmental sustainability and technological advancement. This review provides an in-depth
description of the state-of-the-art along the bio-energy production chain, including Al supported pollution
monitoring as well as applications for air, water and soil and future research directions. Table 1 describes the
way in which Al can be applied to environmental monitoring through the bioenergy chain, connecting each
step of processes to a set of received pollution problems and responses according with appropriate Al
methods and applications. It also outlines the main research deficiencies, particularly demand for adaptive
models and multi-source data integration, along with transparent governance structures.

Table 1. Al-Based Environmental Monitoring in Bioenergy Production

Bi . Applications & Key Insights /
Aspect toenergy Pollution Sources Role of AI pplications €y INSIgLS
Processes Examples Research Gaps
Biomass
llecti -
coriection, pre . . Use of sensor Need for
treatment, Fugitive methane, Al improves networks. ToT systematic Al
Process Chain & anaerobic odour emissions, tracking of telemet’ry baZe d monitorin
Context digestion, PM, NOx, VOCs,  dynamic, complex . . . £
. . inductive learning, across each
combustion, wastewater pollution patterns . .
gasification, liquid computer vision production stage
biofuel refining
. Research gap in
M 1 1 .. o Aut t t .
o anual Sampung, -y i ited scalability Al handles large, utoma e.d data affordable, high-
Monitoring laboratory testing, . . gathering, ;
in developing heterogeneous, . resolution
Challenges low temporal - . adaptive .
. regions real-time datasets . environmental
resolution algorithms o
monitoring
. . Satellite imagery, .
Applied Deep learning for drones. eround Integration of
. throughout Identifying hidden  pattern detection, 8 multi-source data
Al Techniques . . . . sensors, LIDAR, L
bioenergy pollution trends classification, remains limited in
o . P . hyperspectral hai
perations orecasting . . many chains
imaging
. . Land cover Lack of unified
Pollution during . . .
. Feedstock . -y . classification, models linking
Environmental i conversion, Predictive analytics .
S logistics, land use : deforestation land-use change
Applications transport, waste for early warnings . . .
assessment . tracking, biomass and real-time
handling = .
estimation pollution
Improved Reduction of Data-driven Waste sorting, Need for adaptive
Operational conversion yield, emissions and decision support routing, resource models that react
Benefits optimized resource loss for sustainable allocation, process to rapid system
bioconversion processes optimization fluctuations
Multi-criteria Rescarch gap in
. Sustainable Potential bias in Fair, explainable decision analysis . 8ap
Ethical & . . . ethical guidelines
production environmental and transparent Al for socio-
Governance Needs . . . and governance
planning decision systems frameworks environmental

balance

for Al deployment




2. Measurement hardware and data pipelines

Bio-energy plants require a variety of sensors and different measurement principles, drift behaviors and
cross-sensitivities need to be dealt with in one way. These discrepancies underscore the importance for
combined pipelines which unify all readings from optical, electrochemical (EC), oxidised metals and
reference-grade instruments into a common approach. Here, in conjunction with hybrid networks and Al-
based calibration, this joint work further enhances the accuracy of pollutant measurement results, making
monitoring more continuous across combustion, digestion and fuel-processing units.

2.1. Sensor types and characteristics

Bio-energy applications use a number of sensor types to monitor gas emissions, particulate activity and
component status along components including the economizer, exhaust line and ash-handling units. NDIR
sensors are typically used for CO and CH4 because they are sufficiently stable in humid condition and
readily suitable for continuous field measurement. These sensors are also popular for methane because they
offer the rapid detection required in applications such as leak detection Industrial and commercial
applications catalytic bead sensors are used for industrial and commercial only not residential. For NOy, SO2
and O3, electrochemical sensors are commonly recommended because of selectivity [and power requirements
plus they are suitable for deployment in networks]23.

Particulate concentrations (PMa. s, PMio) are determined by optical counters providing real-time and
gravimetric samplers (reference methods). Sensors that measure VOCs are usually metal-oxide, but their
readings may change depending on temperature or humidity. In these cases, laboratory methods for chemical
speciation (e.g., gas chromatograph or FTIR) are still necessary to determine more detailed components of
the reaction mixture that low-cost sensors are not able to distinguish 31, The Al-enhanced sensor networks
are designed for compensating the individual sensors biases, through aggregating data from different sources
to form more complete pollution and source estimations. The infrared gas sensors are crucial for the carbon-
based gases due to their ability to detect a specific absorption wavelength, and presents with sensitive and
accurate readouts and low interference towards other species 1**. Flow monitoring, despite its importance in
interpreting energy use measurement and verification is still expensive and technically demanding, which
justify the demand for models based on hybrid measurement-modelling methods . Other alternative
techniques including infrared absorption spectroscopy and optical interferometry also provide choices, and
have their working range and limitation . Low-cost sensor networks are now being deployed in proximity
of combustion and digestion units to map pollutant concentrations at high spatial resolution. Low price
allows dense monitoring, but problems like drift and cross-sensitivity limit its reliability. "Master special of
many families-Master special for all-more or less obsolete now Reference standards are still needed for
calibration and long-term validation. A number of investigations propose hybrid networks, where low-cost
sensors share the coverage function with a few well-located reference monitors, can provide an effective
trade-off between network extension and accuracy for bio-energy applications. Real-time online detection
can compensate for the deficiencies of the casualty-based instrument and offline laboratory devices which

7. To make such hybrid systems more reliable, Al

are expensive to use and work in stops and starts [
solutions that can compensate sensor drift and cross-sensitivities, as well as fusion multimodal datasets into

a single monitoring structure, must be developed 4281,

2.2. Data acquisition and pre-processing

Contemporary bio-energy facilities store high-frequency data sampled by on-board loggers using loT
telemetry into time-series databases for later analysis. For most pipelines calibration is performed by field
co-location of sensors and reference instruments applying simple linear correction factors or more advanced
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drift correction techniques. For smaller (< 1mW) plants and farms, which may be reliant on uncalibrated
sensors, hierarchical validation: synthetic-benchmark-trained-and-real-microdata-refined improves model
accuracy ». This method enables strong Al modelling even if sensor data is heterogeneous or noisy %,
Calibration Technically, Al models also refine calibration by training on co-located reference monitors and
employing additional parameters such as temperature and humidity to correct for drift *!!. After calibration,
data cleaning removes missing values and noise via statistical or machine learning based methods for
preparing the dataset for analysis 2!, Outlier removal compensates for electrical noise, warm-up behavior
and abrupt system changes; interpolation retains temporal coherence. Features like rolling averages,
variance, gradients and frequency-based features are frequently taken out of these studies and combined with
plant-level information as feedstock composition, the feed rate of the digester, and temperature in the
digester, combustion load and flow rates were used together with meteorology. These manual inputs are
designed to assist in the interpretability of global emission estimates and to refine high emission activity
periods. Clean, high-quality data is of crucial importance as poor quality data can impact on model accuracy
in a dynamic plant environment 331, Those virtual sensors, based on machine learning models, also correct
distorted readings and ensure that the data is continuous *. Robust pre-processing is still crucial; even
sophisticated models don't work well when trained with uncalibrated or noisy input. Table 2 lists the
principal hardware and data-pipeline components with a focus on sensor roles, typical limitations, and the
necessity of hybrid systems together with Al methods to achieve an accurate and reliable monitoring
throughout different parts of plants.

Table 2. Hardware, Sensors, and Data Pipeline Structure in Bioenergy Monitoring

Component Purpose Sensor / Tools Key Issues Role of Al / Hybrid
Systems
NDIR, catalytlc'bead, Drift, cross-sensitivity, Unifies signals,
Measurement Track gases, PM, and EC, metal-oxide, 1. . .
- . . humidity effects, high compensates drift,
Hardware operating conditions optical PM, cost improves confinuit
gravimetric, GC/FTIR P Y
NDIR (CO/CH.), EC Multisensor fusion and
Provide pollutant- (NOx/S02/0s), metal- Humidity effects,

Sensor Characteristics

Low-Cost Sensor
Networks

Data Acquisition

Calibration & Pre-
Processing

Overall Outcome

specific measurements
Enable dense spatial
monitoring

Collect and store high-
frequency readings

Prepare clean and
reliable datasets

Achieve stable and
continuous monitoring

oxide (VOCs), PM
counters, FTIR/GC

Low-cost multi-
pollutant nodes

IoT loggers, cloud
databases

Drift correction,
imputation, outlier
removal

limited speciation
Strong drift, low
stability

Noise, missing data,
communication gaps

Heterogeneous and
noisy industrial data

Mixed pollutants and
dynamic conditions

calibration improve
accuracy

Combine with
reference stations for
balanced accuracy

Supports hierarchical
validation pipelines

Al correction, virtual
sensors, feature
extraction

Reliable long-term
monitoring across units

3. Al methods: tasks and algorithms

This section outlines the main Al tasks and algorithmic families used for pollution monitoring in bio-
energy systems. It focuses on how prediction, forecasting, and anomaly detection are matched with process
data and sensor characteristics. Emphasis is placed on selecting methods that remain reliable under dynamic
operating conditions.

3.1. Tasks

Al approaches for bio-energy involve prediction and diagnostic tasks to provide real-time monitoring &
operational planning. A central task is regression, in which models learn the connection between multimodal

6



sensor inputs (process settings), and measured pollutant values. It enables low-cost sensor arrays together
with process data to emulate reference-quality measurements. Many works focus on predicting trends, by
short-term (minutes to days) forecasting of time series. These predictions provide an early alarm that
emissions may be increasing, and allow the operator to take action on air—fuel ratios, feedstock input or on
digester conditions. Anomaly detection is also quite crucial, as it detects abnormal trends or noise present in
sensor readings that could help to identify equipment failures or process upsets which can lead to high

emissions 2% 331,

Inputs Tasks Algorithms
Multimodal Regression 4{ Linear models
Sensors > (concentration prediction) ‘
« Optical Random Forest
« Electrochemical g : .
- (EC) Tlme-sefles Gradient Boosting
< Oxidized Motal forecasting (XGBoost, LightGBM)

Sensors
\ J Support Vector
3 Anomaly detection Machines :
Operational o e \ g
settings LSTM Networks
1 ) Source allocation T ; ‘
Process & classification lellibaes 0
parameters

Hybrid models

Surrogate modelling

Historical data e
for optimization

Physics-informed
neural networks

1\

Figure 2. Input-Task—Algorithm Framework for Al Applications in Bio-Energy Systems

The logical relationship between Al tasks, algorithm selection and heterogeneous sensor inputs are
described in Figure 2. It demonstrates that model selection is a function of task demand—either prediction,
novelty detection or source identification—and not simply an algorithmic whim. The approach corresponds
to the notion of aligning data semantics with an appropriate learning target and is supportive of the widely
accepted view that good pollution monitoring entails that data-specific will effectively mediate between
mission goals and collected input. Anomalies make it possible to detect abnormal emission spikes,
equipment failures or sensor malfunctions. These models are trained on normal patterns of behavior and
produce notifications when sensor behavior deviates from the learned pattern. In plants that must be
monitored constantly is the operator to ensure safe operating limits are not exceeded, this is useful.
Advanced Al approaches take this further by identifying and correcting drifts to increase the quality of

1361 Several

sensor data, thus enhancing for example prediction tasks and control actions downstream
approaches employ unsupervised learning for the anomaly detection based on the deviation from operational
baselines, enabling effective real-time monitoring and more accurate predictive maintenance . ALE
source allocation and classification techniques can identify which unit (combustion, digestion or storage) is
responsible for an emission event - a particularly valuable function for facilities with several combustion,
digestion or storage units. Classification algorithms tie sensor signatures to likely sources, simplifying

targeted abatement and supporting regulators in understanding the contribution of each process. And in the
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field of transformers, instead of stacking different layers, self-attention is applied to extract fine features
from industrial data for refining pollution source identification and prediction 7). Predictive emissions
monitoring systems can be substituted for traditional continuum monitoring by employing Al to predict
pollutant concentrations from process variables, e.g. by using machine-learning techniques such as gradient
boosting machines ¥, AT models are also stand-ins for process enhancements. They predict emissions given
different operating conditions, and facilitate multi-objective optimization between power generation,
operational stability and the environment. Such surrogate models are especially useful when the physical
simulations are slow or computationally expensive.

3.2. Algorithms and hybrid approaches

In bio-energy research, a variety of ML techniques are implemented. Older methods like linear
regression, random forests, gradient boosting (XGBoost, LightGBM) and SVMs are ubiquitous because they
work well and are interpretable. Tree ensembles are particularly attractive in this regard, because they model
nonlinear dependencies, and cope well with noisy input data while these models offer transparent variable-
importance assessments. Random forests have found promising results in biomass-to-biochar prediction %,
whereas gradient-boosting techniques and XGBoost have provided precise NOy predictions for combustion
and boiler systems %4 Deep learning-based models are more appropriate for temporal patterns when
system behavior is predominantly sampled in interval timing. LSTMs are able to capture long-term time-
series dependencies, while transformers work well with irregular or multivariate data. They can be
employed for short-term prediction in AD (Anaerobic Digestion), biomass combustion and upgrading of
biogas. Hyper parameter tuning is also widely realized with the Bayesian optimization, by which more
accurate prediction programs for gasification outputs / engine emissions can be obtained as a result Hybrid
models are gaining popularity. Some methods marry mechanistic process models with a data-driven
component to compensate for the remaining errors, and full physics-informed learning which encapsulates
process constraints into neural networks. Human-in-the-loop Al can benefit from expert judgment in the
course of model refinement, which is useful especially for complex bio-energy processes where laws of
physics and domain knowledge enhance reliability and interpretability “*. AutoML solutions automate
feature processing and model choice. Additionally, ensemble stacking improves prediction stability.
Research on anaerobic digestion demonstrates that tree-based AutoML models, when joined with neural
networks, yields higher accuracy. Hybrid systems combining ML and metaheuristic optimization also
underpin optimal operating conditions and pollutant mitigation for enhanced system efficiency and
environmental acceptability. These models allow for improved accuracy, robustness, and generalization in
the context of renewable-energy and biofuel applications 1. Deep-learning-mechanistic hybrids model
nonlinear behavior while enforcing physical consistency by reducing reliance on large dataset 44,

This section shows the technical depth of HPC through an extensive discussion of hybrid and physics-
informed Al models. The paper describes how data-driven approaches are integrated with scales in mass
balance, thermodynamic relationships and process kinetics. Moreover, it demonstrates how in human-in-the-
loop techniques expert knowledge is also leveraged to enhance robustness, interpretability, and reliability
under changing bio-energy operating conditions.

4. Applications across the bio-energy chain

This section examines how Al-based monitoring is applied at different stages of the bio-energy
production chain. Applications are reviewed from biomass handling to biofuel refining, with attention to
pollution sources and process variability. The discussion highlights differences in maturity across stages.

4.1. Biomass collection and pre-processing



Operations for biomass—chipping, drying, conveying and transport—are a source of suspended
dust/particulates. Al models connect equipment variables (e.g., conveyor speed, moisture content and
mechanical load) with meteorological conditions in order to predict particulate release for varying operating
conditions. Research has shown that integrated models can predict for periods of high dust generation.
Drones or fixed camera sensors allow the online remote sensing and visual examination of biomass piles,
where image features such as color changes, surface cracking and local heating are useful for detecting
degradation (or early self-heating). High VOC and CO events occur under similar meteorological conditions
and therefore early notification may be useful for preventive action. Al methods such as ML and neural
networks further enhance the prediction of feedstock quality for optimum anaerobic digestion conditions

(431 The tools contribute to

with the production of biofuels at higher efficiency with a better sustainability
limit the environmental pollution, optimize the logistics of biomass, and that waste is reduced simultaneously
with the increase in material quality. Above and beyond these, Al can also facilitate biodiesel production
prediction, engine-emission model estimation and biofuel quality forecasting **). Furthermore, Al based
approaches help in microbial or crop selection, and conducting genetic engineering for maximizing biofuel

yields, and allow early stage techno-economic & life-cycle studies of a biomass-to-biofuel process 61,

4.2. Anaerobic digestion and biogas facilities

Artificial intelligence (AI) methods have been employed for explanation and control analysis Al
methods are employed to investigate emissions from the AD process by developing a methane yield model
as a function of feedstock characteristics, OLR, digester temperature and indicators about microbial activity.
They also allow for the estimation of methane slip, i.e., the unintentional release of methane before
combustion or upgrading. Such sensor-based classifiers can focus on pH, redox potential or temperature as
well as gas composition to detect the occurrence of unstable states such as acidification or overloading.
Regression models are developed up to the prediction of methane, CO: and total gas production first to
design an early intervention strategy. Predictions of these emissions in real time can be interfaced with
modern control systems for controlling processes to minimize GHG emissions automatically. Machine
learning exhibits better predictive accuracy for methane yield from AKR than linear regression, however it is
less reliable ), demonstrating the potential application in WWTP models. ANN and SVM methods are also
employed to optimize running states and predict biogas production for sustained, efficient AD operation
(29351~ Al-driven models also aid in optimization of that processes and reduction in pyrolysis, gasification,
and combustion toward better system performance through the improvement in BE aspect . Deep learning
integrating with neural networks is a further method to enhance methane prediction by overcoming the
disadvantages of classical models (dealing with complicated inputs and having slow characteristics in
responding biogas systems) 8], Figure 3 summarizes how Al tools are applied in various links of the bio-
energy chain, and highlights that pollution benefit is achieved through holistic application rather than
isolated optimization. It shows disparities in research maturity: among available biomass-based technologies,
anaerobic digestion and combustion have attracted much more interest than upstream (e.g., biomass pre-
treatment) or downstream (e.g., bio-oil upgrading) processes showing the future studies gaps.
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Figure 3. Al Applications across the Bio-Energy Chain

4.3. Combustion and thermochemical conversion

Regulated pollutants NOx, SOx, CO and PM are emitted when biomass is combusted in bio-energy
plants. These emissions are estimated by the machine learning models, which considers the fuel type,
moisture content, air—fuel ratio, furnace temperature and load variations as inputs. Such models are used to
determine operating windows for emissions compliance at a cost of low energy generation. Computer vision
has been applied to the analysis of flame shape, color and flicker (which relate to combustion quality) while
acoustic signals help identify noise patterns related to/mismatch in combustion or burner damages. Early
diagnosis of the abnormalities is possible by both these techniques. Al methods, e.g. ANN and machine
learning models predict stability and conversion rates of thermochemistry reactions for bio-oil and syngas
production with lower experimental requirements 7). These instruments also provide a better understanding
of waste-to-energy processes, such as incineration by determining optimum erosion conditions for high

[33]

energy recovery with minimal emissions . Moreover, Al enables the comprehension of intricate

biochemical paths to biofuel production and assists shifting to advanced- or next-generation nonfood biofuels
491 These strategies enhance the biofuel value chain from feedstock generation to ultimate conversion 4%,
Above and beyond process optimization, Al enables adaptive and predictive maintenance for emissions-
control systems. It is also possible to combine it with GIS in order to identify and monitor polluted areas

suitable for bioremediation, boosting environmental management [,

4.4. Biofuel refinery and biochemical conversion

Processing biofuels (e.g., production of ethanol from fermentation, of biodiesel from transesterification,
and biochemical upgrading) create three waste products including compounds in gaseous form, waste water
and off-gases. Solvent loss and VOCs emissions are monitored by the Al platforms via sensors in the vent
lines and process units. Multivariable models are constructed, taking into account temperature, pressure,
flow rate, solvent composition and reaction indicators to predict pollutant loads online. These predictions
assist operators to detect abnormalities in time, making them respond before having an impact on emissions
or effluent quality. Through early prediction, Al enhances the environmental performance and improves
process stability in biofuel refining. Similarly, machine learning methods are also used to measure and tune
the associated chemical parameters for conversion of waste oils to biodiesel whose output yield and quality
is increased ). These optimization approaches also help with removing impurities from feedstocks and

10



compost, leading to reduced environmental load and higher economic returns ¥, These prediction tools aid
in regulatory compliance and development of an environmentally and economically sustainable bio
economy B3], Machine learning with predictive modelling facilitates automatic and real time monitoring in
the biomass conversion process and thus reduces labor cost as well as improves its efficiency %, Al also
scales to the broader strategic control of systems in bio refineries, where digital twins represent and optimize
processes systems to optimize resource consumption and waste minimization %°1. The role in which Al can
play at different stages of the bioenergy chain for improved efficiency, process stability and emissions

management is summarized in Table 3.

Table 3. Role of Al in Biomass, Biogas, Combustion, and Biofuel Refinery Processes

Stage / Process

Key Activities

Al / ML Applications

Benefits

Examples / Outcomes

Biomass Collection &
Pre-Processing

Anaerobic Digestion
& Biogas Facilities

Combustion &
Thermochemical
Conversion

Biofuel Refinery &
Biochemical
Conversion

Chipping, drying,
conveying, transport,
storage pile
monitoring

Biogas yield
monitoring; stability
assessment; methane

slip detection

Combustion control;
flame analysis;
emission monitoring

Fermentation;
transesterification;
biochemical upgrading

Dust forecasting;
drone/camera
inspections; feedstock
quality prediction;
biodiesel & engine
performance modelling;
microbial/plant selection

Regression, ANN/SVM
for methane yield &
CO; classifiers for
overload/acidification;
deep learning for
digestion dynamics

ML for
NOx/SOx/CO/PM;
computer vision for

flame patterns; acoustic
burner fault detection;
ANN for
thermochemical
reactions

Multivariate
VOC/solvent models;
ML for process
optimization; impurity
removal; digital twins
for control

Early detection of
dust/VOC events;
improved quality;
optimized logistics;
reduced wastage

Stable operation;
reduced methane slip;
early fault detection;
real-time emission
prediction

Controlled emissions;
early abnormality
detection; improved
bio-oil/syngas
production

Lower emissions;
early upset warnings;
improved yields;
reduced cost

Predicting dust peaks;
detecting pile
degradation; ANN for
digestion feed quality;
Al for biodiesel and
emissions

ML-based methane
yield estimation; Al
control to reduce GHG;
optimization of
pyrolysis/gasification

Al optimization of
waste-to-energy units;
predictive
maintenance; GIS-Al
for remediation

Al for biodiesel yield;
automated monitoring;
refinery digital twins

5. Evaluation metrics and benchmarking

The assessment of Al models in the application of bio-energy emission studies employs commonly used
metrics for model evaluation that assess prediction accuracy, classification reliability and forecasting skill.
For regression purposes, RMSE, MAE and R? are the three measures used to express respectively total error,
average deviation and goodness of fit. For classification tasks, precision, recall and F1 score are commonly
used, particularly to find rare events like faults, emission spikes or sensor anomalies. Or similarly, in time
series forecasting comparison of fit to simple baseline methods is usually done using skill values or relative
errors. Biomass’ higher heating value, for instance, can be accurately estimated by advanced machine
learning techniques contributing to the determination of complicated biomass arrangements 6", Cross-
validation and external validation will help to improve the robustness of models, which is necessary as bio-
energy feedstocks and operations are in general diverse (and often heterogeneous) %31, The feedback from a
variety of sensors in real time must also be combined correctly in order to maintain coherence when
predicting with Al in systems featuring movement. Strong validation procedures are going to ensure that Al-
engine based monitoring tools have a solid base for their use and will effectively contribute to wider
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adoption in bio-energy industries. In work that focuses on temporal patterns, time-order-based validation is
due for a requirement furthermore, techniques like temporal blocking and rolling-window splits are
necessary. The former prevent leakage of information from the future while providing an estimate how a
model would behave in practice. In imbalanced data classification, the model performance is commonly
monitored by sensitivity, specificity, accuracy, precision, F1 score and Matthews’s correlation coefficient (3%
881, Recent evaluation measures involve spatiotemporal out-of-distribution scores, sensitivity scores related to
aleatory uncertainty and outlier scores for biased subgroups Y. One considerate limitation is the absence
of standardize data sets and most of the works use sensor logs from each plant, making them difficult to
compare. Some recent work has made codes, sample data or synthetic benchmarks available to ease
transparency. The lack of open source data is still crucial, and the usage of standard benchmarks would help
making comparison more consistent. It is important to generate available and standardized data set with
reference implementations, which can make a widely researched while Al-based bioprocess engineering in

91-101] 'To establish robust models, such data should cover a wide spectrum of operating
102-104

designing reliable [
conditions and pollutant characteristics [ 1. Comprehensive benchmarks for accuracy, robustness and
fairness of Al models are also critical as with other ML subfields %1971 e g as initiated by NREL for
biogas algorithms. These benchmarks should provide the community with public datasets and standard
classification, regression and prediction challenges, applicable across bio-processing studies %116 Shared
data sets and evaluation methodologies enhance reproducibility and promote the development of powerful,

s M71201 Developing benchmark data sets containing documented sources of

[121-123
y

generalizing predictive model
uncertainty is also critical to advance uncertainty quantification in the context of bio-energ 1. Even
though diverse Al models have been reported for pollution prediction in bio-energy systems, the validation
techniques applied in each study vary. Cross-validation is the most frequently used method that provides
robust internal performance estimates and is preferable when there is limited data, although such a method
tends to assume stationarity and can lead to an overestimate of generalization in highly dynamical bio-
energy processes. External testing, based on data from other independent plants or operating periods,
provides more evidence of transferability, but this is infrequently applied because requisite data are rarely
available and limitations on confidentiality. Temporal validation techniques, such as rolling-window or
blocked time-series splits, are of special interest to emission forecasting and anomaly detection; since they
maintain the causal nature of process data and prevent information leakage from future states. A systematic
comparison reveals that none of these strategies is universally effective on its own; however, a combination
of cross-validation for model selection with temporal and external testing for deployment-level assessment

can provide a more accurate profile of model robustness and generalization.

6. Case studies (selected)

This section presents selected case studies that demonstrate practical implementations of Al-based
monitoring in bio-energy systems. The examples illustrate how different modelling approaches perform
under real operational conditions. Attention is given to both achieved benefits and observed limitations
during deployment.

6.1. Auto ML by tree for the prediction of biogas

In the last few years, a number of studies have utilized automatic machine learning algorithms in biogas
producing systems with emphasis on lignocellulosic substrates. AutoML frameworks for tree-based models
can explore an enormous search space of ensemble learners and hyperparameters, relying on a simple
operational protocol to discover the best model without a significant amount of human intervention. These
models have performed well in predicting methane yield for a range of feedstock characteristics, loading
rates and digester conditions. Besides reliable predictions, in this case they also yield ranked feature
importance estimates which are useful to understand the relative impact of variables like fiber content,
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volatile solids, and temperature and retention time. The resulting balance of accuracy and interpretability
makes tree-based AutoML a valuable method for plant operators who want to change feedstock mixes while
keeping gas stability.

6.2. IoT and deep learning for industrial air detection

Another strand of research involves combining inexpensive sensor networks with deep learning on air
emissions detection in industrial bio-energy environments. Dense distributions of gas, particulate and
meteorological sensors are these deployed interconnected to loT platforms for real time data streaming.
Highly accurate sequence models, typically LSTM- or transformer based, can predict in the short-term range,
that is to say forecast emission levels ahead of time such that operators still have a reaction time until
threshold values are crossed. There are works that have claimed advancements in the early detection of
spikes in emissions 1> 4. However, there is a need for periodic calibration and model retraining as degraded
environmental conditions can cause the sensors to drift. Such practical experiences the difficulties and
opportunities of operating large Al-enabled monitoring systems in production.

6.3. Al for optimization of organic waste treatment

Studies in bio-waste treatment show how Al is applicable to a broader range of bioenergy processes.
Composting, aerobic digestion, and other treatment systems were shown to exhibit instabilities when the
temperature, moisture, aeration rate, and gas composition trends were analyzed using data-driven models.
Predictive models can be used to optimize the operating parameters, ensuring desired microbial activity will
not be lost or odor formation/ emitted. From the case studies, enhanced stability results in more efficient
processing with corresponding reduction in environmental burden. These results indicate the scalability of
Al-based monitoring and control concepts for use cases also outside the specific scenario of the biogas plant,
helping to achieve a further sustainable tech-supported transformation.

7. Challenges and gaps

This section identifies key technical and operational barriers that limit the deployment of Al-based
monitoring systems. It focuses on sensor reliability, data quality, model transferability, and interpretability.
These issues are discussed in relation to long-term industrial use. Figure 4 illustrates the systemic barriers
hindering the deployment of Al in bio-energy monitoring, starting with sensor inaccuracies and data scarcity
that compromise model reliability.

7.3 Model & Domain
Shift Robustness

7.1 Sensor Inaccuracy
& Calibration Burden

Systematic bias, drift,
cross-sensttivity.
Frequent, imperfect

calibration leads to
"garbage input”.

Models fail to generalize
across different plants,
feedstock types, and
operating regimes.

Automated
Air-Fuel Ratio

p| AlModel |~
Development
»| & Training

Operational

Integration &

Closed-loop
Control

Predictive
Output
(Advisory)

B

Physical System ;
& Data Acquisition 7.2 Data Availability
& Quality Gaps

7.4 Lack of 7.5 Control System Lgide
Scarce data for rare Interpretability & Interface Barriers
events (upsets), lack of Trust
represeniativeness across Standardization & Computational burden,
seasons/feedstocks. Benchmarking "Black hox" deep latency, legacy hardware
Poor labelling. learning models lack incompatibility (SCADA),
No common test transparency for safety concents prevent
platforms, public datasets, regulators & operators. automated actions.
or reporting protocols XAl rarely used.
hindering comparison.

Figure 4. The "Pipeline of Barriers" in Al-Based Bio-Energy Monitoring
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These upstream flaws, combined with poor cross-site generalization and a lack of interpretability
("black box" issues), create a trust gap for operators and regulators. Consequently, these technical and safety
constraints prevent the integration of predictive Al into real-time, closed-loop control systems.

7.1. Accuracy of the sensors and burden of calibration

Affordable sensors are the preferred choice for high-density monitoring, but suffer from systematic bias,
drift and cross-sensitivity. These problems result in non-robust datasets unless the calibration is
accomplished frequently. Many studies continue to use ad hoc calibration procedures or do not consistently
follow best practices (such as regular co-location with reference instrumentation or correction model based
on transfer learning). If calibration is less than perfect, downstream ML models may be fed garbage input
and will produce biased estimates or low confidence in predicted emissions or anomaly alerts. Inter-
instrument calibration inconsistency further hampers inter-site comparison and long-term deployment
reliability. The manuscript's power lies in its symptomatic dealing with calibration problems. This section
covers all aspects of sensor drift, cross-sensitivity and long-term stability issues that could indirectly affect
Al models due to inappropriate calibration. The emphasis on hybrid-sensor networks and Al assisted
recalibration is indicative in pragmatic constraints for field deployment.

7.2. Availability, representativeness and labelling of data

Reliable datasets representing a wide spectrum of the feedstocks, seasonal variations, and process
upsets are still scarce. The bulk of the works presented in the literature are based on data collected at one
plant or equivalent short campaigns. For this reason models trained using a narrow scope generally does not
generalize at other plants. In particular, the lack of labelled data for rare events such as digester upsets,
combustion faults, or emission spikes is severe. This hampers the design of reliable classification and
anomaly detection methods. Further systematic sampling, long-term observation and experiment are
required to acquire representative data sets.

7.3. Robustness to model and domain shift

Design and operational characteristics of bio-energy systems differ widely in terms of style, size, and
feedstock type, leading to a common source-shift issue. Models that work adequately with one feeding
regime, feed energy types (mob and roughage balance), moisture/energy content may not behave as such
when feed mix/feed energy types, load patterns, or environment conditions change. There is a growing body
of knowledge in transfer learning, domain adaptation and physics-guided model designs, but very few such
techniques are used in practice. Dealing with domain shift is necessary to construct models that are robust
across plants and for extended operating periods. Here, the manuscript offers a transparent and rigorous
examination of domain shift due to variations in feedstock, plant design, operation regimes or environmental
conditions. The discussion reveals why models trained on site-specific data tend to generalize poorly and
emphasizes that transfer learning and physics-informed methodologies are necessary for cross-site robustness.

7.4. Interpretability and regulatory acceptance

Regulations are focused on transparent and traceable decision processes. Interpretations via models like
tree-based models result in partial interpretability via feature importance; however, many modern high-
performing deep learning frameworks act as black boxes. Methods of XAI - For instance SHAP,
counterfactual reasoning or structured surrogate models are scarcely used in emissions work. It’s hard,
though for operators and regulators to trust in Al-provided advisory without easy insight into why it made
various predictions, especially if actions could impact a company’s compliance with the law or safety.
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7.5. Interface to control systems and decision process

Most of the reported work is predictive rather than closed-loop control. One subset are those that have
some form of integration with Al predictions and automated actions, such as air—fuel ratio changes, digester
feeding pattern changes, or the initiating safety procedures. Real decision-friendly workflows are built on
trustworthy models, verified control strategies and intuitive operator interfaces. Fully integrated Al-control
system demonstrations are limited, and there is still work left to be done in converting predictive outputs into
operational guidance that can be acted upon.

Despite several studies with excellent predictions, few applications pass from a simple prediction to
closed-loop operational control in the bio reporting area of air pollution assessments powered by bio-energy.
A primary obstruction is computational burden; more sophisticated models, especially deep learning based
and compositional sensitive-rigorous method could infeasible under the real-time control time frame or
incompatible with the legacy plant hardware. Integration into existing systems is yet another challenge to
overcome, as the Al model has to reliably communicate with supervisory control and data acquisition
(SCADA) systems, programmable logic controllers and safety interlocks all of which require deterministic
response time and high fault tolerance. Data latency, sensor fault and the necessity of periodical recalibration
also bring great concerns to be in use under a dynamic plant environment. From an organizational point of
view, mechatronic service operators and regulators may need explicit decision logic and reliable fail-safe
mechanisms to authorize Al-exerted control actions. These are the reasons why most of the works reported in
the literature never go beyond advisory or alarm-based systems, and motivate the pursuit than lightweight,
interpretable models, edge-computable/adjustable computations, and incremental human-in-the-loop control
strategies can be practical paths towards closed loop adoption.

7.6. Standardization and benchmarking

The lack of common test platforms hinders progress on the comparison of algorithms, validation of
claims, and determination of best practices. Different types of sensors, pre-processing of data, evaluation of
the models, and reporting hinder the ability to judge what methods carry over across contexts. Common
tasks, public data sets, and clearer reporting instructions would improve replication and facilitate the
generation of new methods. Creating such benchmarks is a necessary step in an effort to establish robust,
comparable work in Al-based bio-energy monitoring.

The lack of available data is partially compensated by a few new initiatives that contribute with partial
benchmarks for Al-based monitoring on bio-energy and in environmental systems closely related to it. These
span from plant-specific open data provided with particular studies, over synthetic / semi-synthetic
benchmarks derived from process simulations, to domain-adjacent repositories established for air-quality
prediction, biogas production, or industrial emissions monitoring. Although such resources are still
fragmented and not standardized, they depict realistic avenues for reproducible evaluation. Prospective
research could in practice help bridge this gap by publishing calibrated multi-sensor datasets with well-
defined operating scenarios, embracing common evaluation criteria and providing to be used as reference
selected baseline results for facilitating comparative analysis across the studies. Cooperative benchmarking
using field-data from numerous bio-energy facilities, enabled by shared pre-processing and validation
pipelines, would enhance model generalization to new sites, and greatly reduce the time from site-specific
pilot demonstrations to deployable monitoring systems.

8. Research priorities and recommendations

This section proposes research directions aimed at improving the robustness and applicability of Al-
based pollution monitoring. Priority areas include data availability, calibration practices, and hybrid
modelling approaches. The recommendations are grounded in the gaps identified earlier.
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8.1. Open benchmark datasets

Development in Al for emissions is hindered by the absence of openly available high-quality datasets.
A priority is to develop multi-site, multi-sensor data collections with co-located reference measurements
provided for e.g. CHa, CO, NO,, PM and VOCs. The operational meta information for these datasets should
also be available, that is, feedstock properties, load pattern and biogas plant conditions as well as
timestamps, of what was referred to in Sect. Such resources would facilitate benchmarking of algorithms,
provide for replicability and assist in discovering methods that generalize to a range of bio-energy systems.

8.2. Calibration and transfer learning pipelines

Affordable sensors need to be calibrated regularly in order to stay consistent over time. Automatic
algorithms with drift correction, cross-sensor transfer learning, and context-aware recalibration would
alleviate the manual burden on operators and increase data reliability. Research in this field should then
look into scalable methods to adapt calibration models on the sensor aging and, possibly, environmental
changes. This would also help to standardize practices across different sites if these pipelines are made open
and modular.

8.3. Physics-aware and hybrid modelling

Combining knowledge based on physical process and machine learning is a trend to enhance robustness
under varying operating conditions. Hybrid approaches are able to incorporate mass-balance relationships,
thermodynamic laws or reactor kinetics into the learning process, making the approach’s performance less
dependent on large sets of data and enhancing extrapolation capabilities as feedstock or load conditions vary.
Further research is also needed to develop generally applicable frameworks that trade off physical
limitations against data-driven flexibility.

8.4. Explainability for regulatory use

Al models need to be transparent, and predictions must have uncertainty estimates to be deployable in
regulation/operation. Interpretability tools specific to emissions surveillance — e.g., structured surrogates,
feature attribution methods, and uncertainty bands — should be automatically appended to model pipelines.
This would explain to operators why a model had made a given prediction and give regulators the certainty
needed for decisions on compliance.

8.5. Closed-loop field trials

However, in current deployments, a gap between modelled and active control is left out after the
prediction step. Field tests are necessary to make links between Al predictions and actual control actions, for
example, modulating air—fuel ratios, changing feedstock blends or actuating ventilation systems. These tests
need to account for emissions reductions as well as operational both fuel consumption, stability and
maintenance burden. There would be clear case studies as an example to stimulate it in industry.

9. Conclusion

This review presents a comprehensive and process-integrated analysis of Al-based pollution monitoring
across the complete bio-energy production chain, spanning biomass handling, anaerobic digestion,
thermochemical conversion, and biofuel refining. The discussion shows that artificial intelligence, when
combined with modern sensing systems and data pipelines, can significantly improve real-time emission
estimation, short-term forecasting, and anomaly detection under highly dynamic operating conditions. Such
capabilities are essential for regulatory compliance, process stability, and the reduction of environmental
impacts associated with bio-energy systems. The review also highlights that current progress is constrained
by practical challenges, including sensor drift, inconsistent calibration practices, scarcity of representative
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multi-site datasets, and limited robustness of models under domain shift. While advanced machine learning
and deep learning models demonstrate strong predictive performance, their deployment remains limited by
issues of interpretability, transferability, and weak integration with operational decision-making and control
systems. Hybrid and physics-informed Al approaches emerge as a promising pathway to address these
limitations by embedding process knowledge into data-driven models and improving reliability under
variable conditions. Future research should prioritize the development of open benchmark datasets,
standardized calibration and validation protocols, and explainable Al frameworks suitable for regulatory use.
Equally important is the transition from prediction-focused studies to closed-loop, field-tested
implementations that directly link Al outputs with operational control actions. Strengthening these areas will
support the translation of Al-based pollution monitoring from experimental demonstrations to reliable
industrial practice, contributing to cleaner bio-energy production and measurable progress toward sustainable
energy and climate objectives.
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Abbreviations
Abbreviation Full Form

Al Artificial Intelligence

ML Machine Learning

DL Deep Learning

IoT Internet of Things
SDGs Sustainable Development Goals
GHG Greenhouse Gas

PM Particulate Matter
PM:.s Particulate Matter < 2.5 pm
PMio Particulate Matter < 10 um
NO« Nitrogen Oxides

SO- Sulfur Dioxide

CO Carbon Monoxide

CO: Carbon Dioxide

CHa Methane
VOCs Volatile Organic Compounds
NDIR Non-Dispersive Infrared
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EC Electrochemical

FTIR Fourier Transform Infrared Spectroscopy
GC Gas Chromatography
ANN Artificial Neural Network
SVM Support Vector Machine
LSTM Long Short-Term Memory
XGBoost Extreme Gradient Boosting
AutoML Automated Machine Learning
RMSE Root Mean Square Error
MAE Mean Absolute Error
R? Coefficient of Determination
XAI Explainable Artificial Intelligence
SCADA Supervisory Control and Data Acquisition
GIS Geographic Information System
UAV Unmanned Aerial Vehicle
LCA Life Cycle Assessment
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