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ABSTRACT

Waste-to-energy (WtE) technologies are increasingly important
for sustainable waste management and circular economy practices, as
they enable recovery of energy from municipal, agricultural, and
industrial wastes while reducing landfill use and associated emissions.
Despite this relevance, existing research on machine learning (ML)
applications in WtE systems remains fragmented, with most studies
addressing individual processes, specific algorithms, or isolated
performance metrics, and lacking an integrated perspective across the
full value chain. The objective of this work is to provide a
comprehensive review of machine learning applications in WtE
systems, covering resource evaluation, conversion efficiency, and
environmental effects within a unified framework. The study is based
on a systematic analysis of recent peer-reviewed literature reporting
experimental validation or applied modeling in incineration,
gasification, pyrolysis, and anaerobic digestion processes. The review
indicates that machine learning models successfully capture the
nonlinear and time-varying behavior of WtE systems, allowing
accurate prediction of waste generation and composition, heating
value, biogas yield, process efficiency, and pollutant emissions. Tree-
based ensembles and neural networks show strong performance in



feedstock assessment and conversion modeling, while data-driven soft sensors and surrogate models support
real-time emission prediction and life-cycle impact evaluation. These findings demonstrate that machine
learning offers practical benefits for improving operational stability, energy recovery, and environmental
compliance in WtE plants, while also highlighting persistent challenges related to data quality, model
transferability, and interpretability that should guide future research and deployment.

Keywords: Waste-to-energy, machine learning, resource assessment, incineration, gasification, pyrolysis, anaerobic

digestion, biogas, emissions, life cycle assessment

1. Introduction

The increase of municipal solid wastes (MSWs), industrial residues, and agricultural by-products
increases the burden on traditional waste management practices and releases greenhouse gases and local
pollutants. The heterogeneous waste streams are converted with WtE technologies into heat, electricity,
fuels and value-added products and finally more often considered as part of a circular economy.
Thermochemical pathways—a selection of incineration, gasification and pyrolysis—and biochemical routes
such as anaerobic digestion and co-digestion are based on coupling physical, chemical and biological
processes. Their effectiveness is a function of feedstock, operating conditions reactor design and control
settings. Traditional empirical correlations and mechanistic models frequently face difficulties in dealing
with the strong non-linearity, time-dependent nature, as well as data noise of real WtE plants. Machine
learning offers the possibility to model and control processes like this. Recent Al for waste management and
WHE reviews report its applications in feedstock sorting, monitoring of process, energy output optimization,
and emissions minimizing. With the improvement in sensing techniques and digitalization, ML algorithms
have opened up new opportunities to extract reliable information through historical plant data, laboratory
experiments, as well as online monitoring systems. More specifically, advanced ML algorithms such as
neural networks, support vector machines, decision trees and random forests and gradient boosting are
implemented to model, optimize and control high-temperature and low temperature treatment processes for
organic waste [!. The Figure 1 shows how rising waste generation pressures traditional systems and drives
the need for WtE technologies that convert diverse waste streams into heat, electricity, fuels, and useful
products. It also highlights how machine learning supports these pathways through sorting, monitoring,
optimization, and prediction.
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Figure 1. Role of Machine Learning Across Waste-to-Energy Pathways
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In this review, the contribution of machine learning (ML) within the entire WtE chain is systematically
summarized including waste characterization, process conversion efficiency as well as environmental
impact and remaining challenges and potential issues that need to be addressed in future investigations >3,
It provides a synthesis of ML applications for waste since initial assessment and so addresses the fragmented
nature of this literature. To overcome these limitations, the authors suggested using a ML-based model
reduction that has the potential to cut down on computational cost, avoid frequent recalibration and facilitate
its usage within online control systems [). ML can process time-series process data and detect subtle trends
or deviations early on, which helps make timely operational changes and plant robustness . In terms of
chemicals and fuels generation, data driven analysis of large WtE datasets also may help in identifying
better feedstocks, catalysts or alternative conversion routes . The review also introduces ML in waste
sorting process, calorific value prediction, biogas yield estimation and emission control, which provides a
way for greater energy recovery and alleviated pollution ¥4, Higher-end methods like deep learning, SVM
and LSTM models contributed waste classification, generation forecasting and logistics, planning and

1-13] Decision

predictive maintenance leading to minimizing downtime and extending equipment lifetime [
support systems employing machine learning also enable the optimization of waste collection, circular
economy goals and infrastructure planning by combining sensor and spatial data [ 151l To sum up, the
review shows that ML has potential scalable, adaptive, and dependable tools for efficient, stable and

sustainable operation of modern WtE system at heterogeneous waste profile 1214241,

The studies included in this review were selected based on relevance to machine learning applications in
waste-to-energy systems, with priority given to recent peer-reviewed journal articles reporting validated
experimental or applied modeling results. Studies lacking clear methodology, performance metrics, or direct

relevance to WtE processes were excluded to maintain consistency and analytical rigor.

Table 1. Machine Learning Applications Across the Waste-to-Energy (WtE) Spectrum
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Waste Growth & Machine Process Typical

WtE Pathways Key Outcomes

Challenges Learning Role Improvements Algorithms
. Smarter WtE
. Shl.f t toward Hybrid routes and Uses advanced Adaptive control Hybrid physical-  plants with real-
intelligent waste . . sensors and . . .
improved designs. . . with ML insights. ML models. time
systems. digital twins. . .
intelligence.

Table 1. (Continued)

Table 1 illustrates that machine learning contributes across all stages of the WtE value chain, with its
role shifting from prediction and classification at the resource assessment stage to optimization and control
during conversion and emission monitoring. The comparison highlights that data-driven approaches are
particularly effective in managing feedstock heterogeneity and operational variability, which remain key
challenges in conventional WtE modeling.

2. Overview of Waste-to-Energy Technologies

Waste-to-energy (WtE) systems convert solid and organic wastes into useful energy forms such as heat,
electricity, or fuel gases. These technologies fall into four major groups, each based on distinct thermal or
biochemical pathways. Figure 2 emphasizes the diversity of thermochemical and biochemical conversion
routes available in WtE systems and underlines the varying levels of process complexity and control
requirements associated with each pathway. This diversity explains the need for different machine learning
strategies rather than a single unified modelling approach.

2.1. Mass-burn incineration

This refers to the direct incineration of MSW or refuse-derived fuel in a grate, fluidized bed or other
type of boiler. The waste heat that is produced by the incineration of refuse serves to produce steam, which
can be utilized for driving electricity generators or for district heating purposes. Today, modern flue-gas
cleaning devices control the level of emissions of nitrogen oxides, sulfur oxides, and particles to a great
extent and additionally enable the removal of dust och trace compounds like dioxins. As a result, modern
plants use the high temperatures to make electricity follow clean — air standards and generate consistent
energy. Nevertheless, incineration process remains the subject of issues including public acceptance gas
emissions to atmosphere and toxic ash residues . Therefore, recent advancements in the incineration field,
including advanced incineration technologies along with more advanced machine learning strategies for
online process optimization are important to reduce these environmental impacts and improve energy
recovery efficiency [''?5]. However, even though it reduces waste volume by 85-90%, ashes are still ultimate
residues that account for the remaining 10-15% of waste [?°. This ash, which is considerably smaller in
volume, generally contains heavy metals and other pollutants and should be disposed safely Fl.
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Figure 2. Overview of Waste-to-Energy Technologies

2.2. Gasification

It performs under low oxygen conditions and transforms the waste into a synthetic gas that contains
high levels of carbon monoxide, hydrogen and methane. This syngas can be fed to internal combustion
engines, to gas turbines, or further processed for chemical synthesis. Gasification provides more flexibility
in controlling reaction conditions than direct incineration, and with a cleaner fuel product because some
impurities remain in the char or are easier to capture during cleaning processes, depending on feedstock
composition and reactor design. This thermochemical pathway of reaction, differing from incineration in
being oxygen-deficient, represents an efficient conversion of organic solid waste to a syngas, a universal
energy vector 21 271 This is done at high temperatures (generally in the range 500-1200 °C) and results in
production of syngas as well as ash, biochar, having the characteristic percentage of yields affected by such
factors as feedstock properties, gasifying agents or reactor working conditions. ! Furthermore, the syngas,
containing mainly carbon monoxide, hydrogen and methane can be directly burnt for power generation or
forwarded to subsequence downstream process steps for value added fuels and process chemicals production
thus offering a potential more flexible energy recovery and higher environmentally friendly option vs. direct

incineration 2>28

. However, in spite of the possible advantages, pre-treatment and syngas purification
processes are often necessary for gasification to remove contaminants from the gas stream also these may
have significant cost implications—especially when applied to heterogencous feedstock such as municipal

solid waste 2],

2.3. Pyrolysis

It’s based on the thermolysis of waste with no oxygen. The process produces a blend of solid char,
condensate liquids and non-condensable gas portion. The process can be steered towards increased yield of
gas, liquids or char by control over temperature, heating rate and residence time. This versatility lends to
enabling a simultaneous energy recovery and material recycling particularly when char is obtained as the so-
called carbon-rich product. Pyrolysis is a thermochemical process involving the breaking down of organic
materials at high temperatures (300-800 °C) in an oxygen-free environment, and gives rise to bio-oil, bio-
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char, and syngas with product distribution being a function of temperature, heating rate, as well as feedstock

30311 Unlike high-temperature, low-oxygen gasification process, pyrolysis is carried out at

composition |
lower temperature and longer vapor residence time without the presence of oxygen, converting organic
materials into liquid bio-oil with char and gaseous product as co-products . This process has been used
over the ages to produce charcoal from biomass and can convert municipal solid waste into fuel and benignly
disposed materials such as char and metals 71, Operation conditions during pyrolysis can be very well
controlled for maximizing the solid char/lads, liquid bio-oil or gaseous products making it highly versatile
waste-to-energy technology ?7). Advanced pyrolysis technologies (e.g., fast and flash pyrolysis) also
optimize product recoveries by controlling heating rates and residence times to maximize the production of
bio-oil that can be upgraded to transportation fuels or chemicals 2%, The versatility of product production,
varying from bio-oil to synthesis gas, makes pyrolysis a flexible process for waste valorization and in line
with the principles of circular economy by reducing waste and maximizing the recovery of resources 12,
Nevertheless, one of the main shortcomings in pyrolysis is the requirement of feedstock quality control
(commonly practiced does not include inert materials and moisture from municipal solid waste), which when
available can decrease productivity and make operation more expensive 43¢l In particular, fast pyrolysis
(with rapid heating rate and a short vapor contact time around 500 °C) is designed for maximizing bio-oil

production, contrasting with gasification that operates at higher temperatures focusing on syngas B7-3%),

2.4. Anaerobic digestion (AD) and co-digestion

It processes organic waste fractions such as food scraps, sewage sludge, farm manure, and agricultural
crops. A consortium of microorganisms processes these substrates into a biogas rich in methane and a
nutrient-loaded digestate. Biogas may be used to produce electricity or heat, and digestate can even be
returned to the land to aid in nutrient cycling. Methane production yield increases Due to mixing of
complementary substrates, process stability is increased and methane yield enhanced. This is a biological
process under anaerobic conditions in which organic waste material is converted into biogas, a renewable
source of energy, and digestate, a nutrient-rich soil amendment 2!, It is of interest for combustion to energy
in biogas-fired power plants as well direct use, or upgrading into bio methane for direct vehicle fuel
utilization and injection into natural gas grids B7). Raw digestate, a by-product of anaerobic digestion has
value as a bio-fertilizer and can reduce dependency on synthetic fertilizers, while simultaneously facilitating
circular nutrient management [2°. Anaerobic digestion is a promising biotechnology for addressing the
current energy crisis by using waste and nutrient recovery while not detrimentally affecting the ecosystem
1391, This process also lowers GHG emissions by avoiding methane release from landfills and fossil fuel
substitution > 4% 41, In addition to the challenges faced by anaerobic digestion, such as waste sorting and pre-
treatment, as well as management of digestate [“>#*1, it is established technology for sustainable organic
waste management and one of the circular bioeconomy pathways. Notwithstanding these challenges,
developments in the AD process and associated technologies like co-digestion or thermal-alkaline pre-
treatment are constantly increasing solubilization yield and methane production, making it more

economically feasible for a wider range of applications (#4431,

Environmental and energy performance among the rail routes varies widely. Uncontrolled landfilling
entails a much greater environmental burden than thermal WtE for studies with energy recovery compared
to fossil-based generation, as it appears evident from Table. Plants that thermally convert biomass to energy,
such as integrated gasification—pyrolysis plants, have on average lower emissions per unit of energy. AD has
the added value of nutrient recovery and gas reducing methane emissions from degrading biodegradable
resources.

Nature of feedstocks together with nonsystematic process cause uncertainties in design as well as
control application. This has generated an interest in data-driven methods which analyses historical process
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data to understand the interrelations between feedstock properties, operating conditions, energy outputs and
emissions. These models can facilitate performance prediction, process control and environmental
evaluation on advanced WtE systems. The comparison in Table 2 shows that each WtE technology involves
distinct trade-offs between energy recovery potential, environmental performance, and operational sensitivity
to feedstock quality. These differences directly influence the type of machine learning models required,

particularly with respect to handling uncertainty, nonlinearity, and data sparsity.

Table 2. Overview of Major Waste-to-Energy (WtE) Technologies

‘WLE Technology

Operating Principle

Main Products

Key Advantages

Major Limitations /
Challenges

Direct combustion of

Mature; strong volume

Public acceptance issues;

MSW or RDF in Heat, steam, . . stack emissions; toxic
Mass-burn N . reduction; efficient .
. . excess air using grate,  electricity; bottom ash - ash; energy efficiency
Incineration 1 . flue-gas cleaning;
fluidized bed, or boiler and fly ash. . depends on waste
reliable energy. .
systems. composition.
High-temperature Higher control over
treatment (500— reactions; cleaner fuel, Requires pre-treatment;
. . 1200 °C) of waste suitable for chemical costly syngas cleaning;
Gasification under oxygen- Syngas, char, ash. synthesis; flexible and feedstock variability
deficient conditions to environmentally better impacts performance.
form syngas. option.
Th 1 .
ermat Flexible product .
decomposition in L Sensitive to feedstock
absence of oxygen Bio-oil, biochar, non- distribution; suitable uality; product
Pyrolysis e § ’ for material recovery; quality; p

(300-800 °C)
producing solids,
liquids, and gas.

upgrading needed; higher
costs for mixed MSW.

condensable gases. compatible with

circular economy.

Suited for organic
waste; methane
production; nutrient
recycling; reduces
landfill methane.

Microbial breakdown
of organic waste in
anaerobic conditions
forming biogas and
digestate.

Requires waste sorting;
digestate management
challenges; process
sensitive to inhibitors.

Biogas (CHa-rich),
nutrient-rich digestate.

Anaerobic Digestion
(AD) & Co-digestion

These examples of waste-to-energy processes demonstrate the nonlinearity, operation variation, and
data intensity that characterizes modern WtE systems. Variations of feedstock, reaction conditions and
control at incineration, gasification, pyrolysis and anaerobic digestion do not allow purely empirical or
mechanistic models. These are the properties driving the need for machine learning based on learning
complex input—output relationships from operational and sensor data that leads to the methodology discussed
in next section.

3. Machine Learning Methods in WtE Applications

Machine learning is now widely used to analyses, predict, and control the behavior of waste-to-energy
systems. The methods reported in the literature can be grouped into several broad categories. Figure 3
clarifies how different categories of machine learning models align with specific WtE tasks, ranging from
static prediction to dynamic process control. The figure highlights that advanced and hybrid models become
increasingly important as process dynamics and data dimensionality increase.

Based on the technology features of waste to energy discussed in previous section, this section
introduces machine learning approaches that have been applied for model building, prediction and
optimization of WtE systems. The choice of end-point ML methods is related to the process characteristics in
terms of nonlinearity, temporal dynamics, data sample size and interpretability need. Hence each of the three
applications services a different set of algorithmic families in feedstock assessment, performance analysis
and environmental monitoring.



3.1. Supervised regression algorithms

Models including multiple linear regression, support vector regression, k-nearest neighbors, decision
trees and random forest as well those based on gradient-boosting such as XGBoost and LightGBM and
Gaussian process regression are commonly used to predict outputs like biogas yield, syngas composition,
lower heating value or emission characteristics. These approaches model the relationship between
composition, processing conditions and energetic or ecological counterparts. Neural networks, specifically
ANNSs, are also commonly used as they are capable of modeling complex non-linear relationships in
bioprocess data and predicting outcomes such as biogas yield based on substrate composition, temperature,
and pH M. Apart from these, other ML technologies like support vector machine, decision tree and random
forest, Gaussian process regression etc., are also being used for modeling of organic waste management
systems at the same time to implement resource recovery options !!l. Indeed, state-of-the-art machine
learning methods such as deep learning and related hybrid models are becoming increasingly useful
approaches in predicting energy production, optimizing operating conditions, and evaluation the
environmental performance of diverse WtE processes 7> #8). These models are indispensable to deal with the
complexity and non-linearity of WtE systems, particularly where they comprise numerous input and output
variables, in combination with different operational points 4%,

1. Supervived Regression Algorithms

Multiple Linar Regurasion, SVR, WTE Applications: 4, Automated Maching (AutoML)
k-nN, Decision k4N, Random Trees, Birgas Yield Prediction,

Random Forest »| Syngas Composition, Efficientient Biogas Yield

Gradient Boosting (X@oost, LightGBM), LHV, Emission

GPR, ANNS Charceristics

2. Neural Network Models

4. Automated Macrning (AutoML)

ANNs, Deep Architectures WTE Process Model Structure Seafrch
CNNs, Recurent Networks Uast Data & Operation Hyperpararmer Tuning
(CNNS), Sequential Data (LSTM)

5. Explainable Macrrining (XML)

SHAP, LIME
Model Interpration,
Risk-based Optimization

WTE Applicattien:
Bizgas Prediction,
Process Optimization

Ensemble Methods (Bagging, Boosting|

Figure 3. Classification and Application of Machine Learning Methods in Waste-to-Energy (WtE) Systems

3.2. Neural network models

They provide another major direction. Deeper architectures and feedforward networks have been
applied to model nonlinear phenomena in combustion, gasification or digestion systems. For the image-
based tasks, convolutional neural networks are widely used and among these use cases we have automated
waste recognition and sorting. Recurrent models including LSTM networks model sequential process data
and support the prediction of variables such as temperature profiles, gas flow rate or the stability of a
digester. Aside from these basic methods, hybrid models which exploit the strengths of different ML
algorithms (machine learning), such as genetic algorithm and ANN, have great potential for solving
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[ Ensemble methodologies, such as bagging that

complicated optimization problems in WtE systems
employ amalgamation of many models to result in a more stable prediction, are also becoming popular for
improving predictive quality and minimizing the variance of prediction derived from WtE modeling Y. The
choice of a ML algorithm is an important factor for achieving the best results as different models have
different prediction performance, generalization ability, stability and computational requirements [*]. For
example, although Artificial Neural Networks are known for its capability to model complex non-linear
relationships, they may lack interpretability while Support Vector Machines can perform excellent
generalization even when limited number of data is available but might be difficult to apply on very large

I. 92 Gaussian Process Regression, a computationally expensive approach for big data sets

datasets |
compared to ANNs and SVMs, provides a stable non-parametric way which is very suitable for noisy and
complex WtE data where it outputs uncertainty values of its estimates which are essential in risk-based

process optimization 4%,

Advanced ML methods such as deep networks, ensembles or hybrids with physics-informed models
present high prediction accuracy on WtE but with substantial variability in the computation effort. Deep
learning and hybrid models typically require more data, longer training time, and higher computational
resources, that is not feasible in real-time applications for resource-poor plants. Tree-based ensembles and
less complex regression models can therefore offer a good trade-off between the computational cost and
effectiveness, making them more suitable for online monitoring and control. Accordingly, scale is still an
important issue and model choices should be well-adapted to the available computational resources as well
as operational constraints.

3.3. Hybrid and neuro-fuzzy approaches

They integrate knowledge-driven learning with expert-driven reasoning or optimization. ANFIS models
are popular for biogas prediction due to their ability in dealing with imprecision of feedstock and process
conditions. Genetic algorithms (GAs), particle swarm optimization (PSO), and other metaheuristic
approaches are employed to optimize ANN and ANFIS parameters, or to develop hybrid models that can
enhance prediction accuracy in gasification and AD research. Prediction is also enhanced by ensemble
learning which combines multiple algorithms. Nevertheless, while recurrent neural networks can provide a
lot of capabilities, such models can face potential difficulties like vanishing or exploding gradients during
backpropagation — an issue usually mitigated by more sophisticated architectures such as Long Short-Term
Memory networks that are well suited to capture long-range dependencies in sequential data [**°1. Ensemble
methods which combine several high performing machine learning algorithms have been demonstrated to
improve prediction performance in complex non-linear system such as biogas production [**1. Such enhanced
robustness renders them especially suitable for predicting biogas potential and methane emissions as
evidenced by the application of boosting algorithms with log-transformed data to cope well with highly

53

skewed variables 1. Although these state-of-the-art models provide great benefits, their “black-box™

characteristic is an obstacle for understanding results as an important requirement in industry to make
decisions jointly and transparently ¢34, Reducing such interpretability gap has an active research field, and

explainable Al techniques are widely used to provide model prediction explanations.

3.4. Automated machine learning (AutoML)

It has been proven to be an efficient tool for biogas yield prediction and waste composition modeling.
Such frameworks automatically test multiple models’ structures, perform a hyper parameter search and
return the best performing pipeline, which eases the job of researchers who have to work with complex
datasets without much manual tuning. Not only does this automation speed up model development, it
democratizes the use of advanced ML methods so that they become available to a wider group of WtE
stakeholders and researchers. However, the successful employment of ML in WtE poses a range of
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challenges such as lack of high-quality and comprehensive data and further requirement for rigorous feature
engineering to capture complex physicochemical interactions within these processes °%. Moreover, it is very
important to make the model interpretable and handle “black box™ issue of most advanced ML algorithms,
in order to gain trust and promote application of these techniques in industry WtE [* >3], Therefore, there is a
growing interest in combining ML models with classic kinetic studies to obtain insights into overall reaction
pathways and mechanisms . Such integration is often performed using physics-informed machine learning,
where physical laws are incorporated into architecture or loss function of models in order to improve
predictive accuracy and scientific interpretability [°®),

3.5. Explainable machine learning (XML)

These techniques (e.g., SHAP and LIME) are employed to interpret model outputs. Such tool identifies
which feedstock property or operating factor has the highest influence on predictions, facilitates a clear
process optimization and help in giving insights to operators on how models react. This interpretability is
particularly important in digestion and gasification because of the nonlinear and inconsistent interactions
between factors. Nevertheless, even when using these types of approaches to enhance transparency, the
nature complexity of thermochemical phenomena such as gasification sometimes requires a further insight

1301, To address this, there is

about relationships among governing mechanisms that SVR’s/ANNs may hide
an increasing interest in embedding fundamental thermodynamic and kinetic principles into the ML
framework (physics-informed machine learning) to boost predictive accuracy of computational models as
well as further our mechanistic understanding . Overcoming these limitations of classical ML, the
aforementioned hybrid models, such as PINNs !l solve this “black-box” issue by incorporating physical laws
within the architecture of neural networks to increase interpretability and generalization with sparse
experimental data %1, These methodologies could for example use thermodynamic equilibrium models, and
ANNSs being trained to indirectly estimate parameters that are notoriously difficult to measure, thus linking
theoretical knowledge with empirical data %, Table 3 indicates that model selection in WtE applications
involves clear trade-offs between prediction accuracy, interpretability, and computational demand. While
deep and ensemble models often deliver higher accuracy, explainable and hybrid approaches provide greater
transparency, which is critical for operational acceptance.

Table 3. Machine Learning Methods in WtE Applications

Main Applications in

ML Category

Typical Algorithms /
Models

WLE

Strengths

Key Limitations

Supervised Regression

Neural Networks

Hybrid / Neuro-Fuzzy

AutoML

Explainable ML
(XML)

MLR, SVR, KNN,
Decision Trees, RF,
GBDT, XGBoost,
LightGBM, GPR

ANN, CNN, LSTM,
Deep Networks,
Ensembles

ANFIS, ANN-GA,
ANN-PSO, Ensemble
Models

Automated model
selection and tuning
frameworks

SHAP, LIME, physics-
informed ML, PINNs

Biogas yield, syngas
quality, LHV,
emissions prediction

Nonlinear modelling,
digester stability, waste
sorting, thermal
behaviour

Biogas prediction,
gasification
optimization, methane
estimation

Biogas yield
modelling, waste
composition
forecasting

Identifying key drivers;
improving control
decisions

Handles structured
data; good for mapping
inputs to outputs

Captures complex
patterns; strong with
images and sequences

Combines data-driven
and rule-based
learning; higher
accuracy

Fast development;
reduces manual tuning

Improves transparency;
links ML with physical
laws

Sensitive to data
quality; limited for
deep nonlinearities

Reduced
interpretability; may
need large datasets

High computational
demand; possible
black-box behaviour

Needs high-quality
features; interpretability
concerns

Complex
thermochemical
behaviour still hard to
interpret
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Pre-trained models are developed by utilizing the datasets collected from laboratory test, pilot test or
full-scale WtE plants. They find applications both off-line, (for design studies, scenario analysis or
performance benchmarking) and on-line (for soft sensing, real-time monitoring or advanced control).

3.6. Comparative Performance and Limitations of ML Models across WtE Processes

The applicability and performance of ML models in WtE applications strongly depend on the
characteristics of the studied process, available data and technological targets. Tree-based ensemble learning
techniques like Random Forest and gradient boosting exhibit generally great performance for predicting
feedstock properties, heating values as well as emissions especially when the size of datasets is moderate and
heterogeneous. Their capabilities for taking into account nonlinear interactions and indicating the
importance of features make them suitable also for incineration and gasification units where interpretability
is desirable for operational decision-making. Among the predictive models, ANN and DL models tend to
have better performance for highly nonlinear systems such as in AD process and integrated WtE plant
wherein the dynamics of processes are complex and time-dependent. Recurrent structures such as LSTM are
well-suited to model dynamic behavior in biogas production and digester stability. However, these models
need large and carefully-crafted datasets and may have low interpret-ability, which could limit their direct
application in industrial control scenarios.

Hybrid or neuro-fuzzy systems are proposed as a trade-off between accuracy and interpretability by
means of merging data-driven learning with rule-based reasoning or optimization. These strategies are
particularly useful in anaerobic digestion and pyrolysis studies, where the lack of accurate knowledge on
feedstock characteristics and operational conditions is substantial. They are mainly limited by high
computational load and careful parameter design. Physics-informed and explainable machine learning
models help overcome some of the shortcomings of purely empirical methods as physical constraints are
encoded or interpretation of variable effect is provided. These models achieve better robustness under
varying feedstock quality and lower risk of non-physical predictions, but at the cost of being non-trivial to
develop given the necessary domain knowledge and computational resource requirements.

In general, no one machine learning model is globally superior to others on all the WtE processes.
Process features, amount and quality of data, interpretability needs or context of deployment should guide
model selection. Thus, a comparative application-specific analysis is necessary for a proper and robust
implementation of the machine learning part in WtE.

4. Machine Learning for Resource Evaluation and Feedstock Assessment

Effective application of machine learning in waste-to-energy systems begins with accurate
characterization of waste quantity and quality. This section focuses on ML-based approaches for resource
evaluation, where data-driven models support early-stage decisions related to feedstock availability,
composition, and energy potential. These predictions provide essential inputs for downstream conversion
modeling and process optimization. Figure 4 shows the major roles of machine learning in predicting waste
quantity, assessing fuel properties, estimating biochemical potential, and supporting technology selection
also summarizes how data-driven models help classify waste streams, estimate heating value, forecast biogas
yield, and guide suitable WtE pathways.

4.1. Waste generation forecasting and composition estimation

Reliable prediction of waste amount and characteristics is essential for WtE system design, unit process
sizing, and appropriate technologies to be implemented. The same machine learning techniques have been
used to predict municipal solid waste (MSW) generation at city or regional level from socio-economic
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indicators, demographic factors and weather variables together with past records of waste generation.
Assessment of waste composition and quality have been performed using image-based analysis systems and
sensors to classify major waste fractions including plastics, metals, organics, and paper which are utilized in
sorting processes as well as for preparation of refuse derived fuel (RDF).

Recent reviews on Al technologies applied to waste management suggest that, tree-based algorithms
and artificial neural networks usually yield very high predictive accuracy, as declared values of R? are
higher than 0.9 or more than 90% when reaching correct classification by sorting purpose. These models
associate socio-economic characteristics (visual patterns) with waste type, contributing to the planning of
resources and recovery of materials before energy conversion. This detailed characterization of waste
streams is key in order to optimize pretreatment strategies, as directly affecting the efficiency and
sustainability of following thermochemical or biochemical conversion pathways .

Waste Generation Forecasting Prediction of Heating Value
and Composition Estimation and Other Fuel Properties
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Figure 4. Machine Learning for Resource Evaluation and Feedstock Assessment

4.2. Prediction of heating value and other fuel properties

The net calorific value (NCV) of MSW is a key design parameter for incineration and gasification
plants. The ensemble learning algorithms like Extra Trees, CatBoost, XGBoost and Random Forest have
been utilized for the estimation of NCV using proximate as well as ultimate analysis data including carbon,
hydrogen, oxygen, nitrogen, sulfur present in coal along with moisture and ash content.

For these model performances, test-set R* values of around 0.98 are reported for heating value
predictions compared to classical regression correlations. The same technique is also employed to predict ash
content, volatile matter and char yield for pyrolysis/gasification that can help in fast feedstock evaluation
and optimized blending. In addition, ML models that consider feedstock particle size may improve the
classification of a diverse set of plastic types including polyethylene and polypropylene by using input
factors like ashless chemical components such as carbon, hydrogen, and oxygen Bl This detailed
characterization of feedstock properties is useful for modeling with better accuracy, the combustion or
gasification behavior and also affects the design and operation of reactor system. These predictive abilities
are essential to minimize process upsets, optimize energy production and lower emissions in WtE plants [,

While several studies report high prediction accuracy, often expressed through elevated R? values, these
results should be interpreted in light of dataset size and validation strategy. In many cases, strong
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performance is achieved using relatively small or laboratory-scale datasets, with validation limited to random
train—test splits or cross-validation within a single data source. Such strategies may overestimate model
generalization when applied to full-scale plants or different operating conditions. Explicit reporting of
dataset size, temporal coverage, and validation approach (e.g., external validation, cross-plant testing, or
time-series validation) is therefore essential to assess the robustness and practical applicability of the
reported models.

4.3. Biochemical potential and biodegradability indices

The biochemical methane potential (BMP) and overall biodegradability of organic waste is typically
estimated in the laboratory with anaerobic batch tests that are often time consuming. ML models that were
developed based on feedstock characteristics (e.g., COD; volatile solids; C:N ratio; lignin content of biomass
and nutrient content) are now implemented to predict BMP and the expected biogas quality.

ANN, RFR and SVN perform very well for the demand forecasting g model with hybrid models
providing further enhancement according to Review Studies. AutoML-based algorithms have also been
studied when ranking input variables in order to choose appropriate substrates and to design co-digestion
scenarios based on their impact on biogas yield. Over and above yield, ML is fitted with potentiality to
predict the kinetic parameters for anaerobic digestion ensuring effective control of retention times, organic
loading rates to obtain maximum methane production and process stability (. This capacity of prediction
also extends to the identification of potential inhibitory compounds or nutrient limitations, and provides
preemptive modification of feedstock composition and bioprocess operation ). In addition, such models
can compare the effect of biochar additions on anaerobic digestion systems and estimate increased CHa
production and process stability by considering biochar characteristics and pyrolysis parameters 7). This fine
characterization enables development of customized biochar applications, optimizing the waste-to-energy
route consideration for several organic substrates 7). ML is also important in the development of the
production and utilization of hydro char, a hydrothermal carbonization product which can be used to
enhance the efficiency of anaerobic digestion as well as other WtE processes [©* 1. These sophisticated
machine learning approaches enable a more systematic and efficient usage of many different organic
feedstocks, which in the end would drive faster transitioning from non-sustainable towards sustainable
bioenergy recovery 7],

4.4. Decision support for technology selection and feedstock allocation

ML-enabled decision support systems, when coupled to multi-criteria decision analysis (MCDA)
support the matching of waste streams with suitable conversion pathways: incineration, gasification and
pyrolysis or anaerobic digestion. Such tools take into account energy generation, cost of operation and
environmental constraints in allocating resources.

Such systems might suggest that high calorific, low moisture fractions should be redirected towards
thermochemical routes and divert food waste or sludge to digestion. Through learning from data of the
plants in operation, planners can use these models to test scenarios related to capacity enlargement, sharing
feedstocks and globally optimizing WtE networks. We argue, however, that such smart systems should be
also able to predict the best operating parameters for particular WtE technology on a basis of input nature
and extend the conventional only-allocate approach towards a prescriptive energy recovery 4. These
frameworks even can incorporate the online operational data, to adapt the processing variables frequently in
real-time for high efficiency and pollution-free operation [, Advances in this direction include the use of
multi-objective optimization algorithms, sometimes hybridized with ML approaches, to simultaneously
optimize economic competitiveness, environment impact and energy recovery for complex WtE systems [#!,
These synergetic approaches benefit to a comprehensive system perspective, allowing data-based decisions
reconciling various targets in sustainable waste management. Additionally, ML is applicable for the

13



prediction of net biodiesel production through feedstock supply and provides accurate financial and
environmental estimates for global uptake “*. The knowledge gained from these models can support the
increased efficiency, sustainability and environmental of biomass in the form of energy and be basis for a
systematic adaptation towards strategic application targeting bioenergy and the conversation to biomass

fuels technologies [434,

5. Machine learning for conversion efficiency and process performance

Once feedstock characteristics are established, machine learning models are increasingly employed to
improve conversion efficiency and operational stability of WtE technologies. This section examines how ML
techniques are applied to predict process outputs, adjust operating conditions, and support real-time control
across thermochemical and biochemical conversion routes. Figure 5 demonstrates that machine learning
enables coordinated optimization across multiple conversion pathways by linking operating conditions to
performance indicators. This integrated view highlights the potential of ML to support real-time decision-
making in complex WtE plants.

5.1. Incineration and grate-fired boilers

ML models are also commonly applied to predict combustion efficiency, boiler load and steam
generation in municipal solid waste incineration plants. These models employ process parameters like waste
feed material properties, grate speed, primary and secondary air flows and information of furnace
temperature to calculate steam-production, boiler efficiency and major pollutants.

In the latest reviews on ML applied to WtE, ANN, Random Forest and gradient boosting models are
mostly used for online prediction of combustion and process control. Data of case studies from Al supported
incinerator adjustment indicate an improved operating stability, energy recovery and reduction of excess air.

Recent works include a combination of deep learning with combustion control to optimize the air
distribution and waste feeding dynamically. These clouds exhibit more rapid dynamics and better power
stability, and are at the heart of soft sensors and model predictive control (MPC) architectures in modern
incineration facilities. These Al techniques can adjust operational parameters with high-resolution accuracy
to keep the combustion in an optimal condition of efficiency and reduce emissions of pollutants and are more
effective at recovering energy from a variety of waste streams [4,6]. In addition, it is possible to predict
incinerators and grate-fired boilers equipment failures base on considering sensor data using ML algorithms
which enables predictive maintenance to minimize downtime and prolong the lifetime of essential
components 4,

5.2. Gasification and pyrolysis of waste and biomass

For MSW, plastics and biomass residues gasification/pyrolysis systems, ML application is used to
predict syngas composition, H2 yield, tar generation, char properties of the product from fuel qualities and
process conditions (temperature, residence time, equivalence ratio) and operational conditions (pressure or
steam: fuel ratio).

In reviews related to biomass and waste conversion, ANN, SVR, and tree-based models are reported to
have good predictability (usually R? > 0.9) of gas composition and process efficiency. Other works dedicated
to plastic and PET gasification apply ML to optimize operational parameters aimed at enhanced hydrogen
production or syngas quality.

For pyrolysis, ML has been used to establish the relationship between biomass composition and
microwave pyrolysis parameters with biochar yield and quality. The models also predict liquid and gas
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fractions, which would aid in the selection of conditions preferable for energy conversion or materials
reclamation. These predictive models are particularly important for maximizing the product yields and
compositions of complicated thermochemical environments %1, Moreover, more sophisticated ensemble
methods comprising various ML algorithms including decision trees, XGBoost, random forests, ANNs and
SVMs were shown to achieve better predicting results for syngas yield, LHV or LHVs of other products of
mixed municipal solid waste (5%,

Machine Learning for Conversion Efficiency
and Process Performance

‘i
% ;

I Incineration and

Gasification and Pyrolysis
of Waste and Biomass

)
ﬂ « Predicit syngas compossition

and yield
« Forecast tar and properrties
» Optimize process conditions

Grate-Fired Boilers

« Predicit combustion efficiency
« Calculate opimtien efficiency ———
» Adjust operational parameters

4

Multi-Generation and

* o Anaerobic Digestion &
and Co-Digestion m%* Integrated WLE Systems

- Estimate biogas and —> mb « Optimization

methane production « ML tools aider in
» Predicit stability paran meters « Operating scenarios
* Provide early warnings for upsets assessment
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5.3. Anaerobic digestion and co-digestion

The anaerobic digestion process is significantly influenced by the operation conditions, including
temperature, pH, OLR and HRT, as well as the substrate properties ['. ML models are used to:

*  Estimate biogas production and methane yield from feedstocks and operating conditions.
*  Predict stability parameters of VFA, alkalinity and VFA/alkalinity ratio.
* Divides digester states between a stable and unstable to provide early warnings for any upsets.

Recent reviews on Al in AD and co-digestion suggest that ANN, RF and ANFIS are commonly used,
hybrid/ensemble methods help for better generalization when noise from sensor is present. AutoML-built
tree models yielded accurate predictions of biogas production and ranked VS loading, temperature, and C:N
ratio as the most important variables.

Explainable ML methods, such as SHAP analysis, are further applied to interpret the impact of
feedstock composition, OLR and temperature on methane yield and process stability in order to make such
models transparent for plant operators. Bayesian Networks and Extreme Gradient Boosting further improve
the predictive performance by reasoning about uncertainty and taking a robust combination of weak models,
respectively resulting in the translation (model) of qualitative observations to quantitative numbers for
process selection and estimation of biogas yield 6. Likewise, Al-enabled applications are being built for
wastewater treatment processes in which machine learning models are used to forecast treatment and
methane yield performances of anacrobic reactors, performing so much better than linear regression

traditional models [0,
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5.4. Multi-generation and integrated WtE systems

The ML methods also have been employed in multi-generation WtE systems by which taking MSW
material into multiple energy products, e.g. electricity, heat, hydrogen and sometimes cooling or desalinated
water.

Optimization of these integrated plants based on ML is demonstrated to lead to their exergy efficiency,
load-following capability and also environmental performance enhancement. ML tools based on regression
aid the operator in assessing a plethora of operating scenarios, and quickly adaptation of modes to varying
feedstock quality or variations in energy price. These models such as the one in allow to make near to real-
time decisions for efficient driving (resource allocation and energy production) of complex WtE systems [67-
8. Moreover, reinforcement learning approaches are being investigated to realize adaptive control
techniques for WtE integrated plants, which can optimize operational parameters autonomously and achieve
the best overall systems efficiency and economic performance in varying market conditions with feed stocks.
It is apparent that the machine learning enables the energy conversion through waste become more efficient
and produces cleaner outputs including optimizing operations, yield predictions and environmental
contaminant reduction U>-*¥ In addition to these established uses, there is growing research on ML
approaches for the optimization of waste sorting and preprocessing, two essential operations impacting
directly on the efficiency and environmental footprint of subsequent WtE conversion technologies . Smart
technologies including advanced sensors and data analytics as well as machine learning will significantly
reshape the waste-to-energy industry with an ability to monitor and optimize processes in real-time for

increased efficiency and flexibility #-5,

6. Machine learning for environmental effects and emission control

Beyond energy recovery, environmental performance remains a critical dimension of waste-to-energy
systems. This section addresses the application of machine learning for emission prediction, environmental
monitoring, and life cycle impact assessment, completing the progression from resource evaluation to
conversion performance and environmental compliance.

6.1. Soft sensing and prediction of air emissions

Waste-to-energy plants have to be operated within tight emission limits as regards NOx, SOx, CO,
particulates, dioxins and furans, heavy metals and greenhouse gases. ML soft sensors employ regular plant
measurements (e.g., furnace temperature, oxygen concentration, flowrates and waste feed properties) to
predict emissions in real-time and to assist in automation control.

For incinerator NOx soft sensing, existing studies use gradient boosting, Random Forest and deep
learning to predict NOx concentrations from operation data. These predictive models help optimize flue gas
recirculation and selective catalytic reduction (SCR) following and provide NOx control stability during
load changes. Artificial intelligence-based emission forecasting methods also cut down on control system
action time and have averted short term spikes in emissions.

Machine learning models are also employed for predicting environmental impact and carbon intensity
of process working conditions and syngas properties, helping in greener design and operation methodologies
to gasification/pyrolysis systems. The predictive ability also includes the evaluation of environmental
impact for biomass energy projects by analyzing environmental data and simulating ecosystem dynamics ¢
1051 Furthermore, the precise estimation of waste generation and its emission potential using machine
learning models provides a key source for prospective environmental planning in biomass to energy

initiatives 1061151,
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6.2. Support for life cycle assessment and scenario analysis

Among these, life cycle assessment (LCA) is and stays a central method for evaluating WtE options
against landfilling, recycling and other waste disposal routes. Always those studies that are available come
to the result that uncontrolled landfills load up environment more strongly than incineration or combined
gasification—pyrolysis-based systems; in particular when energy recovery credits are considered.

There are two factors ML supports LCA with:

*  Surrogate modeling of inventory outputs: Regression-based surrogate models estimate life cycle
inventory indicators, such as GHG emissions and acidification potential, by process variables and
feedstock attributes. There models provide a fast way to evaluate alternative scenarios.

* Integration with process models: ML based process simulators can be combined with LCA to
explore large scale design spaces for multi generation WtE plants including energy outputs,
conversion efficiencies and target emissions.

These methodologies allow policymakers to compare technology paths including the effect of energy,
cost and environmental constraints under high uncertainty settings. Furthermore, complex and dynamic
interactions between various environmental factors and WtE technology can be practiced using machine
learning which helps to extend our horizon of sustainability [!'*123] In addition, for environmental impact
assessment and optimization of resource allocation within WtE processes ML methods are able even to
detect patterns and trends in emissions and energy use [?*1%], This potential enlarged by the capability of
ML of handling vast amount of data (and therefore to consider those “latent links” between process
conditions, waste quality and environmental performances that has previously been ignored) is aimed at

being valued [126-128],

6.3. Monitoring of leachate, odour, and other environmental impacts

Environmental control of WtE is not only stack emission. A number of additional consequences have
imposed the advent of ML applications to counteract them:

¢  Leachate quality prediction based on waste composition and landfill / thermal residues properties.

¢ ANN Oduor modelling developed from meteorological parameters and operating data of the plant
to predict dispersion around WtE facilities.

¢ Leaching of heavy metals from bottom ash and fly ash for which classification models are used to
determine safe reuse options in construction materials.

These models extend ML from predict emissions to assessing risks for the environment and recovering
usable resources from process wastes. In addition, the incorporation of ML into LCA frameworks addresses
major data limitations; conventional LCA requires large data collection efforts and can be demanding on

[1,69

computational resources ["*). Models developed based on machine learning can be alternative methods for

complex LCA models and reduce the computational burden, with good prediction capabilities of

129-311 Table 4 outlines how different machine learning methods are applied to

environmentaly impact |
control and evaluate environmental effects in waste-to-energy systems. It groups the applications into
emission prediction, environmental impact estimation, LCA support, pattern detection in plant data and
monitoring of leachate, odour and ash-related risks. Table 4 highlights that machine learning plays a central
role not only in emission prediction but also in broader environmental assessment and compliance support.
The summarized applications show that ML-based soft sensors and surrogate models can significantly

enhance regulatory monitoring and sustainability evaluation in WtE systems.
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Table 4. Machine Learning for Environmental Effects and Emission Control

ML Techniques
Used

Purpose /
Application

Key Inputs

Main Outcomes

Gradient Boosting,
Random Forest, Deep
Learning, ANN

Regression models,
Hybrid ML, Deep
Learning

Surrogate regression
models, ML-coupled
process simulators

ANN, Clustering,
Ensemble Methods

ANN odour models,
Classification models

Real-time prediction
of NOx, SOx, CO,
particulates, dioxins,
heavy metals;
emission forecasting

Estimating carbon
intensity, predicting
syngas properties,
ecosystem modelling

Fast estimation of
LCA indicators
(GHG, acidification);
scenario evaluation

Detecting trends in
emissions and energy
use; analysing
dynamic
environmental factors

Predicting leachate
quality, odour
dispersion, and

heavy-metal leaching

Furnace temperature, oxygen
concentration, waste feed
properties, air flowrates

Operating data, syngas composition,
biomass characteristics

Feedstock attributes, process
parameters, conversion efficiency

Historical plant data, environmental
datasets

Meteorological data, ash
composition, waste properties

Stable NOx control, optimized FGR &
SCR, reduced emission spikes, faster
response during load changes

Greener process design, improved
carbon assessment, better planning for
biomass-to-energy systems

Rapid evaluation of technology
pathways; decision support under
uncertainty; wide design-space
exploration

Better sustainability insights, improved
resource allocation, deeper
understanding of latent links

Risk assessment, safer reuse of
residues, reduced local impacts;
support for circular use of process
wastes

7. Challenges and Research Gaps

Despite the rapid proliferation of ML applications in WtE systems, there exist barriers towards their
further uptake and sustained usefulness.

7.1. Data quality and quantity

The reliability of the ML models for WtE is now a great challenge due to the lack of data. Many
analyses on anaerobic digestion indicate that the training of biogas and methane yield models is carried out
based on small laboratory-scale datasets, which leads to poor transfers for predictions made using full scale
digesters under varying loading rates and compositions of feedstock. Models that predict train and validate
well by cross-validation often become with lower accuracy, when they are used in long-term plant data
generation, where the sensor noise, missing values, and operational disturbances tend to be larger. The same
is true for the thermochemical WtE systems. In gasification and pyrolysis research, mass transfer models
constructed based on controlled experimental data were reported to drop the prediction accuracy when used
in industrial applications, as they cannot consider real operating variabilities sufficiently. Deficiencies of
these sensor systems (e.g., in incineration plants) and patchy data logging mean that emission prediction
models are less stable in time for NOx and CO, where short-term training leads to neglect of seasonal and
operationally sensitive behavior. These examples demonstrate that inadequate data volume and quality can
directly affect the robustness of a model, serving as a barrier to practical use.

7.2. Heterogeneity and non-stationarity

Furthermore, during the operation of WtE systems, feedstock heterogeneity and temporal variability
also complicate the utilization of machine learning. The composition of MSW shows great differences by
location, season and socio-economic factors, posing domain shifts that are difficult to handle for static
models. Some studies have found that models calibrated for one plant or region tend to perform poorly at
other sites displaying different waste characteristics. The model is also dependent on the stationarity in noise
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(and is thus sensitive to instrument aging, calibration work and process drift over time). In AD, changes in
microbiome activity with volatile solids and/or temperature can lead to system dynamics that fall outside
those covered during training. Moisture content and more generally the prescription of calorific value over
time in incineration/gasification plants causes that process behavior becomes dynamic with respect to these
parameters, which undermines the use of fixed-parameter models. Such observations highlight the relevance
of adaptive, transfer or continual learning approaches to keep predictive performance under real operational
environment.

7.3. Limited interpretability

Despite achieving high-predictive accuracy, ensemble models and deep neural networks are used as
black-box systems. Recent investigations of explainable ML for both AD and gasification show that feature-
importance methods as well as local explanation tools can be useful, but few guidelines exist for
interpretation or to translate model insights into operational strategies.

7.4. Integration with Physical and Mechanistic-based Methods

The majority of published work is based on purely empirical model, i.e., without mass balance, energy
balance, reaction kinetics and transport limitations. This constrains generalization, and predictions outside
the regime in which a model was trained may fail to satisfy physical constraints. The physics-informed ML,
grey-box modelling and hybridized applications between mechanistic equations and data-driven com ponents
represent relative new fields in WtE research.

7.5. Deployment and cyber-physical constraints

Availability, fail-safe operation, latency and cyber-security need to be carefully considered when
integrating ML models into real control systems of plants. Very limited numbers of studies bring you to the
operational stage, while most case studies are still at offline, simulation or pilot-plant status. This gap
reflects the requirement to research integration and validation of industrial-level ML.

7.6. Standardization and benchmarking

The sets of predictors, model forms, and validation procedures differ widely between studies. Such
discrepancies restrict meaningful comparison of results and do not facilitate accumulation of knowledge.
Benchmark data sets are scarce for AD, gasification and incineration due to commercial, regulatory and
confidentiality issues in the sharing of open data.

8. Future Research Directions

It is indeed possible to further improve the position of ML in WtE systems through several promising
research directions.

8.1. Physics-informed and hybrid models

Physics-informed and hybrid ML models provide a practical route for enhancing model accuracy and
deployment in WtE systems by integrating process understanding within data-driven frameworks. A few
recent works show how the addition of mass and energy balance constraints into NN architectures leads to
enhanced prediction robustness in gasification and pyrolysis processes, especially under extrapolative
operating conditions where entirely data-driven models often predict physically unrealistic results. For
instance, hybrid gasification models based on equilibrium-based syngas composition equations and neural
networks have reported better robustness in predicting hydrogen and carbon monoxide yield for various
equivalence ratios and feedstock moisture content.
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In anaerobic digestion, physics-based methodologies have been employed by integrate deration of
forms such as first-order or ADM1-like models with machine learning models. In these realizations, the ML
component is trained to predict hard-to-measure biological parameters, whereas system dynamics are based
on mechanistic equations. Hybrid models, such as ANN combined with mathematical equations, have
achieved better long-term prediction of methane yield and stability monitoring compared to single neural
networks under organic loading shocks or temperature variation. Applications in practice have also been
reported on emission monitoring of incineration plants, where soft sensors combine combustion
stoichiometry and flue-gas relations by means of regression or ensemble models. These hybrid soft sensors
retain its predictive ability when the excessive air ratio or the garbage composition changes and can be
applied to control NOx during actual incineration for emission regulation.

Nevertheless, some barriers still exist to the successful application. Hybrid and physics-informed
models need more extensive collaboration between domain experts and data scientists, careful model
calibration and higher computational cost. Nevertheless, the models have been documented in reported cases
to achieve a good trade-off between accuracy, interpretability and physical consistency which are highly
desirable for industrial scale deployment where trust and operational stability is paramount.

8.2. Explainable ML and operator-centric tools

Future work should stress interpretability, such as feature- importance analysis and visual analytics that
are supportive for operational decision-making. Tools like SHAP values, partial dependence plots, and rule-
based surrogates make it possible to translate the ML results into operational congruent advice regarding the
control of such plants and hence make them more acceptable for plant operators and control engineers.

8.3. WtE digital twins

Some of its successful applications in industry are the combination of real-time data streams, ML
models and process simulators in digital twins that provide a way towards monitoring at all times (and
detecting early issues), predictive maintenance, and scenario testing. Research on digital twins in power
generation and process industries can be generalized to WtE systems, but with a focus on waste
heterogeneity, ash behavior and emission goals.

8.4. Federated and transfer learning

The lack of cross-company and regional sharing restricts the generation of generalized WtE models.
Federated learning and transfer learning are techniques that enable the utilization of the knowledge from
several plants avoiding to pool raw data. Such methods may mitigate overfitting, increase model robustness
and better leverage sparse datasets.

8.5. Multi-objective optimization under uncertainty

WH1E systems have to be designed and run taking account the trade-off between energy, cost, emissions-
controlled technologies and resources recovery in face of uncertain waste composition and market
conditions. Using ML in conjunction with EO and UA can help decision makers to grasp trade-offs and
robust solutions under changing conditions.

8.6. Linking ML with policy and social approval

WHE initiatives may be evaluated in a transparent manner, on the basis of GHG balance indicators,
health metrics and circular economy credits (via ML quantification) of emissions assessments. Such
instruments could serve to assess environmental performance for regulators and local stakeholder, and in
combination with transparent communication or sustainable operation practices they might even foster
acceptance.
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9. Conclusion

This review has presented a comprehensive and integrated assessment of machine learning applications
across the entire waste-to-energy (WtE) value chain, spanning resource evaluation, conversion efficiency,
and environmental impact assessment. By synthesizing studies from thermochemical and biochemical
pathways, the analysis demonstrates that machine learning offers a practical means to address the inherent
nonlinearity, variability, and data intensity of modern WtE systems. Data-driven models have shown strong
capability in predicting waste characteristics, energy yield, process stability, and emissions, while also
supporting real-time monitoring, optimization, and decision-making. Compared with traditional empirical
and mechanistic approaches, machine learning provides faster prediction, adaptive learning, and improved
handling of heterogeneous feedstocks and dynamic operating conditions. At the same time, the review
highlights that high predictive accuracy alone is not sufficient for reliable industrial adoption. Persistent
challenges related to data quality, limited transferability across plants, lack of standard benchmarking, and
reduced interpretability of complex models continue to constrain large-scale deployment. The discussion
indicates that hybrid and physics-informed machine learning, explainable models, and digital twin
frameworks represent promising directions to balance accuracy with physical consistency and operational
trust. Overall, this work clarifies the current state of knowledge, identifies key gaps, and outlines research
priorities that can guide both future academic studies and practical implementation of machine learning in
sustainable waste-to-energy systems.

Abbreviations
Abbreviation Full Form
AD Anaerobic Digestion
Al Artificial Intelligence
ANN Artificial Neural Network
ANFIS Adaptive Neuro-Fuzzy Inference System
AutoML Automated Machine Learning
BMP Biochemical Methane Potential
CNN Convolutional Neural Network
CcO Carbon Monoxide
CO: Carbon Dioxide
DL Deep Learning
DNN Deep Neural Network
GBDT Gradient Boosting Decision Tree
GHG Greenhouse Gas
GPR Gaussian Process Regression
HRT Hydraulic Retention Time
LCA Life Cycle Assessment
LHV Lower Heating Value
LIME Local Interpretable Model-Agnostic Explanations
LSTM Long Short-Term Memory
MCDA Multi-Criteria Decision Analysis
ML Machine Learning
MSW Municipal Solid Waste
MPC Model Predictive Control
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NCV Net Calorific Value

NOx Nitrogen Oxides
OLR Organic Loading Rate
PINNs Physics-Informed Neural Networks
PSO Particle Swarm Optimization
RDF Refuse-Derived Fuel
RF Random Forest
RNN Recurrent Neural Network
SCR Selective Catalytic Reduction
SHAP SHapley Additive exPlanations
SOx Sulfur Oxides
SVM Support Vector Machine
SVR Support Vector Regression
VFA Volatile Fatty Acids
WtE Waste-to-Energy
XML Explainable Machine Learning
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