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ABSTRACT 
Waste-to-energy (WtE) technologies are increasingly important 

for sustainable waste management and circular economy practices, as 
they enable recovery of energy from municipal, agricultural, and 
industrial wastes while reducing landfill use and associated emissions. 
Despite this relevance, existing research on machine learning (ML) 
applications in WtE systems remains fragmented, with most studies 
addressing individual processes, specific algorithms, or isolated 
performance metrics, and lacking an integrated perspective across the 
full value chain. The objective of this work is to provide a 
comprehensive review of machine learning applications in WtE 
systems, covering resource evaluation, conversion efficiency, and 
environmental effects within a unified framework. The study is based 
on a systematic analysis of recent peer-reviewed literature reporting 
experimental validation or applied modeling in incineration, 
gasification, pyrolysis, and anaerobic digestion processes. The review 
indicates that machine learning models successfully capture the 
nonlinear and time-varying behavior of WtE systems, allowing 
accurate prediction of waste generation and composition, heating 
value, biogas yield, process efficiency, and pollutant emissions. Tree-
based ensembles and neural networks show strong performance in 
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feedstock assessment and conversion modeling, while data-driven soft sensors and surrogate models support 
real-time emission prediction and life-cycle impact evaluation. These findings demonstrate that machine 
learning offers practical benefits for improving operational stability, energy recovery, and environmental 
compliance in WtE plants, while also highlighting persistent challenges related to data quality, model 
transferability, and interpretability that should guide future research and deployment. 
Keywords: Waste-to-energy, machine learning, resource assessment, incineration, gasification, pyrolysis, anaerobic 
digestion, biogas, emissions, life cycle assessment 

1. Introduction 
The increase of municipal solid wastes (MSWs), industrial residues, and agricultural by-products 

increases the burden on traditional waste management practices and releases greenhouse gases and local 
pollutants. The heterogeneous waste streams are converted with WtE technologies into heat, electricity, 
fuels and value-added products and finally more often considered as part of a circular economy. 
Thermochemical pathways—a selection of incineration, gasification and pyrolysis—and biochemical routes 
such as anaerobic digestion and co-digestion are based on coupling physical, chemical and biological 
processes. Their effectiveness is a function of feedstock, operating conditions reactor design and control 
settings. Traditional empirical correlations and mechanistic models frequently face difficulties in dealing 
with the strong non-linearity, time-dependent nature, as well as data noise of real WtE plants. Machine 
learning offers the possibility to model and control processes like this. Recent AI for waste management and 
WtE reviews report its applications in feedstock sorting, monitoring of process, energy output optimization, 
and emissions minimizing. With the improvement in sensing techniques and digitalization, ML algorithms 
have opened up new opportunities to extract reliable information through historical plant data, laboratory 
experiments, as well as online monitoring systems. More specifically, advanced ML algorithms such as 
neural networks, support vector machines, decision trees and random forests and gradient boosting are 
implemented to model, optimize and control high-temperature and low temperature treatment processes for 
organic waste [1].  The Figure 1 shows how rising waste generation pressures traditional systems and drives 
the need for WtE technologies that convert diverse waste streams into heat, electricity, fuels, and useful 
products. It also highlights how machine learning supports these pathways through sorting, monitoring, 
optimization, and prediction. 

 

Figure 1. Role of Machine Learning Across Waste-to-Energy Pathways 
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In this review, the contribution of machine learning (ML) within the entire WtE chain is systematically 
summarized including waste characterization, process conversion efficiency as well as environmental 
impact and remaining challenges and potential issues that need to be addressed in future investigations [1,2,3]. 
It provides a synthesis of ML applications for waste since initial assessment and so addresses the fragmented 
nature of this literature. To overcome these limitations, the authors suggested using a ML-based model 
reduction that has the potential to cut down on computational cost, avoid frequent recalibration and facilitate 
its usage within online control systems [1]. ML can process time-series process data and detect subtle trends 
or deviations early on, which helps make timely operational changes and plant robustness [4]. In terms of 
chemicals and fuels generation, data driven analysis of large WtE datasets also may help in identifying 
better feedstocks, catalysts or alternative conversion routes [4]. The review also introduces ML in waste 
sorting process, calorific value prediction, biogas yield estimation and emission control, which provides a 
way for greater energy recovery and alleviated pollution [8–4]. Higher-end methods like deep learning, SVM 
and LSTM models contributed waste classification, generation forecasting and logistics, planning and 
predictive maintenance leading to minimizing downtime and extending equipment lifetime [11–13]. Decision 
support systems employing machine learning also enable the optimization of waste collection, circular 
economy goals and infrastructure planning by combining sensor and spatial data [10, 15, 16]. To sum up, the 
review shows that ML has potential scalable, adaptive, and dependable tools for efficient, stable and 
sustainable operation of modern WtE system at heterogeneous waste profile [12,14,24]. 

The studies included in this review were selected based on relevance to machine learning applications in 
waste-to-energy systems, with priority given to recent peer-reviewed journal articles reporting validated 
experimental or applied modeling results. Studies lacking clear methodology, performance metrics, or direct 
relevance to WtE processes were excluded to maintain consistency and analytical rigor. 

Table 1. Machine Learning Applications Across the Waste-to-Energy (WtE) Spectrum 

Waste Growth & 
Challenges WtE Pathways Machine 

Learning Role 
Process 

Improvements 
Typical 

Algorithms Key Outcomes 

Rising MSW, 
industrial residues, 

and agro-waste 
increase pressure 
on conventional 

systems. 

Thermochemical 
routes (incineration, 

gasification, 
pyrolysis) and 

biochemical routes. 

Handles non-
linearity, time-

varying data, and 
noise. 

Improves sorting, 
monitoring, energy 

prediction, and 
emissions control. 

ANN, SVM, 
decision trees, 
random forests, 

gradient boosting, 
LSTM, GANs. 

Better energy 
recovery, 
improved 

stability, lower 
emissions. 

Heterogeneous 
waste streams 

create operational 
constraints. 

Converted into heat, 
power, fuels and 

products. 

Provides fast, 
flexible, data-

driven modelling. 

Supports real-time 
adjustments in 

combustion and 
digestion. 

Classical ML and 
deep learning 

models. 

Greater 
resource use 

efficiency and 
reliability. 

Field data and 
variable 

composition. 

Physical, chemical 
and biological 

reactions. 

Uses plant 
history, lab tests 

and online 
sensors. 

Detects trends and 
anomalies early. 

Multivariate input 
modelling. 

Accurate 
prediction of 
heating value 

and biogas 
yield. 

High uncertainty in 
feedstock quality. 

Needs optimal reactor 
design and control. 

Supports scalable 
and adaptable 

decisions. 

Automated waste 
classification and 

logistics. 

Predictive and 
interpretable 

models. 

Reduced 
downtime and 

longer 
equipment life. 

Traditional models 
fail under 

variability. 

Efficiency depends 
on feedstock and 

settings. 

ML must manage 
heterogeneity 

and noise. 

Digital integration 
for real-time 

decisions. 

Need 
interpretability and 

transparency. 

Stable 
performance 
despite input 

variation. 

Need modern 
sustainable waste 

approaches. 

Supports circular 
resource use. 

Bridges gaps 
between theory 

and practice. 

Improves predictive 
tools for heat value 

and gas yield. 

Deep learning for 
sorting and 
forecasting. 

Higher 
efficiency 

through data-
centric 

operation. 
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Waste Growth & 
Challenges WtE Pathways Machine 

Learning Role 
Process 

Improvements 
Typical 

Algorithms Key Outcomes 

Shift toward 
intelligent waste 

systems. 

Hybrid routes and 
improved designs. 

Uses advanced 
sensors and 

digital twins. 

Adaptive control 
with ML insights. 

Hybrid physical–
ML models. 

Smarter WtE 
plants with real-

time 
intelligence. 

Table 1. (Continued) 

Table 1 illustrates that machine learning contributes across all stages of the WtE value chain, with its 
role shifting from prediction and classification at the resource assessment stage to optimization and control 
during conversion and emission monitoring. The comparison highlights that data-driven approaches are 
particularly effective in managing feedstock heterogeneity and operational variability, which remain key 
challenges in conventional WtE modeling. 

2. Overview of Waste-to-Energy Technologies 
Waste-to-energy (WtE) systems convert solid and organic wastes into useful energy forms such as heat, 

electricity, or fuel gases. These technologies fall into four major groups, each based on distinct thermal or 
biochemical pathways. Figure 2 emphasizes the diversity of thermochemical and biochemical conversion 
routes available in WtE systems and underlines the varying levels of process complexity and control 
requirements associated with each pathway. This diversity explains the need for different machine learning 
strategies rather than a single unified modelling approach. 

2.1. Mass-burn incineration  
This refers to the direct incineration of MSW or refuse-derived fuel in a grate, fluidized bed or other 

type of boiler. The waste heat that is produced by the incineration of refuse serves to produce steam, which 
can be utilized for driving electricity generators or for district heating purposes. Today, modern flue-gas 
cleaning devices control the level of emissions of nitrogen oxides, sulfur oxides, and particles to a great 
extent and additionally enable the removal of dust och trace compounds like dioxins. As a result, modern 
plants use the high temperatures to make electricity follow clean – air standards and generate consistent 
energy. Nevertheless, incineration process remains the subject of issues including public acceptance gas 
emissions to atmosphere and toxic ash residues [4]. Therefore, recent advancements in the incineration field, 
including advanced incineration technologies along with more advanced machine learning strategies for 
online process optimization are important to reduce these environmental impacts and improve energy 
recovery efficiency [11,25]. However, even though it reduces waste volume by 85-90%, ashes are still ultimate 
residues that account for the remaining 10-15% of waste [26]. This ash, which is considerably smaller in 
volume, generally contains heavy metals and other pollutants and should be disposed safely [3]. 
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Figure 2. Overview of Waste-to-Energy Technologies 

2.2. Gasification  
It performs under low oxygen conditions and transforms the waste into a synthetic gas that contains 

high levels of carbon monoxide, hydrogen and methane. This syngas can be fed to internal combustion 
engines, to gas turbines, or further processed for chemical synthesis. Gasification provides more flexibility 
in controlling reaction conditions than direct incineration, and with a cleaner fuel product because some 
impurities remain in the char or are easier to capture during cleaning processes, depending on feedstock 
composition and reactor design. This thermochemical pathway of reaction, differing from incineration in 
being oxygen-deficient, represents an efficient conversion of organic solid waste to a syngas, a universal 
energy vector [25], [27]. This is done at high temperatures (generally in the range 500-1200 °C) and results in 
production of syngas as well as ash, biochar, having the characteristic percentage of yields affected by such 
factors as feedstock properties, gasifying agents or reactor working conditions. [1] Furthermore, the syngas, 
containing mainly carbon monoxide, hydrogen and methane can be directly burnt for power generation or 
forwarded to subsequence downstream process steps for value added fuels and process chemicals production 
thus offering a potential more flexible energy recovery and higher environmentally friendly option vs. direct 
incineration [25,28]. However, in spite of the possible advantages, pre-treatment and syngas purification 
processes are often necessary for gasification to remove contaminants from the gas stream also these may 
have significant cost implications—especially when applied to heterogeneous feedstock such as municipal 
solid waste [29]. 

2.3. Pyrolysis  
It’s based on the thermolysis of waste with no oxygen. The process produces a blend of solid char, 

condensate liquids and non-condensable gas portion. The process can be steered towards increased yield of 
gas, liquids or char by control over temperature, heating rate and residence time. This versatility lends to 
enabling a simultaneous energy recovery and material recycling particularly when char is obtained as the so-
called carbon-rich product. Pyrolysis is a thermochemical process involving the breaking down of organic 
materials at high temperatures (300–800 °C) in an oxygen-free environment, and gives rise to bio-oil, bio-
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char, and syngas with product distribution being a function of temperature, heating rate, as well as feedstock 
composition [30,31]. Unlike high-temperature, low-oxygen gasification process, pyrolysis is carried out at 
lower temperature and longer vapor residence time without the presence of oxygen, converting organic 
materials into liquid bio-oil with char and gaseous product as co-products [32]. This process has been used 
over the ages to produce charcoal from biomass and can convert municipal solid waste into fuel and benignly 
disposed materials such as char and metals [27]. Operation conditions during pyrolysis can be very well 
controlled for maximizing the solid char/lads, liquid bio-oil or gaseous products making it highly versatile 
waste-to-energy technology [27]. Advanced pyrolysis technologies (e.g., fast and flash pyrolysis) also 
optimize product recoveries by controlling heating rates and residence times to maximize the production of 
bio-oil that can be upgraded to transportation fuels or chemicals [5, 33]. The versatility of product production, 
varying from bio-oil to synthesis gas, makes pyrolysis a flexible process for waste valorization and in line 
with the principles of circular economy by reducing waste and maximizing the recovery of resources [26]. 
Nevertheless, one of the main shortcomings in pyrolysis is the requirement of feedstock quality control 
(commonly practiced does not include inert materials and moisture from municipal solid waste), which when 
available can decrease productivity and make operation more expensive [34–36]. In particular, fast pyrolysis 
(with rapid heating rate and a short vapor contact time around 500 °C) is designed for maximizing bio-oil 
production, contrasting with gasification that operates at higher temperatures focusing on syngas [37, 38]. 

2.4. Anaerobic digestion (AD) and co-digestion  
It processes organic waste fractions such as food scraps, sewage sludge, farm manure, and agricultural 

crops. A consortium of microorganisms processes these substrates into a biogas rich in methane and a 
nutrient-loaded digestate. Biogas may be used to produce electricity or heat, and digestate can even be 
returned to the land to aid in nutrient cycling. Methane production yield increases Due to mixing of 
complementary substrates, process stability is increased and methane yield enhanced. This is a biological 
process under anaerobic conditions in which organic waste material is converted into biogas, a renewable 
source of energy, and digestate, a nutrient-rich soil amendment [26]. It is of interest for combustion to energy 
in biogas-fired power plants as well direct use, or upgrading into bio methane for direct vehicle fuel 
utilization and injection into natural gas grids [37]. Raw digestate, a by-product of anaerobic digestion has 
value as a bio-fertilizer and can reduce dependency on synthetic fertilizers, while simultaneously facilitating 
circular nutrient management [26]. Anaerobic digestion is a promising biotechnology for addressing the 
current energy crisis by using waste and nutrient recovery while not detrimentally affecting the ecosystem 
[39]. This process also lowers GHG emissions by avoiding methane release from landfills and fossil fuel 
substitution [5, 40, 41]. In addition to the challenges faced by anaerobic digestion, such as waste sorting and pre-
treatment, as well as management of digestate [42,43], it is established technology for sustainable organic 
waste management and one of the circular bioeconomy pathways. Notwithstanding these challenges, 
developments in the AD process and associated technologies like co-digestion or thermal-alkaline pre-
treatment are constantly increasing solubilization yield and methane production, making it more 
economically feasible for a wider range of applications [44, 45]. 

Environmental and energy performance among the rail routes varies widely. Uncontrolled landfilling 
entails a much greater environmental burden than thermal WtE for studies with energy recovery compared 
to fossil-based generation, as it appears evident from Table. Plants that thermally convert biomass to energy, 
such as integrated gasification–pyrolysis plants, have on average lower emissions per unit of energy. AD has 
the added value of nutrient recovery and gas reducing methane emissions from degrading biodegradable 
resources. 

Nature of feedstocks together with nonsystematic process cause uncertainties in design as well as 
control application. This has generated an interest in data-driven methods which analyses historical process 
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data to understand the interrelations between feedstock properties, operating conditions, energy outputs and 
emissions. These models can facilitate performance prediction, process control and environmental 
evaluation on advanced WtE systems. The comparison in Table 2 shows that each WtE technology involves 
distinct trade-offs between energy recovery potential, environmental performance, and operational sensitivity 
to feedstock quality. These differences directly influence the type of machine learning models required, 
particularly with respect to handling uncertainty, nonlinearity, and data sparsity. 

Table 2. Overview of Major Waste-to-Energy (WtE) Technologies 

WtE Technology Operating Principle Main Products Key Advantages Major Limitations / 
Challenges 

Mass-burn 
Incineration 

Direct combustion of 
MSW or RDF in 

excess air using grate, 
fluidized bed, or boiler 

systems. 

Heat, steam, 
electricity; bottom ash 

and fly ash. 

Mature; strong volume 
reduction; efficient 
flue-gas cleaning; 
reliable energy. 

Public acceptance issues; 
stack emissions; toxic 
ash; energy efficiency 

depends on waste 
composition. 

Gasification 

High-temperature 
treatment (500–

1200 °C) of waste 
under oxygen-

deficient conditions to 
form syngas. 

Syngas, char, ash. 

Higher control over 
reactions; cleaner fuel; 
suitable for chemical 

synthesis; flexible and 
environmentally better 

option. 

Requires pre-treatment; 
costly syngas cleaning; 

feedstock variability 
impacts performance. 

Pyrolysis 

Thermal 
decomposition in 

absence of oxygen 
(300–800 °C) 

producing solids, 
liquids, and gas. 

Bio-oil, biochar, non-
condensable gases. 

Flexible product 
distribution; suitable 
for material recovery; 

compatible with 
circular economy. 

Sensitive to feedstock 
quality; product 

upgrading needed; higher 
costs for mixed MSW. 

Anaerobic Digestion 
(AD) & Co-digestion 

Microbial breakdown 
of organic waste in 

anaerobic conditions 
forming biogas and 

digestate. 

Biogas (CH₄-rich), 
nutrient-rich digestate. 

Suited for organic 
waste; methane 

production; nutrient 
recycling; reduces 
landfill methane. 

Requires waste sorting; 
digestate management 

challenges; process 
sensitive to inhibitors. 

These examples of waste-to-energy processes demonstrate the nonlinearity, operation variation, and 
data intensity that characterizes modern WtE systems. Variations of feedstock, reaction conditions and 
control at incineration, gasification, pyrolysis and anaerobic digestion do not allow purely empirical or 
mechanistic models. These are the properties driving the need for machine learning based on learning 
complex input–output relationships from operational and sensor data that leads to the methodology discussed 
in next section. 

3. Machine Learning Methods in WtE Applications 
Machine learning is now widely used to analyses, predict, and control the behavior of waste-to-energy 

systems. The methods reported in the literature can be grouped into several broad categories. Figure 3 
clarifies how different categories of machine learning models align with specific WtE tasks, ranging from 
static prediction to dynamic process control. The figure highlights that advanced and hybrid models become 
increasingly important as process dynamics and data dimensionality increase.  

Based on the technology features of waste to energy discussed in previous section, this section 
introduces machine learning approaches that have been applied for model building, prediction and 
optimization of WtE systems. The choice of end-point ML methods is related to the process characteristics in 
terms of nonlinearity, temporal dynamics, data sample size and interpretability need. Hence each of the three 
applications services a different set of algorithmic families in feedstock assessment, performance analysis 
and environmental monitoring. 
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3.1. Supervised regression algorithms  
Models including multiple linear regression, support vector regression, k-nearest neighbors, decision 

trees and random forest as well those based on gradient-boosting such as XGBoost and LightGBM and 
Gaussian process regression are commonly used to predict outputs like biogas yield, syngas composition, 
lower heating value or emission characteristics. These approaches model the relationship between 
composition, processing conditions and energetic or ecological counterparts. Neural networks, specifically 
ANNs, are also commonly used as they are capable of modeling complex non-linear relationships in 
bioprocess data and predicting outcomes such as biogas yield based on substrate composition, temperature, 
and pH [46]. Apart from these, other ML technologies like support vector machine, decision tree and random 
forest, Gaussian process regression etc., are also being used for modeling of organic waste management 
systems at the same time to implement resource recovery options [1]. Indeed, state-of-the-art machine 
learning methods such as deep learning and related hybrid models are becoming increasingly useful 
approaches in predicting energy production, optimizing operating conditions, and evaluation the 
environmental performance of diverse WtE processes [47, 48]. These models are indispensable to deal with the 
complexity and non-linearity of WtE systems, particularly where they comprise numerous input and output 
variables, in combination with different operational points [49]. 

 

Figure 3. Classification and Application of Machine Learning Methods in Waste-to-Energy (WtE) Systems 

3.2. Neural network models  
They provide another major direction. Deeper architectures and feedforward networks have been 

applied to model nonlinear phenomena in combustion, gasification or digestion systems. For the image-
based tasks, convolutional neural networks are widely used and among these use cases we have automated 
waste recognition and sorting. Recurrent models including LSTM networks model sequential process data 
and support the prediction of variables such as temperature profiles, gas flow rate or the stability of a 
digester. Aside from these basic methods, hybrid models which exploit the strengths of different ML 
algorithms (machine learning), such as genetic algorithm and ANN, have great potential for solving 



9 

complicated optimization problems in WtE systems [50]. Ensemble methodologies, such as bagging that 
employ amalgamation of many models to result in a more stable prediction, are also becoming popular for 
improving predictive quality and minimizing the variance of prediction derived from WtE modeling [51]. The 
choice of a ML algorithm is an important factor for achieving the best results as different models have 
different prediction performance, generalization ability, stability and computational requirements [1,49]. For 
example, although Artificial Neural Networks are known for its capability to model complex non-linear 
relationships, they may lack interpretability while Support Vector Machines can perform excellent 
generalization even when limited number of data is available but might be difficult to apply on very large 
datasets [1, 52]. Gaussian Process Regression, a computationally expensive approach for big data sets 
compared to ANNs and SVMs, provides a stable non-parametric way which is very suitable for noisy and 
complex WtE data where it outputs uncertainty values of its estimates which are essential in risk-based 
process optimization [49]. 

Advanced ML methods such as deep networks, ensembles or hybrids with physics-informed models 
present high prediction accuracy on WtE but with substantial variability in the computation effort. Deep 
learning and hybrid models typically require more data, longer training time, and higher computational 
resources, that is not feasible in real-time applications for resource-poor plants. Tree-based ensembles and 
less complex regression models can therefore offer a good trade-off between the computational cost and 
effectiveness, making them more suitable for online monitoring and control. Accordingly, scale is still an 
important issue and model choices should be well-adapted to the available computational resources as well 
as operational constraints. 

3.3. Hybrid and neuro-fuzzy approaches  
They integrate knowledge-driven learning with expert-driven reasoning or optimization. ANFIS models 

are popular for biogas prediction due to their ability in dealing with imprecision of feedstock and process 
conditions. Genetic algorithms (GAs), particle swarm optimization (PSO), and other metaheuristic 
approaches are employed to optimize ANN and ANFIS parameters, or to develop hybrid models that can 
enhance prediction accuracy in gasification and AD research. Prediction is also enhanced by ensemble 
learning which combines multiple algorithms. Nevertheless, while recurrent neural networks can provide a 
lot of capabilities, such models can face potential difficulties like vanishing or exploding gradients during 
backpropagation – an issue usually mitigated by more sophisticated architectures such as Long Short-Term 
Memory networks that are well suited to capture long-range dependencies in sequential data [1, 49]. Ensemble 
methods which combine several high performing machine learning algorithms have been demonstrated to 
improve prediction performance in complex non-linear system such as biogas production [48]. Such enhanced 
robustness renders them especially suitable for predicting biogas potential and methane emissions as 
evidenced by the application of boosting algorithms with log-transformed data to cope well with highly 
skewed variables [53]. Although these state-of-the-art models provide great benefits, their “black-box” 
characteristic is an obstacle for understanding results as an important requirement in industry to make 
decisions jointly and transparently [46,54]. Reducing such interpretability gap has an active research field, and 
explainable AI techniques are widely used to provide model prediction explanations. 

3.4. Automated machine learning (AutoML)  
It has been proven to be an efficient tool for biogas yield prediction and waste composition modeling. 

Such frameworks automatically test multiple models’ structures, perform a hyper parameter search and 
return the best performing pipeline, which eases the job of researchers who have to work with complex 
datasets without much manual tuning. Not only does this automation speed up model development, it 
democratizes the use of advanced ML methods so that they become available to a wider group of WtE 
stakeholders and researchers. However, the successful employment of ML in WtE poses a range of 
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challenges such as lack of high-quality and comprehensive data and further requirement for rigorous feature 
engineering to capture complex physicochemical interactions within these processes [50]. Moreover, it is very 
important to make the model interpretable and handle “black box” issue of most advanced ML algorithms, 
in order to gain trust and promote application of these techniques in industry WtE [4, 55]. Therefore, there is a 
growing interest in combining ML models with classic kinetic studies to obtain insights into overall reaction 
pathways and mechanisms [3]. Such integration is often performed using physics-informed machine learning, 
where physical laws are incorporated into architecture or loss function of models in order to improve 
predictive accuracy and scientific interpretability [56]. 

3.5. Explainable machine learning (XML)  
These techniques (e.g., SHAP and LIME) are employed to interpret model outputs. Such tool identifies 

which feedstock property or operating factor has the highest influence on predictions, facilitates a clear 
process optimization and help in giving insights to operators on how models react. This interpretability is 
particularly important in digestion and gasification because of the nonlinear and inconsistent interactions 
between factors. Nevertheless, even when using these types of approaches to enhance transparency, the 
nature complexity of thermochemical phenomena such as gasification sometimes requires a further insight 
about relationships among governing mechanisms that SVR’s/ANNs may hide [50]. To address this, there is 
an increasing interest in embedding fundamental thermodynamic and kinetic principles into the ML 
framework (physics-informed machine learning) to boost predictive accuracy of computational models as 
well as further our mechanistic understanding [1]. Overcoming these limitations of classical ML, the 
aforementioned hybrid models, such as PINNs [1] solve this “black-box” issue by incorporating physical laws 
within the architecture of neural networks to increase interpretability and generalization with sparse 
experimental data [58]. These methodologies could for example use thermodynamic equilibrium models, and 
ANNs being trained to indirectly estimate parameters that are notoriously difficult to measure, thus linking 
theoretical knowledge with empirical data [50]. Table 3 indicates that model selection in WtE applications 
involves clear trade-offs between prediction accuracy, interpretability, and computational demand. While 
deep and ensemble models often deliver higher accuracy, explainable and hybrid approaches provide greater 
transparency, which is critical for operational acceptance. 

Table 3. Machine Learning Methods in WtE Applications 

ML Category Typical Algorithms / 
Models 

Main Applications in 
WtE Strengths Key Limitations 

Supervised Regression 

MLR, SVR, KNN, 
Decision Trees, RF, 
GBDT, XGBoost, 
LightGBM, GPR 

Biogas yield, syngas 
quality, LHV, 

emissions prediction 

Handles structured 
data; good for mapping 

inputs to outputs 

Sensitive to data 
quality; limited for 
deep nonlinearities 

Neural Networks 
ANN, CNN, LSTM, 

Deep Networks, 
Ensembles 

Nonlinear modelling, 
digester stability, waste 

sorting, thermal 
behaviour 

Captures complex 
patterns; strong with 

images and sequences 

Reduced 
interpretability; may 
need large datasets 

Hybrid / Neuro-Fuzzy 
ANFIS, ANN–GA, 

ANN–PSO, Ensemble 
Models 

Biogas prediction, 
gasification 

optimization, methane 
estimation 

Combines data-driven 
and rule-based 

learning; higher 
accuracy 

High computational 
demand; possible 

black-box behaviour 

AutoML 
Automated model 

selection and tuning 
frameworks 

Biogas yield 
modelling, waste 

composition 
forecasting 

Fast development; 
reduces manual tuning 

Needs high-quality 
features; interpretability 

concerns 

Explainable ML 
(XML) 

SHAP, LIME, physics-
informed ML, PINNs 

Identifying key drivers; 
improving control 

decisions 

Improves transparency; 
links ML with physical 

laws 

Complex 
thermochemical 

behaviour still hard to 
interpret 
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Pre-trained models are developed by utilizing the datasets collected from laboratory test, pilot test or 
full-scale WtE plants. They find applications both off-line, (for design studies, scenario analysis or 
performance benchmarking) and on-line (for soft sensing, real-time monitoring or advanced control). 

 

3.6. Comparative Performance and Limitations of ML Models across WtE Processes 
The applicability and performance of ML models in WtE applications strongly depend on the 

characteristics of the studied process, available data and technological targets. Tree-based ensemble learning 
techniques like Random Forest and gradient boosting exhibit generally great performance for predicting 
feedstock properties, heating values as well as emissions especially when the size of datasets is moderate and 
heterogeneous. Their capabilities for taking into account nonlinear interactions and indicating the 
importance of features make them suitable also for incineration and gasification units where interpretability 
is desirable for operational decision-making. Among the predictive models, ANN and DL models tend to 
have better performance for highly nonlinear systems such as in AD process and integrated WtE plant 
wherein the dynamics of processes are complex and time-dependent. Recurrent structures such as LSTM are 
well-suited to model dynamic behavior in biogas production and digester stability. However, these models 
need large and carefully-crafted datasets and may have low interpret-ability, which could limit their direct 
application in industrial control scenarios. 

Hybrid or neuro-fuzzy systems are proposed as a trade-off between accuracy and interpretability by 
means of merging data-driven learning with rule-based reasoning or optimization. These strategies are 
particularly useful in anaerobic digestion and pyrolysis studies, where the lack of accurate knowledge on 
feedstock characteristics and operational conditions is substantial. They are mainly limited by high 
computational load and careful parameter design. Physics-informed and explainable machine learning 
models help overcome some of the shortcomings of purely empirical methods as physical constraints are 
encoded or interpretation of variable effect is provided. These models achieve better robustness under 
varying feedstock quality and lower risk of non-physical predictions, but at the cost of being non-trivial to 
develop given the necessary domain knowledge and computational resource requirements. 

In general, no one machine learning model is globally superior to others on all the WtE processes. 
Process features, amount and quality of data, interpretability needs or context of deployment should guide 
model selection. Thus, a comparative application-specific analysis is necessary for a proper and robust 
implementation of the machine learning part in WtE. 

4. Machine Learning for Resource Evaluation and Feedstock Assessment 
Effective application of machine learning in waste-to-energy systems begins with accurate 

characterization of waste quantity and quality. This section focuses on ML-based approaches for resource 
evaluation, where data-driven models support early-stage decisions related to feedstock availability, 
composition, and energy potential. These predictions provide essential inputs for downstream conversion 
modeling and process optimization. Figure 4 shows the major roles of machine learning in predicting waste 
quantity, assessing fuel properties, estimating biochemical potential, and supporting technology selection 
also summarizes how data-driven models help classify waste streams, estimate heating value, forecast biogas 
yield, and guide suitable WtE pathways. 

4.1. Waste generation forecasting and composition estimation 
Reliable prediction of waste amount and characteristics is essential for WtE system design, unit process 

sizing, and appropriate technologies to be implemented. The same machine learning techniques have been 
used to predict municipal solid waste (MSW) generation at city or regional level from socio-economic 
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indicators, demographic factors and weather variables together with past records of waste generation. 
Assessment of waste composition and quality have been performed using image-based analysis systems and 
sensors to classify major waste fractions including plastics, metals, organics, and paper which are utilized in 
sorting processes as well as for preparation of refuse derived fuel (RDF). 

Recent reviews on AI technologies applied to waste management suggest that, tree-based algorithms 
and artificial neural networks usually yield very high predictive accuracy, as declared values of R² are 
higher than 0.9 or more than 90% when reaching correct classification by sorting purpose. These models 
associate socio-economic characteristics (visual patterns) with waste type, contributing to the planning of 
resources and recovery of materials before energy conversion. This detailed characterization of waste 
streams is key in order to optimize pretreatment strategies, as directly affecting the efficiency and 
sustainability of following thermochemical or biochemical conversion pathways [3]. 

 

Figure 4. Machine Learning for Resource Evaluation and Feedstock Assessment 

4.2. Prediction of heating value and other fuel properties 
The net calorific value (NCV) of MSW is a key design parameter for incineration and gasification 

plants. The ensemble learning algorithms like Extra Trees, CatBoost, XGBoost and Random Forest have 
been utilized for the estimation of NCV using proximate as well as ultimate analysis data including carbon, 
hydrogen, oxygen, nitrogen, sulfur present in coal along with moisture and ash content. 

For these model performances, test-set R² values of around 0.98 are reported for heating value 
predictions compared to classical regression correlations. The same technique is also employed to predict ash 
content, volatile matter and char yield for pyrolysis/gasification that can help in fast feedstock evaluation 
and optimized blending. In addition, ML models that consider feedstock particle size may improve the 
classification of a diverse set of plastic types including polyethylene and polypropylene by using input 
factors like ashless chemical components such as carbon, hydrogen, and oxygen [3]. This detailed 
characterization of feedstock properties is useful for modeling with better accuracy, the combustion or 
gasification behavior and also affects the design and operation of reactor system. These predictive abilities 
are essential to minimize process upsets, optimize energy production and lower emissions in WtE plants [1]. 

While several studies report high prediction accuracy, often expressed through elevated R² values, these 
results should be interpreted in light of dataset size and validation strategy. In many cases, strong 
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performance is achieved using relatively small or laboratory-scale datasets, with validation limited to random 
train–test splits or cross-validation within a single data source. Such strategies may overestimate model 
generalization when applied to full-scale plants or different operating conditions. Explicit reporting of 
dataset size, temporal coverage, and validation approach (e.g., external validation, cross-plant testing, or 
time-series validation) is therefore essential to assess the robustness and practical applicability of the 
reported models. 

4.3. Biochemical potential and biodegradability indices 
The biochemical methane potential (BMP) and overall biodegradability of organic waste is typically 

estimated in the laboratory with anaerobic batch tests that are often time consuming. ML models that were 
developed based on feedstock characteristics (e.g., COD; volatile solids; C:N ratio; lignin content of biomass 
and nutrient content) are now implemented to predict BMP and the expected biogas quality. 

ANN, RFR and SVN perform very well for the demand forecasting g model with hybrid models 
providing further enhancement according to Review Studies. AutoML-based algorithms have also been 
studied when ranking input variables in order to choose appropriate substrates and to design co-digestion 
scenarios based on their impact on biogas yield. Over and above yield, ML is fitted with potentiality to 
predict the kinetic parameters for anaerobic digestion ensuring effective control of retention times, organic 
loading rates to obtain maximum methane production and process stability [4]. This capacity of prediction 
also extends to the identification of potential inhibitory compounds or nutrient limitations, and provides 
preemptive modification of feedstock composition and bioprocess operation [59]. In addition, such models 
can compare the effect of biochar additions on anaerobic digestion systems and estimate increased CH4 
production and process stability by considering biochar characteristics and pyrolysis parameters [47]. This fine 
characterization enables development of customized biochar applications, optimizing the waste-to-energy 
route consideration for several organic substrates [47]. ML is also important in the development of the 
production and utilization of hydro char, a hydrothermal carbonization product which can be used to 
enhance the efficiency of anaerobic digestion as well as other WtE processes [60, 61]. These sophisticated 
machine learning approaches enable a more systematic and efficient usage of many different organic 
feedstocks, which in the end would drive faster transitioning from non-sustainable towards sustainable 
bioenergy recovery [47]. 

4.4. Decision support for technology selection and feedstock allocation 
ML-enabled decision support systems, when coupled to multi-criteria decision analysis (MCDA) 

support the matching of waste streams with suitable conversion pathways: incineration, gasification and 
pyrolysis or anaerobic digestion. Such tools take into account energy generation, cost of operation and 
environmental constraints in allocating resources. 

Such systems might suggest that high calorific, low moisture fractions should be redirected towards 
thermochemical routes and divert food waste or sludge to digestion. Through learning from data of the 
plants in operation, planners can use these models to test scenarios related to capacity enlargement, sharing 
feedstocks and globally optimizing WtE networks. We argue, however, that such smart systems should be 
also able to predict the best operating parameters for particular WtE technology on a basis of input nature 
and extend the conventional only-allocate approach towards a prescriptive energy recovery [4]. These 
frameworks even can incorporate the online operational data, to adapt the processing variables frequently in 
real-time for high efficiency and pollution-free operation [46]. Advances in this direction include the use of 
multi-objective optimization algorithms, sometimes hybridized with ML approaches, to simultaneously 
optimize economic competitiveness, environment impact and energy recovery for complex WtE systems [4]. 
These synergetic approaches benefit to a comprehensive system perspective, allowing data-based decisions 
reconciling various targets in sustainable waste management. Additionally, ML is applicable for the 
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prediction of net biodiesel production through feedstock supply and provides accurate financial and 
environmental estimates for global uptake [62]. The knowledge gained from these models can support the 
increased efficiency, sustainability and environmental of biomass in the form of energy and be basis for a 
systematic adaptation towards strategic application targeting bioenergy and the conversation to biomass 
fuels technologies [63, 64]. 

 

5. Machine learning for conversion efficiency and process performance 
Once feedstock characteristics are established, machine learning models are increasingly employed to 

improve conversion efficiency and operational stability of WtE technologies. This section examines how ML 
techniques are applied to predict process outputs, adjust operating conditions, and support real-time control 
across thermochemical and biochemical conversion routes. Figure 5 demonstrates that machine learning 
enables coordinated optimization across multiple conversion pathways by linking operating conditions to 
performance indicators. This integrated view highlights the potential of ML to support real-time decision-
making in complex WtE plants. 

5.1. Incineration and grate-fired boilers 
ML models are also commonly applied to predict combustion efficiency, boiler load and steam 

generation in municipal solid waste incineration plants. These models employ process parameters like waste 
feed material properties, grate speed, primary and secondary air flows and information of furnace 
temperature to calculate steam-production, boiler efficiency and major pollutants. 

In the latest reviews on ML applied to WtE, ANN, Random Forest and gradient boosting models are 
mostly used for online prediction of combustion and process control. Data of case studies from AI supported 
incinerator adjustment indicate an improved operating stability, energy recovery and reduction of excess air. 

Recent works include a combination of deep learning with combustion control to optimize the air 
distribution and waste feeding dynamically. These clouds exhibit more rapid dynamics and better power 
stability, and are at the heart of soft sensors and model predictive control (MPC)  architectures in modern 
incineration facilities. These AI techniques can adjust operational parameters with high-resolution accuracy 
to keep the combustion in an optimal condition of efficiency and reduce emissions of pollutants and are more 
effective at recovering energy from a variety of waste streams [4,6]. In addition, it is possible to predict 
incinerators and grate-fired boilers equipment failures base on considering sensor data using ML algorithms 
which enables predictive maintenance to minimize downtime and prolong the lifetime of essential 
components [4]. 

5.2. Gasification and pyrolysis of waste and biomass 
For MSW, plastics and biomass residues gasification/pyrolysis systems, ML application is used to 

predict syngas composition, H2 yield, tar generation, char properties of the product from fuel qualities and 
process conditions (temperature, residence time, equivalence ratio) and operational conditions (pressure or 
steam: fuel ratio). 

In reviews related to biomass and waste conversion, ANN, SVR, and tree-based models are reported to 
have good predictability (usually R² > 0.9) of gas composition and process efficiency. Other works dedicated 
to plastic and PET gasification apply ML to optimize operational parameters aimed at enhanced hydrogen 
production or syngas quality. 

For pyrolysis, ML has been used to establish the relationship between biomass composition and 
microwave pyrolysis parameters with biochar yield and quality. The models also predict liquid and gas 
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fractions, which would aid in the selection of conditions preferable for energy conversion or materials 
reclamation. These predictive models are particularly important for maximizing the product yields and 
compositions of complicated thermochemical environments [3, 65]. Moreover, more sophisticated ensemble 
methods comprising various ML algorithms including decision trees, XGBoost, random forests, ANNs and 
SVMs were shown to achieve better predicting results for syngas yield, LHV or LHVs of other products of 
mixed municipal solid waste [50]. 

 

Figure 5. Machine Learning for Conversion Efficiency and Process Performance 

5.3. Anaerobic digestion and co-digestion 
The anaerobic digestion process is significantly influenced by the operation conditions, including 

temperature, pH, OLR and HRT, as well as the substrate properties [16]. ML models are used to: 

 Estimate biogas production and methane yield from feedstocks and operating conditions. 

 Predict stability parameters of VFA, alkalinity and VFA/alkalinity ratio. 

 Divides digester states between a stable and unstable to provide early warnings for any upsets. 

Recent reviews on AI in AD and co-digestion suggest that ANN, RF and ANFIS are commonly used, 
hybrid/ensemble methods help for better generalization when noise from sensor is present. AutoML-built 
tree models yielded accurate predictions of biogas production and ranked VS loading, temperature, and C:N 
ratio as the most important variables. 

Explainable ML methods, such as SHAP analysis, are further applied to interpret the impact of 
feedstock composition, OLR and temperature on methane yield and process stability in order to make such 
models transparent for plant operators. Bayesian Networks and Extreme Gradient Boosting further improve 
the predictive performance by reasoning about uncertainty and taking a robust combination of weak models, 
respectively resulting in the translation (model) of qualitative observations to quantitative numbers for 
process selection and estimation of biogas yield [46]. Likewise, AI-enabled applications are being built for 
wastewater treatment processes in which machine learning models are used to forecast treatment and 
methane yield performances of anaerobic reactors, performing so much better than linear regression 
traditional models [66]. 
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5.4. Multi-generation and integrated WtE systems 
The ML methods also have been employed in multi-generation WtE systems by which taking MSW 

material into multiple energy products, e.g. electricity, heat, hydrogen and sometimes cooling or desalinated 
water. 

Optimization of these integrated plants based on ML is demonstrated to lead to their exergy efficiency, 
load-following capability and also environmental performance enhancement. ML tools based on regression 
aid the operator in assessing a plethora of operating scenarios, and quickly adaptation of modes to varying 
feedstock quality or variations in energy price. These models such as the one in allow to make near to real-
time decisions for efficient driving (resource allocation and energy production) of complex WtE systems [67-

78]. Moreover, reinforcement learning approaches are being investigated to realize adaptive control 
techniques for WtE integrated plants, which can optimize operational parameters autonomously and achieve 
the best overall systems efficiency and economic performance in varying market conditions with feed stocks. 
It is apparent that the machine learning enables the energy conversion through waste become more efficient 
and produces cleaner outputs including optimizing operations, yield predictions and environmental 
contaminant reduction [79-88]. In addition to these established uses, there is growing research on ML 
approaches for the optimization of waste sorting and preprocessing, two essential operations impacting 
directly on the efficiency and environmental footprint of subsequent WtE conversion technologies [4]. Smart 
technologies including advanced sensors and data analytics as well as machine learning will significantly 
reshape the waste-to-energy industry with an ability to monitor and optimize processes in real-time for 
increased efficiency and flexibility [89-95]. 

6. Machine learning for environmental effects and emission control 
Beyond energy recovery, environmental performance remains a critical dimension of waste-to-energy 

systems. This section addresses the application of machine learning for emission prediction, environmental 
monitoring, and life cycle impact assessment, completing the progression from resource evaluation to 
conversion performance and environmental compliance. 

6.1. Soft sensing and prediction of air emissions 
Waste-to-energy plants have to be operated within tight emission limits as regards NOx, SOx, CO, 

particulates, dioxins and furans, heavy metals and greenhouse gases. ML soft sensors employ regular plant 
measurements (e.g., furnace temperature, oxygen concentration, flowrates and waste feed properties) to 
predict emissions in real-time and to assist in automation control. 

For incinerator NOx soft sensing, existing studies use gradient boosting, Random Forest and deep 
learning to predict NOx concentrations from operation data. These predictive models help optimize flue gas 
recirculation and selective catalytic reduction (SCR) following and provide NOx control stability during 
load changes. Artificial intelligence-based emission forecasting methods also cut down on control system 
action time and have averted short term spikes in emissions. 

Machine learning models are also employed for predicting environmental impact and carbon intensity 
of process working conditions and syngas properties, helping in greener design and operation methodologies 
to gasification/pyrolysis systems. The predictive ability also includes the evaluation of environmental 
impact for biomass energy projects by analyzing environmental data and simulating ecosystem dynamics [96-

105]. Furthermore, the precise estimation of waste generation and its emission potential using machine 
learning models provides a key source for prospective environmental planning in biomass to energy 
initiatives [106-115]. 
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6.2. Support for life cycle assessment and scenario analysis 
Among these, life cycle assessment (LCA) is and stays a central method for evaluating WtE options 

against landfilling, recycling and other waste disposal routes. Always those studies that are available come 
to the result that uncontrolled landfills load up environment more strongly than incineration or combined 
gasification–pyrolysis-based systems; in particular when energy recovery credits are considered. 

There are two factors ML supports LCA with: 

 Surrogate modeling of inventory outputs: Regression-based surrogate models estimate life cycle 
inventory indicators, such as GHG emissions and acidification potential, by process variables and 
feedstock attributes. There models provide a fast way to evaluate alternative scenarios. 

 Integration with process models: ML based process simulators can be combined with LCA to 
explore large scale design spaces for multi generation WtE plants including energy outputs, 
conversion efficiencies and target emissions. 

These methodologies allow policymakers to compare technology paths including the effect of energy, 
cost and environmental constraints under high uncertainty settings. Furthermore, complex and dynamic 
interactions between various environmental factors and WtE technology can be practiced using machine 
learning which helps to extend our horizon of sustainability [116-123]. In addition, for environmental impact 
assessment and optimization of resource allocation within WtE processes ML methods are able even to 
detect patterns and trends in emissions and energy use [124-125]. This potential enlarged by the capability of 
ML of handling vast amount of data (and therefore to consider those “latent links” between process 
conditions, waste quality and environmental performances that has previously been ignored) is aimed at 
being valued [126-128]. 

6.3. Monitoring of leachate, odour, and other environmental impacts 
Environmental control of WtE is not only stack emission. A number of additional consequences have 

imposed the advent of ML applications to counteract them: 

 Leachate quality prediction based on waste composition and landfill / thermal residues properties. 

 ANN Oduor modelling developed from meteorological parameters and operating data of the plant 
to predict dispersion around WtE facilities. 

 Leaching of heavy metals from bottom ash and fly ash for which classification models are used to 
determine safe reuse options in construction materials. 

These models extend ML from predict emissions to assessing risks for the environment and recovering 
usable resources from process wastes. In addition, the incorporation of ML into LCA frameworks addresses 
major data limitations; conventional LCA requires large data collection efforts and can be demanding on 
computational resources [1,69]. Models developed based on machine learning can be alternative methods for 
complex LCA models and reduce the computational burden, with good prediction capabilities of 
environmentaly impact [129-131]. Table 4 outlines how different machine learning methods are applied to 
control and evaluate environmental effects in waste-to-energy systems. It groups the applications into 
emission prediction, environmental impact estimation, LCA support, pattern detection in plant data and 
monitoring of leachate, odour and ash-related risks. Table 4 highlights that machine learning plays a central 
role not only in emission prediction but also in broader environmental assessment and compliance support. 
The summarized applications show that ML-based soft sensors and surrogate models can significantly 
enhance regulatory monitoring and sustainability evaluation in WtE systems. 
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Table 4. Machine Learning for Environmental Effects and Emission Control 

ML Techniques 
Used 

Purpose / 
Application Key Inputs Main Outcomes 

Gradient Boosting, 
Random Forest, Deep 

Learning, ANN 

Real-time prediction 
of NOx, SOx, CO, 

particulates, dioxins, 
heavy metals; 

emission forecasting 

Furnace temperature, oxygen 
concentration, waste feed 
properties, air flowrates 

Stable NOx control, optimized FGR & 
SCR, reduced emission spikes, faster 

response during load changes 

Regression models, 
Hybrid ML, Deep 

Learning 

Estimating carbon 
intensity, predicting 
syngas properties, 

ecosystem modelling 

Operating data, syngas composition, 
biomass characteristics 

Greener process design, improved 
carbon assessment, better planning for 

biomass-to-energy systems 

Surrogate regression 
models, ML-coupled 
process simulators 

Fast estimation of 
LCA indicators 

(GHG, acidification); 
scenario evaluation 

Feedstock attributes, process 
parameters, conversion efficiency 

Rapid evaluation of technology 
pathways; decision support under 

uncertainty; wide design-space 
exploration 

ANN, Clustering, 
Ensemble Methods 

Detecting trends in 
emissions and energy 

use; analysing 
dynamic 

environmental factors 

Historical plant data, environmental 
datasets 

Better sustainability insights, improved 
resource allocation, deeper 

understanding of latent links 

ANN odour models, 
Classification models 

Predicting leachate 
quality, odour 
dispersion, and 

heavy-metal leaching 

Meteorological data, ash 
composition, waste properties 

Risk assessment, safer reuse of 
residues, reduced local impacts; 

support for circular use of process 
wastes 

 

7. Challenges and Research Gaps 
Despite the rapid proliferation of ML applications in WtE systems, there exist barriers towards their 

further uptake and sustained usefulness. 

7.1. Data quality and quantity 
The reliability of the ML models for WtE is now a great challenge due to the lack of data. Many 

analyses on anaerobic digestion indicate that the training of biogas and methane yield models is carried out 
based on small laboratory-scale datasets, which leads to poor transfers for predictions made using full scale 
digesters under varying loading rates and compositions of feedstock. Models that predict train and validate 
well by cross-validation often become with lower accuracy, when they are used in long-term plant data 
generation, where the sensor noise, missing values, and operational disturbances tend to be larger. The same 
is true for the thermochemical WtE systems. In gasification and pyrolysis research, mass transfer models 
constructed based on controlled experimental data were reported to drop the prediction accuracy when used 
in industrial applications, as they cannot consider real operating variabilities sufficiently. Deficiencies of 
these sensor systems (e.g., in incineration plants) and patchy data logging mean that emission prediction 
models are less stable in time for NOx and CO, where short-term training leads to neglect of seasonal and 
operationally sensitive behavior. These examples demonstrate that inadequate data volume and quality can 
directly affect the robustness of a model, serving as a barrier to practical use. 

7.2. Heterogeneity and non-stationarity 
Furthermore, during the operation of WtE systems, feedstock heterogeneity and temporal variability 

also complicate the utilization of machine learning. The composition of MSW shows great differences by 
location, season and socio-economic factors, posing domain shifts that are difficult to handle for static 
models. Some studies have found that models calibrated for one plant or region tend to perform poorly at 
other sites displaying different waste characteristics. The model is also dependent on the stationarity in noise 



19 

(and is thus sensitive to instrument aging, calibration work and process drift over time). In AD, changes in 
microbiome activity with volatile solids and/or temperature can lead to system dynamics that fall outside 
those covered during training. Moisture content and more generally the prescription of calorific value over 
time in incineration/gasification plants causes that process behavior becomes dynamic with respect to these 
parameters, which undermines the use of fixed-parameter models. Such observations highlight the relevance 
of adaptive, transfer or continual learning approaches to keep predictive performance under real operational 
environment. 

7.3. Limited interpretability 
Despite achieving high-predictive accuracy, ensemble models and deep neural networks are used as 

black-box systems. Recent investigations of explainable ML for both AD and gasification show that feature-
importance methods as well as local explanation tools can be useful, but few guidelines exist for 
interpretation or to translate model insights into operational strategies. 

7.4. Integration with Physical and Mechanistic-based Methods 
The majority of published work is based on purely empirical model, i.e., without mass balance, energy 

balance, reaction kinetics and transport limitations. This constrains generalization, and predictions outside 
the regime in which a model was trained may fail to satisfy physical constraints. The physics-informed ML, 
grey-box modelling and hybridized applications between mechanistic equations and data-driven com ponents 
represent relative new fields in WtE research. 

7.5. Deployment and cyber-physical constraints 
Availability, fail-safe operation, latency and cyber-security need to be carefully considered when 

integrating ML models into real control systems of plants. Very limited numbers of studies bring you to the 
operational stage, while most case studies are still at offline, simulation or pilot-plant status. This gap 
reflects the requirement to research integration and validation of industrial-level ML. 

7.6. Standardization and benchmarking 
The sets of predictors, model forms, and validation procedures differ widely between studies. Such 

discrepancies restrict meaningful comparison of results and do not facilitate accumulation of knowledge. 
Benchmark data sets are scarce for AD, gasification and incineration due to commercial, regulatory and 
confidentiality issues in the sharing of open data. 

 

8. Future Research Directions 
It is indeed possible to further improve the position of ML in WtE systems through several promising 

research directions. 

8.1. Physics-informed and hybrid models 
Physics-informed and hybrid ML models provide a practical route for enhancing model accuracy and 

deployment in WtE systems by integrating process understanding within data-driven frameworks. A few 
recent works show how the addition of mass and energy balance constraints into NN architectures leads to 
enhanced prediction robustness in gasification and pyrolysis processes, especially under extrapolative 
operating conditions where entirely data-driven models often predict physically unrealistic results. For 
instance, hybrid gasification models based on equilibrium-based syngas composition equations and neural 
networks have reported better robustness in predicting hydrogen and carbon monoxide yield for various 
equivalence ratios and feedstock moisture content. 
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In anaerobic digestion, physics-based methodologies have been employed by integrate deration of 
forms such as first-order or ADM1-like models with machine learning models. In these realizations, the ML 
component is trained to predict hard-to-measure biological parameters, whereas system dynamics are based 
on mechanistic equations. Hybrid models, such as ANN combined with mathematical equations, have 
achieved better long-term prediction of methane yield and stability monitoring compared to single neural 
networks under organic loading shocks or temperature variation. Applications in practice have also been 
reported on emission monitoring of incineration plants, where soft sensors combine combustion 
stoichiometry and flue-gas relations by means of regression or ensemble models. These hybrid soft sensors 
retain its predictive ability when the excessive air ratio or the garbage composition changes and can be 
applied to control NOx during actual incineration for emission regulation. 

Nevertheless, some barriers still exist to the successful application. Hybrid and physics-informed 
models need more extensive collaboration between domain experts and data scientists, careful model 
calibration and higher computational cost. Nevertheless, the models have been documented in reported cases 
to achieve a good trade-off between accuracy, interpretability and physical consistency which are highly 
desirable for industrial scale deployment where trust and operational stability is paramount. 

8.2. Explainable ML and operator-centric tools 
Future work should stress interpretability, such as feature- importance analysis and visual analytics that 

are supportive for operational decision-making. Tools like SHAP values, partial dependence plots, and rule-
based surrogates make it possible to translate the ML results into operational congruent advice regarding the 
control of such plants and hence make them more acceptable for plant operators and control engineers. 

8.3. WtE digital twins 
Some of its successful applications in industry are the combination of real-time data streams, ML 

models and process simulators in digital twins that provide a way towards monitoring at all times (and 
detecting early issues), predictive maintenance, and scenario testing. Research on digital twins in power 
generation and process industries can be generalized to WtE systems, but with a focus on waste 
heterogeneity, ash behavior and emission goals. 

8.4. Federated and transfer learning 
The lack of cross-company and regional sharing restricts the generation of generalized WtE models. 

Federated learning and transfer learning are techniques that enable the utilization of the knowledge from 
several plants avoiding to pool raw data. Such methods may mitigate overfitting, increase model robustness 
and better leverage sparse datasets. 

8.5. Multi-objective optimization under uncertainty 
WtE systems have to be designed and run taking account the trade-off between energy, cost, emissions-

controlled technologies and resources recovery in face of uncertain waste composition and market 
conditions. Using ML in conjunction with EO and UA can help decision makers to grasp trade-offs and 
robust solutions under changing conditions. 

8.6. Linking ML with policy and social approval 
WtE initiatives may be evaluated in a transparent manner, on the basis of GHG balance indicators, 

health metrics and circular economy credits (via ML quantification) of emissions assessments. Such 
instruments could serve to assess environmental performance for regulators and local stakeholder, and in 
combination with transparent communication or sustainable operation practices they might even foster 
acceptance. 
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9. Conclusion 
This review has presented a comprehensive and integrated assessment of machine learning applications 

across the entire waste-to-energy (WtE) value chain, spanning resource evaluation, conversion efficiency, 
and environmental impact assessment. By synthesizing studies from thermochemical and biochemical 
pathways, the analysis demonstrates that machine learning offers a practical means to address the inherent 
nonlinearity, variability, and data intensity of modern WtE systems. Data-driven models have shown strong 
capability in predicting waste characteristics, energy yield, process stability, and emissions, while also 
supporting real-time monitoring, optimization, and decision-making. Compared with traditional empirical 
and mechanistic approaches, machine learning provides faster prediction, adaptive learning, and improved 
handling of heterogeneous feedstocks and dynamic operating conditions. At the same time, the review 
highlights that high predictive accuracy alone is not sufficient for reliable industrial adoption. Persistent 
challenges related to data quality, limited transferability across plants, lack of standard benchmarking, and 
reduced interpretability of complex models continue to constrain large-scale deployment. The discussion 
indicates that hybrid and physics-informed machine learning, explainable models, and digital twin 
frameworks represent promising directions to balance accuracy with physical consistency and operational 
trust. Overall, this work clarifies the current state of knowledge, identifies key gaps, and outlines research 
priorities that can guide both future academic studies and practical implementation of machine learning in 
sustainable waste-to-energy systems. 

Abbreviations 
Abbreviation Full Form 

AD Anaerobic Digestion 

AI Artificial Intelligence 

ANN Artificial Neural Network 

ANFIS Adaptive Neuro-Fuzzy Inference System 

AutoML Automated Machine Learning 

BMP Biochemical Methane Potential 

CNN Convolutional Neural Network 

CO Carbon Monoxide 

CO₂ Carbon Dioxide 

DL Deep Learning 

DNN Deep Neural Network 

GBDT Gradient Boosting Decision Tree 

GHG Greenhouse Gas 

GPR Gaussian Process Regression 

HRT Hydraulic Retention Time 

LCA Life Cycle Assessment 

LHV Lower Heating Value 

LIME Local Interpretable Model-Agnostic Explanations 

LSTM Long Short-Term Memory 

MCDA Multi-Criteria Decision Analysis 

ML Machine Learning 

MSW Municipal Solid Waste 

MPC Model Predictive Control 
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NCV Net Calorific Value 

NOx Nitrogen Oxides 

OLR Organic Loading Rate 

PINNs Physics-Informed Neural Networks 

PSO Particle Swarm Optimization 

RDF Refuse-Derived Fuel 

RF Random Forest 

RNN Recurrent Neural Network 

SCR Selective Catalytic Reduction 

SHAP SHapley Additive exPlanations 

SOx Sulfur Oxides 

SVM Support Vector Machine 

SVR Support Vector Regression 

VFA Volatile Fatty Acids 

WtE Waste-to-Energy 

XML Explainable Machine Learning 
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