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ABSTRACT 

Bio-energy systems are frequently promoted as low-carbon substitutes 

for fossil fuels and are closely related to SDG 7 (Affordable and Clean 

Energy) and SDG 13 (Climate Action). Actual environmental performance, 

however, is contingent on supply-chain design, choice of feedstock, set-up of 

the technology and local operating conditions. The life-cycle assessment 

(LCA) is currently the predominant scientific instrument for assessing these 

impacts in a comprehensive approach linked to SDG 12 Responsible 

Consumption and Production. Traditional LCA, however, has to deal with a 

variety of challenges including data scarcity, spatial and temporal variations, 

and the necessity to analyze several scenarios depending on changing 

circumstances. In recent years, some of these limitations can be mitigated by 

using artificial intelligence (AI) and machine learning (ML) techniques. This 

approach facilitates inventory data extrapolation, gap filling and estimation of 

the nonlinear function between process variables and environmental 

parameters, all leading to more dynamic and data rich assessment which 

reflects SDG 9 (Industry, Innovation and Infrastructure). This review 

consolidates a summary of up-to-date studies on AI-enabled LCA approaches 

for bio-energy systems and pollution assessment methods that interface 

directly with sustainability evaluation. The paper describes a general 

description of key aspects related to bio-energy supply chains in LCAs 
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regarding impact categories, including greenhouse gas (GHG), air pollutants, land use and water use with relevance to 

SDG 6-Clean Water and Sanitation and SDG 15-Life on Land. It subsequently provides an overview of AI and ML 

applications covering the full bio-energy life cycle, including aspects related to biomass resource assessment and 

feedstock production as well conversion, upgrading, refining, distribution to end use. Particular focus is given to works 

that integrate ML with LCA metrics for the prediction of environmental performance or for the optimization of process 

conditions through sustainability-based indicators. The review also presents AI-facilitated pollution monitoring 

applications, such as deep learning techniques for emissions detection using remote sensing data, carbon emissions 

prediction, and air quality monitoring through ML for betterment of SDG 11 (Sustainable Development Goals: 

Sustainable cities and communities). Major challenges including model interpretability, system boundary consistency, 

uncertainty propagation and hybrid modelling requirements have been identified. Next, AI focusing on digital twin, 

scenario analysis supported by AI and interactive LCA tool for informed decision making. 

Keywords: bio-energy; life-cycle assessment; artificial intelligence; machine learning; pollution quantification; emissions 

monitoring; remote sensing 

1. Introduction 

Bio-energy technologies (solid biomass, biogas, bioethanol, biodiesel, advanced bio-oils) are an essential 

component for many decarbonization pathways – especially in hard-to-electrify sectors such as heavy industry; 

aviation and shipping. But the climate and environmental benefits of bio-energy are not a no-brainer. They 

rely on LUC, fertilizer, feedstock logistics, conversion efficiency, by-product use and a point of use emission 

control. This weight is imposed by bringing LCA from the cradle to grave and comparing these impacts 

between Bio-energy options, fossil and other renewable systems. Although useful, classical LCA methods face 

great difficulty in addressing the complexities, data rich nature and dynamicity of bioenergy systems: such 

shortcomings can potentially be addressed by artificial intelligence (AI) and machine learning [1]. For example, 

machine learning can help improve data quality and facilitate more realistic LCA modelling by analyzing 

large-scale environmental datasets and emulating ecosystem dynamics [2,3]. This combination of machine 

learning and LCA allows one to deal with uncertainties in the data and employ less efforts than traditional 

inventory gathering [4]. ML facilitates the automatic calculation of CFs, increases precision of impact 

estimations, and closes typical data gaps in classical LCA background datasets [5–6]. In bioenergy, ML allows 

fast prediction of environmental impacts. Configuration when multiple-products make allocation difficult [1–

2, 7]. It also assists in the evaluation of biomass properties, conversion efficiency and fuel characterizations that 

are generally challenging to be measured directly and hence more comprehensive evaluations [8]. These 

attributes potentiate assessments along the complete bio-energy chain; from feedstock growth to end use [2].  

Figure 1 illustrates how implementing AI technology can benefit these existing challenges and 

strengthen the traditional practice of bio-energy LCA. In particular, it facilitates analysis interpretation from 

data scarcity and chaotic system complexity that arise when conducting such disclosure, since this structured 

learning improves our understanding of complex interrelationships. It's also a wake-up call to move away from 

black-box opaque algorithms and toward Explainable AI (XAI), because transparency and causal transparent 

is critically important for sensible environmental policy. 

LCA of bio-energy remains difficult due to spatially dispersed feedstock chains, strong dependence on 

local and seasonal conditions, and inconsistent system boundaries across studies. AI and ML support feedstock 

prediction, process optimization, and direct estimation of inventory flows and impact indicators, reducing data 

gaps and computational effort [1]. Many existing black-box models lack transparency and process-level detail, 

which limits traceability and robust attributional or consequential LCA [7,9]. This highlights the need for 

explainable AI to improve interpretability, trust, policy relevance, and model generalization under data scarcity 

and uncertainty [10–15]. 
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Figure 1. Framework for Integrating Artificial Intelligence into Bio-energy Life Cycle Assessment (LCA) 

In addition, advances in deep learning and remote sensing analyses are revolutionizing how emissions 

and air pollutants are tracked across space and time, allowing for LCAs of bio-energy projects that can be both 

dynamic (in time) and spatially explicit. 

This review focuses on these two intersecting themes: 

 AI models that support or extend LCA of bio-energy technologies. 

 AI models for pollution quantification that can supply better emission data to LCAs. 

Differences in depth by life-cycle stage reflect the distribution of extant work, not scope imbalance. 

Conversion technologies and pollution monitoring are emphasized more as there is a relatively greater volume 

of literature in the field with richer data and more diverse methodologies, especially for AI/machine learning. 

These perturbations also facilitate a direct connection between operational conditions and environmental 

effects. Other life-cycle phases are presented more summary-like due to still scarce data and evidence on 

dedicated AI studies. Such view considers the whole life-cycle, though it is consistent with level of maturity 

of current literature. 

The review progresses with a systematic approach in the selection of studies for comprehensiveness and 

reproducibility of this review, meeting study scope criteria on artificial intelligence applications to LCA and 

pollution quantification from bio-energy systems. Peer-reviewed articles were searched through extensive 

searches on main scientific databases (Scopus, Web of Science and ScienceDirect). The timescale of the 

literature reviewed mainly includes publications from 2010 to 2025, as these data-driven and AI-assisted LCA 

methods have been increasingly researched in this period. 

The following criteria were used to select studies: (i) explicit use of artificial intelligence or machine 

learning, (ii) specific connection with life-cycle assessment, life-cycle inventory construction or procurement 

procedure method impact assessment pollution analysis for bio-energy systems; and (iii) detailed 

methodological information provided so that the model structure and context can be interpreted. Review or 

extended abstracts, methodological concepts and some selected high-impact cases were incorporated to ensure 

a balance between the theoretical progress and applied enhancements. Conference abstracts, non-peer-

reviewed reports, and studies without clear method descriptions were excluded. 
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The references were classified based on the main contribution they have to bio-energy life-cycle: 

feedstock production, logistics, conversion processes and end-use emissions calculation, direct LCA indicator 

prediction. Another categorization was made in terms of type of AI model (i.e., regression and tree-based 

methods), artificial neural networks, deep learning, probabilistic models, explainable AI). This two-

dimensional classification allows for a methodical comparison of methodologies’ trends, domains of 

applications and identified research gaps in the reviewed source literature. 

2. Life-Cycle Assessment of Bio-Energy systems 

2.1. Standard LCA framework 

The ISO-based LCA framework provides a structured approach to evaluate environmental impacts of bio-

energy systems from resource extraction to final energy use. It consists of four stages: goal and scope definition, 

life-cycle inventory (LCI), life-cycle impact assessment (LCIA), and interpretation. In bio-energy studies, 

system boundaries generally include all stages that influence the overall environmental burden of the fuel or 

product. The biofuel life cycle begins with feedstock production, including crop cultivation, forestry, residue 

recovery, and waste handling. These steps determine land use, input requirements such as fertilizers and water, 

and upstream emissions. This is followed by transport and storage, where distance, moisture content, and 

handling conditions affect energy demand and losses. Biomass then undergoes pre-treatment and conversion 

through biochemical, thermochemical, or physical routes, each with distinct material flows and energy 

efficiencies. Final use involves combustion or application of the bio-energy product, leading to direct 

emissions and potential displacement of fossil fuels [16]. 

Conversion pathways such as combustion, gasification, pyrolysis, anaerobic digestion, fermentation, and 

transesterification differ in efficiency, emissions, and co-product generation, making this stage central to LCA 

comparisons. Waste recovery includes management or beneficial use of residues, which may add or offset 

environmental burdens [16]. Functional units, commonly expressed as MJ, kWh, or mass of fuel, enable 

consistent comparison across systems [17,18]. For example, bioethanol comparisons with gasoline often rely on 

energy content or vehicle distance rather than volume to reflect performance differences [19]. Co-products such 

as biochar, digestate, and glycerol influence burden allocation and system credits. The ISO 14040/44 standards 

of the International Organization for Standardization provide guidance for impact assessment and result 

interpretation [20]. Impact categories typically include global warming, air pollution, eutrophication, 

acidification, land use, biodiversity, water use, and ecotoxicity. Despite this, selecting an appropriate 

functional unit remains challenging due to the multifunctional nature of biorefineries, which limits direct 

comparison across studies without harmonization [21–25]. 

 

Figure 2.  Standard Bio-Energy Life Cycle Assessment (LCA) Framework and Supply Chain 
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The figure 2 illustrates the ISO-standardized LCA stages—Goal, Inventory, Impact, and Interpretation—

applied across the full bio-energy lifecycle, mapping the physical flow from feedstock cultivation to final 

energy use. It underscores the relationship between life cycle operational stages and environmental impact 

categories while pointing out key methodological constraints such as complexity of allocation, or data paucity 

that influence assessment reliability. 

2.2. Limitations in traditional Bio-Energy LCAs 

Numerous studies have identified common shortfalls in the use of classical LCA methodology for bio-

energy systems. One of the main limitations is the lack of standard units, which do not allow comparison 

between trials. Multipurpose-application is usually only partially taken into account, even if more than one 

co-product such as heat, biochar or glycerol is involved. Decisions concerning allocation or system extension 

heavily influence outcomes, but are not always well documented. Moreover, the accuracy of LCA results is 

critically dependent on data quality and availability, and due to lack of access to primary industrial information 

(in most studies) could be based on hypothetical assumptions or laboratory-scale calculations [16]. 

Consequently, LCAs of the same bio-energy pathways can vary to a large extent and cast doubts about their 

utility in informing policy or investment [26]. Many biorefinery LCAs also present limited value-chain data, 

generic datasets not including uncertainty analysis or overlooking important impact categories, reducing the 

confidence in the results [27]. Standard LCAs concentrate on a subset of indicators (primarily greenhouse gas 

emissions) with little attentiveness to land-use change, biodiversity and water-related effects. They also 

assume average spatial and temporal characteristics, whilst there is strong regional and seasonal variability in 

yields, emissions and land impacts. The inability to explore multiple scenarios is largely due to static databases 

and computational intensity, even though bio-energy systems are dynamic and transforming rapidly. The 

flexibility of determining system boundaries, co-product treatment and allocation under ISO standards makes 

the comparison between studies even more troublesome and inconsistent results appear even for similar 

pathways [11,28]. These methodological variances diminish the reliance on LCA for policy-relevant findings, 

as noted in previous reviews [16,29]. These gaps can be addressed through practical applications of artificial 

intelligence, such as enriching absent inventory data, model surrogate for complicated processes or facilitating 

fast exploration design space. Such methods bring versatility and rigor into consideration, which is not 

normally the case in classic LCA methodologies. 

Table 1. Summary of the Standard LCA Framework and Key Limitations in Bio-Energy Assessments 

Key Point Description 
Key Processes / 

Factors 

Environmental 

Indicators 

Affected 

LCA 

Challenges 

Identified 

Notes / 

Examples 

Goal & Scope 

Definition 

Defines purpose, 

system 

boundary, and 

functional unit 

for bio-energy 

assessment. 

Feedstock production, 

conversion stages, use 

phase, and waste 

handling. 

All impact 

categories 

depending on 

boundary 

decisions. 

Inconsistent 

functional units; 

incomplete 

boundary 

definitions. 

Functional unit 

often MJ, kWh, 

or kg biofuel. 

Life-Cycle Inventory 

(LCI) 

Compilation of 

input–output 

data across the 

bio-energy 

chain. 

Crop cultivation, 

fertilisers, water use, 

residues, transport, 

storage. 

GHG emissions, 

nutrient runoff, 

land occupation, 

water 

consumption. 

Data gaps, use of 

generic datasets, 

limited industrial 

data. 

Many studies 

rely on 

secondary lab-

scale data. 

Life-Cycle Impact 

Assessment (LCIA) 

Translates 

inventory flows 

into 

environmental 

indicators. 

Combustion, 

gasification, 

pyrolysis, digestion, 

fermentation, 

transesterification. 

GWP, 

eutrophication, 

acidification, NOx, 

SOx, CO, PM, 

biodiversity, 

ecotoxicity. 

Narrow focus on 

GHGs; limited 

land-use change 

and spatial–

temporal detail. 

Water use, 

biodiversity 

often omitted. 
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Key Point Description 
Key Processes / 

Factors 

Environmental 

Indicators 

Affected 

LCA 

Challenges 

Identified 

Notes / 

Examples 

Interpretation 

Analyses results, 

checks 

consistency, 

identifies 

uncertainties. 

Scenario comparison, 

sensitivity checks, 

uncertainty 

evaluation. 

All indicators 

included. 

High variability 

of results; low 

transparency in 

assumptions. 

ISO flexibility 

reduces 

comparability. 

Multifunctionality & 

Co-Products 

Handling of 

multiple outputs 

such as biochar, 

digestive, 

glycerol, heat. 

Allocation, system 

expansion, fossil fuel 

substitution. 

GHG balance, 

energy credits, 

land-use offsets. 

Inconsistent 

allocation rules; 

weak 

justification. 

Co-product 

method strongly 

influences 

results. 

Structural Limits & 

AI Needs 

Conventional 

LCA is static, 

data-heavy, and 

slow. 

AI-based data 

enrichment, surrogate 

models, scenario 

exploration. 

Potential to 

improve all 

indicators. 

Missing data, 

static modelling, 

high 

computational 

cost. 

ML surrogates 

mimic complex 

models 

efficiently. 

Table 1. (Continued) 

The main steps of the ISO-compliant LCA framework used for bio-energy systems and the related 

environmental indicators and methodological issues are summarized in Table 1. It delivers an abridged 

comparative snapshot to illustrate where conventional LCAs are limited and which analysis gaps still exist. 

3. AI and machine learning techniques relevant to LCA 

The figure 3 groups the main AI methodologies—from regression and tree-based models, for instance 

used to predict yield, to deep learning applied in spatial analysis—by a generic class of function they play in 

life cycle assessment. It also shows how various algorithms accommodate distinct needs, e.g., employing 

neural networks for tracking complex process optimization as opposed to probabilistic methods in estimating 

uncertainty and risk. Lastly, it emphasizes the importance of Explainable AI (XAI) in establishing the validity 

of these models and bringing transparency to those making real life decisions. 

3.1. Regression and tree-based models 

Regression and tree-based techniques are commonly used to predict crop yield, energy input, emissions 

and bio-oil outputs in bio-energy systems. Ensemble models including the random forest, gradient boosting 

and XGBoost are able to address heterogeneous, large-scale data sets with non-linear couplings between 

feedstock, climate and operations variables. Regularized and stacked ensembles decrease noise and enhance 

robustness while recovering critical influences on environmental effects [30]. Support vector machines help 

implement classification and predication with small samples, which contribute to inventory estimation and 

LCIA if only little empirical information is available [1,4,9,31]. 

3.2. Artificial Neural Networks (ANNs) 

ANN are used when strong non-linear relationships between process variables and environmental 

responses occur. MLP have been applied in biodiesel and bioethanol studies to correlate quality of the 

feedstock, process conditions, type of catalyst used, to conversion efficiency and emissions for optimization 

or life-cycle inventory purposes. Recurrent and convolutional networks solve time-series and image data, both 

of which are now emergent in operational data and remote sensing as the field of LCA matures [1]. ANNs have 

also been employed to predict the biomass pyrolysis activation energy, enhancing comprehension of thermal 

decomposition and making it possible to estimate better efficiency and pollutant generation w.r.t. different 

conditions [32]. The capacity to learn complex patterns from data by avoiding prior assumptions in form of 

equations favor ANNs to predict conversion and stability in biodiesel and numerous thermal processes 

involving many concomitant parameters [33–35]. 
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Figure 3. Classification of AI and Machine Learning Architectures for Bio-Energy LCA 

3.3. Deep Learning (DL) 

High-dimensional and space–time data are particularly suitable for methods based on deep learning. Deep 

learning applied to pixels from satellite images can be used to estimate the supply of biomass, observe land 

use change and track emission plumes stemming from bio-energy plants. Models based on sequences (like 

recurrent networks) encapsulate the time-varying nature of emissions, power generation, and plant efficiency, 

which conventional LCAs tend to simplify [36]. This enhances the resolution in time of the estimates of 

environmental impact, which is crucial for bio-energy systems characterized by variable feedstock quality and 

operating conditions. The fusion of classical and deep neural architectures with Ios and mobile inferencing 

provides real time data driven LCA analysis, continuous environmental monitoring [37]. 

3.4. Kernel and probabilistic methods 

Predictions are made with quantified uncertainty based on kernel-based methods (e.g. support vector 

machines) and probabilistic models (e.g. Gaussian process regression). Such methods yield confidence 

intervals to the environmental indicators, which is useful in LCA since inventory data frequently are uncertain 

because of regional variation, measurement constraints and small sample sizes. Sensitivity analysis is used to 

investigate inputs that dominate overall uncertainty and guides focused data collection for improved 

robustness. Probabilistic graphical models, and in particular Bayesian networks represent dependencies over 

life-cycle stages, allow for uncertainty propagation and scenario analysis, including incorporation of expert 

knowledge on drivers of the scale of land use change [38]. In general, probabilistic ML techniques can tackle 

both epistemic and aleatory uncertainty issues by providing distributions of possible values other than point 

estimations in enabling more risk-informed decisions in bio-energy LCA [1]. 

3.5. Explainable AI (XAI) 

Explainable AI techniques reveal why models achieve certain predictions, which is crucial for AI-

supported LCA. Techniques such as SHAP and LIME offer insight into how specific input features affect 

emissions, energy demand or land-use impacts that can be verified against well-known physical and process 

principles [39,40]. This transparency builds trust, assists in identifying biases, and facilitates communication 

with non-specialist stakeholders – particularly when the outputs of an AI model are informing bio-energy 

policy or industrial planning. New XAI methods such as Shapley values and Relevance propagation have 
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shown the potential in providing a richer understanding of complex environment processes, taking the analysis 

further from mere correlation to that of causal investigation [41– 45]. 

Table 2. AI and Machine Learning Techniques Used in Life-Cycle Assessment 

Technique 
Purpose in 

LCA 

Common 

Models 
Key Strengths 

Typical Applications in 

Bio-Energy LCA 

Handling of 

Uncertainty / 

Nonlinearity 

Regression & 

Tree-Based 

Models 

Predict 

inventory 

parameters such 

as emissions 

and yields 

Random 

Forest, 

Gradient 

Boosting, 

XGBoost, 

Laplacian 

Regression 

Manage large 

heterogeneous datasets; 

capture nonlinear 

interactions; identify 

important variables 

EV energy-use prediction, 

bio-oil yield estimation, 

feedstock quality 

classification 

Ensemble 

modelling 

reduces noise; 

strong sensitivity 

analysis 

capability 

Artificial 

Neural 

Networks 

(ANNs) 

Map nonlinear 

relations 

between process 

variables and 

outputs 

MLP, RNN, 

CNN 

Learn from 

plant/experimental 

data; strong nonlinear 

prediction ability 

Biodiesel/bioethanol 

conversion efficiency, 

pyrolysis activation 

energy, emission 

prediction 

Captures 

complex patterns 

without 

predefined 

equations 

Deep Learning 

(DL) 

Analyse high-

dimensional 

spatial and 

temporal data 

CNNs, RNNs, 

hybrid ANN–

DL models 

Extract features from 

images/time series; 

model time-varying 

emissions 

Biomass availability 

mapping, LUC 

monitoring, time-variant 

emission modelling 

Models dynamic 

changes often 

ignored in 

traditional LCA 

Kernel & 

Probabilistic 

Methods 

Predict 

indicators with 

quantified 

uncertainty 

SVM, 

Gaussian 

Process 

Regression, 

Bayesian 

Networks 

Provide confidence 

intervals; represent 

complex dependencies 

Sensitivity analysis, land-

use change modelling, 

scenario evaluation 

Handles 

epistemic and 

aleatory 

uncertainties; 

probabilistic 

outputs 

Explainable AI 

(XAI) 

Improve 

transparency of 

ML predictions 

for LCA 

practitioners 

SHAP, LIME, 

LRP, feature-

importance 

scores 

Reveals variable 

influence; supports 

verification with 

physical processes 

Identifying emission 

drivers, policy-oriented 

LCA, model diagnostics 

Explains model 

decisions; 

supports ethical 

and robust 

decision making 

The table 2 gives a comparative view of major AI and machine learning techniques used in life-cycle 

assessment, highlighting how each method supports prediction, interpretation, and uncertainty handling. It 

shows the strengths of models such as regression, neural networks, deep learning, probabilistic tools, and 

explainable AI for analyzing bio-energy systems. The summary helps readers understand which techniques are 

suitable for tasks like emission estimation, land-use assessment, scenario analysis, and transparent decision 

making. 

4. AI Models across the bio-energy life cycle 

4.1. The Production of feedstock, land-use and the biomass availability 

Bio-energy LCAs depend strongly on accurate estimates of biomass potential and upstream impacts. 

Remote sensing-based machine-learnt products provide very stylized spatially and temporally resolved 

information on crop yields, forest biomass and residue availability. The use of deep convolutional networks 

and random forests with multi-spectral satellite data (e.g., Landsat or Sentinel) can map biomass patterns and 

land management. Gradient boosting machines are also applied to estimate soil properties, fertilization 

requirement and irrigation needs from field measurements and climatic information. The methods contribute 

to the development of better life cycle inventories for cultivation by improving estimates on soil emissions, 

particularly N₂O as result of fertilizer application, and providing more accurate indicators for land use 

intensity and water consumption. Moreover, farm management can be further optimized as machine learning 
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algorithms are capable of processing vast amounts of agricultural data such as the weather, soil conditions and 

yield health to better predict crop growth and yield [3]. 

4.2. Logistics and supply-chain stages 

The process of bio-energy chain consists from several subsequent tasks (cutting, gathering, baling or 

chipping) and interim tools such as storage and final disposable. Tools for AI have now been added to enhance 

these steps. Route optimization and fleet scheduling algorithms minimize fuel usage and overall transport 

effort. Stochastic models suggest that biomass moisture content, decay and loss rates during storage will all 

change. Sensor driven systems in real-time with ML (Machine Learning) algorithms are enabling better 

inventory tracking and supply predictability. These refinements have an impact on LCA stage results in 

reducing transportations emissions and updated loss fractions used in inventory calculations. The literature 

indicates that AI-informed routing has potential to decrease fuel consumption and CO₂ emissions by in the 

order of 10–25%, with observable reductions in life-cycle burdens per unit delivered bio-energy. For example, 

machine learning may enhance logistics of biomass supply chain by demand prediction and route optimization 

where decreasing transportation cost and better inventory management can be achieved [3]. Machine learning 

application in forest and biomass supply chain management have been proven to provide the powerful tool for 

sustainable forest management and biomass resources development, solving multifaceted logistics problem for 

building multi-feedstock – focused lines [46]. 

 

Figure 4. AI Applications across the Bio-Energy Life Cycle Stages 

The figure 4 maps specific AI interventions to each stage of the bio-energy value chain, from using 

satellite data for feedstock estimation to optimizing logistics and conversion processes. It highlights how 
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machine learning enables real-time emission monitoring during end-use and facilitates rapid "screening" 

assessments by directly predicting environmental indicators like GWP. 

4.3. Conversion and upgrading processes 

AI techniques are emerging for the optimization of conversion pathways such as pyrolysis, gasification, 

hydrothermal liquefaction (HTL), fermentation and transesterification in bio-energy production. Model-based 

machine learning couples process parameters (i.e., temperature, residence time, catalyst type and biomass 

composition) with product yield, energy use and emissions guiding LCA informed decisions in design. 

Biodiesel and bioethanol optimization by ANNs and response-surface methods, where the relationship 

between LCA down streaming chemicals separation process operating conditions required to outcome 

performance measures, such as efficiency, by-product formation and allocation choices in the product were 

presented. ML also facilitates the real-time control of fermentation variables and the development of 

microalgae-based systems. In general, the data-driven optimization makes technical goals consistent with life-

cycle indicators (e.g. GHG emissions and cumulative energy demand [13]), whereas conventional models 

conceive most of the aspiration values exogenously or improperly in terms of constraints [34,47]. 

4.4. End Use, combustion and operation emissions 

In operation, the AI models predict emissions of boilers, engines and turbines when operating with bio-

fuels or mixtures. NOx, SOx, CO, CO₂ and particulates generation models with fuel composition and 

operational input are calculated. In the biodiesel–diesel and ammonia–hydrogen systems, they also predict the 

combustion efficiency of mixed bio-fuel blends and amount levels of unburned hydrocarbons. These factors 

lead to more accurate accounting of emission profiles in the life-cycle inventory and for nonlinear interactions 

between e.g., oxygen content, fuel nitrogen, and combustion temperature. Under such an approach, the 

evaluation of environmental performance of bio-energy system during operation is better consistent and 

provide a more reliable estimate which extends beyond simple emission factors to site-specific predictions. In 

addition, corresponding real-time monitoring and control systems based on AI technology are able to vary 

operational parameters flexibly in order to achieve optimal combustion efficiency and minimize the 

generation of pollutants; therefore, they can enhance accuracy of LCA by accounting for actual operational 

conditions [13]. Hence, the use of such predictive models represent a significant improvement over static 

emission factors and can allow for a more accurate approximation of environmental footprints [3]. This iterative 

process forms a feedback loop in which data from operations fine-tune LCA models so as to increase the 

predictive capabilities of LCA towards future bioenergy projects [48]. Intelligent feedback loops of AI‐powered 

digital twins optimize dynamic process control, by promoting generation systems that can automatically adapt 

the cultivation parameters in real time, according to bioenergy production efficiency and life cycle 

environmental impact reduction [49]. In addition to operational modifications, AI-based inferential sensors 

could enable on-line monitoring of renewable carbon content in co-processed fuels and can help overcome 

the difficulty in quantifying renewable carbon without costly offline analyses [50]. 

4.5. Predicting LCA indicators directly 

Some of the studies further expand applications of ML methods by considering LCA results as targets 

themselves. These models predict potential and cumulative impact indicators (GWP, CED etc.) using the 

design variables, feedstock properties and operational conditions. Macro-level methodologies have been 

introduced wherein previously published LCA case studies and detailed process simulation are used to learn 

machine learning (ML) models that can be used to obtain quick environmental assessments of new bio-energy 

designs. This has been implemented for the bio-oil pathways: food-waste-to-biofuels processes as well as 

other more general renewable-energy portfolios with biomass. Fast verses full LCA runs It gives a quick 

alternative for doing complete LCA's, very useful at an early-stage design or in comparative considerations. 

This predictive component enables fast screening of bioenergy system configurations, which are optimized in 
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terms of environmental impact, economic viability and technical performance  [51]. For example, an integrated 

machine learning model could take databases of HTL, HTC and HTP gasification to integrate with a life cycle 

assessment (LCA) model to determine global warming potential and energy return on investment [4]. These 

models not only speed up the evaluation but they can also be used to explore high and low cases allowing for 

the isolation of key design parameters that affect environment performance [2]. This delivers a more flexible 

and iterative design process where the environmental aspects of different choices can be immediately checked 

and optimized, in support of sustainable bioenergy industry [52]. 

5. Artificial intelligence models for pollution quantitation associated to bio-

energy 

Estimation of emissions rates and ambient pollutant concentrations are required to quantify pollution. In 

the case of bio-energy, these are direct stack emissions from biomass plants and system-level emissions for 

bio-energy being run alongside other generation. The chain of processes from pollution sources to exposure is 

fortified by AI methods with respect to the detection, and forecast, spatial characterization of pollutants. The 

figure 5 illustrates the workflow of using deep learning to process satellite and IoT data for real-time emission 

tracking and forecasting. These outputs replace static metrics in Life Cycle Assessments (LCA), enabling more 

accurate environmental impact analysis and informed policy decisions. 

5.1. Emission plumes, remote sensing, and deep learning 

Satellite measurements map a wide range of atmospheric species (NO₂, CO₂, SO₂ and aerosols) with good 

spatial coverage. These datasets can be utilized with deep learning models to detect emission patterns and 

measure plume intensity. CNN classifiers can recognize plumes of smoke; pinpoint the locations of active 

combustion and capture features associated with plume behavior. Other approaches deploy CNNs trained on 

synthetic or field labelled datasets to predict emission flux from plume geometry, density and meteorology. 

Most research is concentrated on fossil-fuel plants, even though the same methods can be extended to biomass 

plants. Given plant type and fuel quality, DNNs can predict stack emissions in real time utilizable for emission 

monitoring over days or seasons. This will enable dynamic LCA on the basis of time-resolved profiles of bio-

energy operations instead of static averages [2, 3, 53]. Deep learning combined with remote sensing enhances 

detection of the pollutant and prediction of air quality, as well as alleviates computational constraints 

associated with conventional inverse models [36, 54, 55]. These developments enhance source identification, 

facilitate targeted mitigation and support countries to build up towards carbon-neutral pathways [55, 56]. By 

combining simulated and measured data, the output CO₂ estimates from PP can be further adjusted and large 

emitting sources in all sectors are clearly identified [50]. Integration of AI and IoT sensors with satellite images 

is aiding in real-time industrial monitoring, carbon-stock assessment and environmental management decision 
[15, 57, 58]. The fusion of local IoT data with satellite monitoring enhances understanding of environmental 

(weather) conditions, and feeds multi-model systems for air-quality forecast [59–62]. 

5.2. AI-Based carbon emission forecasting 

Short-term carbon emission forecasts at the grid level are particularly useful to understand how different 

generation sources, including bio-energy, influence system wide emissions. Deep learning techniques, ie 

hybrid CNN–LSTMs models, have used to forecast the ins CO₂ emissions from past generation data, demand 

patterns and market signals for fuels. 

The same set of forecasting tools can be used for future grid penetrations with significant bio-energy. 

They complement marginal emission factors in that they provide time-variant carbon intensities for bio-

electricity, and are a useful tool to improve prospective LCAs with further spatial and temporal resolution. 

This contrasts with the commonly used time-invariant grid emission factors and presents a more appropriate 

image of the environmental burdens from bio-energy in transition power systems. Integration of AI and real-
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time carbon monitoring provides a basis for the implementation of global climate decision support in emission 

control complexity and risk rebounding among industries [57]. This capacity is critical for investment and 

policy planning in the context of climate neutrality [63]. Integrated AI systems for surveillance and forecasting 

have been shown to yield higher accuracy over traditional techniques [62] which can lead to evidence-based 

management decisions, and in some instances automated decisions, that result in carbon savings [64]. 

 

Figure 5. AI-Integrated Framework for Bio-energy Pollution Quantification and Dynamic LCA 

5.3. Air quality monitoring and emission dispersion 

Pollutants are emitted during the burning of garbage at a bio-energy plant including NOx, SOx, VOCs 

and particulate matter, all of which can contribute to local and regional air pollution. AI-based approaches 

integrate the ground monitoring, satellite observations and meteorological parameters to increase the spatial 

granularity and temporal frequency of pollutant estimation. ML interpolation models are used to bridge the 

gaps between the sparsely distributed monitoring centers. Prediction models are established to predict the 

short-term air-quality indices and estimate the major emission sources with atmospheric dynamic variations. 

Such AI-based methods can provide a high level of resolution in recognizing the source apportionment, i.e., 

distinguishing bio energy plants emissions from other industrial or natural related sources for targeted pollution 

control [64]. Additionally, advanced AI algorithms could use real time sensor data from UAVs and ground-

based mobile lab sensor networks to generate hyper-localized AQ maps that are able to be evaluated 

immediately for any exceedances near bio-energy facilities. Data obtained from such granular analyses guide 

optimization of operational parameters for environmentally sound and regulatory-compliant oil production [65]. 

In addition, AI based models can predict the spread of pollutants in different atmospheric conditions that may 
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provide a predictive understanding of exposure pathways and help in designing more effective stacks heights 

and emission control devices [14, 57]. 

Inverse modelling and ML surrogates can help to estimate source strengths and identify hotspots more 

accurately. This information flow can enter then into LCIA steps characterizing human-health, and (eco) 

system impact potential, so that spatial exposure aspects are included in the assessment instead of only total 

emitted mass. 

5.4. Linking pollution quantification to LCA 

The integration of environmental pollution quantification to LCA depends on a consistent harmonization 

between model outputs and inventory flows. Emissions estimated from remote sensing observations need to 

be linked to site life cycle stages that allow the separation of plant operation from upstream transportation or 

pre-treatment activities. Models may provide temporal profiles to be used for time-sensitive LCIs, for example 

related to short-lived climate pollutants or seasonal variability in biomass availability and combustion. By 

doing so, it provides the means to more holistically understand life cycle impacts in a bio-energy supply chain 

and overcome the static and rounded average approach. In addition, the penetration of machine learning in 

environmental impact assessments make it possible to predict environmental impacts, optimize land 

utilization and meet regulatory standards in the process of producing sustainable biomass [3]. This integrated 

characteristic facilitates the more informative attribution of environment burdens and benefits, thereby 

improving the credibility and applicability when the LCA study is used for policy-making or technology 

investment about bio-energy technologies. Such integration is especially important for accounting for non-

climate change impacts such as eutrophication and acidification from fertilizer application, and damage 

categories related to loss of biodiversity which are neglected in conventional analyses [66]. In addition, the AI-

guided pollution quantification seamlessly combines with LCA methods enabling spatial explicit 

characterization factors to be constructed so as to include regional differences in environmental damages, an 

aspect often overlooked in more general assessments  [67]. As such this refined link therefore contributes to a 

more comprehensive approach on the environmental performance assessment of bio-energy systems, not only 

limited to simplified impact considerations [68]. 

Table 3. AI Models Used for Pollution Quantification in Bio-Energy Systems 

Focus Area AI Methods Used Data Sources Key Functions 
Representative 

Outcomes 

Relevance to 

Bio-Energy 

Emission 

Plumes & 

Remote 

Sensing 

CNNs, DNNs, Deep 

classifiers 

Satellite data 

(NO₂, CO₂, SO₂, 

aerosols), plume 

geometry 

Detect emission 

plumes, estimate 

flux, map hotspots 

Real-time stack 

emissions, dynamic 

LCA profiles, 

improved plume 

identification 

Useful for 

biomass plants 

with variable 

operating loads 

Carbon 

Emission 

Forecasting 

CNN–LSTM hybrids, 

DL time-series 

models 

Grid data, load 

profiles, fuel 

mixes, market 

signals 

Short-term CO₂ 

forecasting, trend 

learning 

Time-variant 

carbon intensities, 

better prospective 

LCA resolution 

Supports future 

grids with high 

bio-energy 

penetration 

Air Quality 

Monitoring & 

Dispersion 

ML interpolation, 

UAV-sensor AI 

models, surrogate 

dispersion models 

Ground sensors, 

UAV data, 

meteorology, 

satellite inputs 

High-resolution AQ 

mapping, pollutant 

source 

apportionment 

Hyper-local AQ 

indices, optimized 

stack design, 

improved emission 

control 

Distinguishes 

bio-energy 

emissions from 

other sources 

Linking 

Pollution Data 

to LCA 

ML-LCA integration, 

spatial-temporal ML 

models 

Emission 

inventories, 

remote sensing, 

plant operation 

data 

Align pollution data 

with LCA flows; 

build time-sensitive 

LCIs 

More accurate 

impact categories, 

regional 

differentiation, 

credible LCA 

outputs 

Improves 

assessments for 

seasonal biomass 

and variable load 

conditions 
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The table 3 summarizes how different AI approaches support pollution quantification in bio-energy 

systems by detailing their data sources, functions, outcomes, and relevance to environmental assessment. It 

highlights the role of deep learning, forecasting models, air-quality mapping tools, and ML–LCA integration 

in improving emission estimation and impact evaluation. 

6. Methodological basis for AI-Supported LCA in Bio-Energy 

Current research In recent work we introduced structured methods for incorporating AI within LCA and 

thus enable more detailed, data-rich and adaptive LC These libraries integrate AI tools into the various 

components of an LCA workflow, including environmental modelling and remote sensing combined with 

optimization and interpretability. The figure 6 illustrates the integration of artificial intelligence technologies 

across the four standard phases of the ISO 14040 LCA framework to enhance bio-energy analysis. It details 

how specific tools—such as NLP for scoping, remote sensing for inventory data, and surrogate models for 

impact assessment—automate data retrieval and accelerate complex calculations. The workflow culminates in 

an iterative interpretation phase where explainable AI and optimization algorithms facilitate proactive design 

improvements for more sustainable energy systems. 

6.1. Function-oriented golden rules during AI-Assisted goal and scope definition 

The early stages of LCA, in particular, may be helped through the use of AI tools text analysis of existing 

literature and reports and databases. Clustering and topic-modelling reveal common system boundaries, 

recurring functional units and frequently cited hotspots across comparable bio-energy studies. Such techniques 

enable a clear and consistent framing of the assessment, for example, with respect to different types of 

feedstock or multi-step conversion chains. Additionally, natural language processing algorithms may support 

the automated retrieval of relevant parameters and assumptions from unstructured text as part of LCA 

initialization [1]. Furthermore, AI-based expert systems could assist practitioners in navigating complex 

methodological choices (e.g., allocation procedures for co-products) by advising on best practices inferred 

from the agenda setting identified throughout past case studies and regulatory debates [7]. By this means a less 

variable and stronger LCA scope determination is obtained compared to bio-energy system analyses [1]. 

1475AI can also define the boundaries of an LCA by automatically retrieving and completing missing data, 

hence leading to more dynamic models [1]. Also, machine learning methods can quickly spot influential 

parameters and data gaps affecting LCA outcomes so that to optimize resource-distribution process of data 

framework-making for the model [2]. Such an automatic identification procedure guarantees the importance of 

LCA data points measured in terms of equivalent CO2 emission and helps reduce time-consuming and 

resource-intensive efforts normally required for collection of full LCA dataset [6]. 

 

Figure 6. Framework for AI-Integrated Life Cycle Assessment (LCA) in Bio-Energy 
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6.2. AI-Assisted life-cycle inventory 

Machine learning has already proven to be beneficial for the life-cycle inventory phase. (Machine-) 

models calibrated on inventory database, own process-based experimental data, could be used to estimate 

missing inventory flows (energy input, emission factor or material use). Remote-sensing-based proxies—like 

land cover change, the crop or pasture biomass production or soil related emissions—are integrated as direct 

input values in LCIs replacing large averages by spatially differentiate data. Thus more stable upstream stocks 

are obtained for the stages of cultivation, transport and processing. AI methods also enrich data generation for 

things we have difficulty measuring directly (e.g., to predict: biomass, biofuel properties or to optimize supply 

chains) [8]. For example, based on spectral data, machine learning algorithms can predict calorific value or 

elemental composition of various types of biomass feedstock without the requiring extensive laboratory 

analysis. In addition, more complex AI models can also help to reconcile different data sources and endpoints 

(through automatic matching and cleaning of the data), find inconsistencies between datasets or even propose 

imputation techniques for improving inventory quality with minimum human intervention  [39]. These and 

similar developments not only simplify the inventory process but also improve the resolution and accuracy of 

data, creating a more solid basis for further impact assessments [5]. Furthermore, machine learning approaches 

can connect LCA outcomes with additional relevant data (e.g. economic or social) and offer the possibility to 

directly harmonize inventory information into a common unit, harmonizing between different formats of 

collected fields by reference databases  [9]. This is a highly attractive feature as it cuts down the workload of 

costly manual data harmonization which often becomes a bottleneck in full-scale LCA studies [69]. The use of 

AI in LCI also aims for the automated selection of relevant background processes and their related elementary 

flows, thereby minimizing manual work required for building a complete inventory [70]. 

6.3. Surrogate model assisted impact assessment 

Advanced impact assessment techniques such as (that of) climate forcing, ecosystem change and toxicity 

generally involve intensive computation. Simplified models for the coefficients trained using full LCIA 

simulations have been demonstrated to reproduce those results at only a fraction of computational expense. 

This supports rapid assessment of thousands of design options, augmented with comprehensive sensitivity 

analysis and makes Monte Carlo analysis of uncertainty realistic for large scale bio-energy systems. The 

second one Enable on line system optimization and a change in the design of these systems paving way for 

more sustainable and profit-making bio energy solutions [1]. Moreover, AI-based methods are able to identify 

primary impact categories and hotspots in the life cycle of bio-energy, allowing the prioritization of mitigation 

options for improving ecological efficiency of bio-energy systems [5]. Additionally, the integration of AI might 

contribute to enhancing the precision of impact assessment in view of space-time variation in pollution 

burdens and regional emissions that the classical LCA methods have been tending to over-simplify [1,9]. They 

allow taking into account dynamic parameters (price and policy) in order to estimate a full and adapted 

environmental impact [1]. The machine learning methodology, particularly deep leaning, may also benefit from 

complex dose-response relationship and the capability of extrapolating environmental impact to larger 

ecosystems for the complete landscape analysis of any bio-energy system effect. Generative adversarial 

networks could also help to produce synthetic but non-limited environment impact data in order to address 

data scarcity in emerging bio-energy technologies [71]. 

6.4. Interpretation and scenario exploration 

Interpretability is enlightening, with an assist from explainable AI. Methods such as those in SHAP 

provide insight into which factors most drive large impacts and can help researchers and policy makers to 

understand the ways in which process changes impact environmental performance. Reinforcement learning 

and multi-objective optimization generalize the idea, suggesting alternatives to this design. An agent evaluates 

candidate designs and is given rewards or punishments based on the estimated LCA performance, enabling the 
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exploration of a process design space for optimized cost-efficient environmentally benign processes. This AI-

driven iterative optimization enables to find the optimal routes for an economically and ecologically viable 

production of bio-energy. This kind of paradigm shift from rule based to AI-based interpretation and 

optimization enables bio-energy systems to be designed in anticipation of lower environmental footprints and 

higher resource utilization [72]. Moreover, AI applications may improve the cross-referencing of different 

databases (such as economic models, social impact assessment methodologies or regulatory databases) and 

even overcome human bias which might provide a more complete treatment than assessing bioenergy 

technologies [1]. Doing that kind of «rich» analytics leads to obtaining a detailed map of trade-offs and 

synergies across sustainability dimensions, rather than relying on standard single-objective optimization. 

These methodologies are also becoming a part of bio-energy research. Research combines process 

optimization and environmental performance indicators, comparison of alternative biomass conversion 

pathways and analysis of portfolios of bio-energy projects in larger renewable energy systems. Through 

infusing AI-enabled applications in the LCA process, these methods enable more granular and interpretable 

appraisals which can better respond to developments in data and technology. 

Table 4. Dataset Size and Validation Practices in AI-Based Bio-Energy LCA Studies 

Life-Cycle Stage / 

Application 
Typical Dataset Size Validation Strategy 

Key Performance 

Metrics 

Real-World 

Relevance 

Feedstock assessment 

and land-use analysis 
10³–10⁵ samples 

Spatial or temporal 

hold-out validation 
R², RMSE 

Regional and satellite-

based studies 

Conversion and 

upgrading processes 
50–300 samples k-fold cross-validation R², RMSE, MAPE 

Laboratory and pilot-

scale systems 

Direct prediction of 

LCA indicators 
10²–10³ cases 

Cross-validation; 

external testing 
R², relative error 

Early-stage design 

screening 

Plant-level emission 

prediction 

10³–10⁴ time-series 

points 

Rolling-window 

temporal validation 
MAE, RMSE 

Sensor-assisted 

operational plants 

Remote sensing-based 

pollution monitoring 
10⁵–10⁶ pixels 

Spatial and temporal 

validation 

Precision, recall, 

RMSE 

Satellite-supported 

emission tracking 

Table 4 explains the typical dataset sizes and validation practices reported in AI-based studies across key 

life-cycle stages of bio-energy systems. It shows that upstream feedstock assessment and pollution monitoring 

rely on large, data-intensive sources, while conversion-stage models are often trained on smaller experimental 

datasets. The table also highlights the dominant use of cross-validation and temporal testing to assess predictive 

robustness. Overall, it provides insight into the practical reliability and transferability of AI approaches used 

in life-cycle assessment and pollution quantification. 

7. Key challenges and research gaps 

Although AI-driven approaches offer significant advantages for bio-energy LCA, several challenges 

restrict broader adoption. Current research highlights persistent issues related to data quality, transparency, 

system boundaries, uncertainty treatment and integration of wider sustainability dimensions. Addressing these 

gaps is essential for developing AI-enhanced LCAs that are robust, credible and suitable for decision-making. 

7.1. Data quality, representativeness and bias 

The performance of AI in bio-energy LCA depends largely on the quality, quantity, and 

representativeness of the training data. Most datasets are of small scale, site-specific in geography, and show 

a bias towards well-instrumented and performing plants, thus limiting generalization ability across climates 

and management practices, as well as emerging technologies. Data limitations, uncertainty and limited access 

to high-quality inventories continue to constrain robust modelling. Better data curation is needed, as well 

transparent reporting of model limits, thorough validation and sensor/real time data integration. Advanced 
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imputation, generative models and data fusion as well as open-source efforts such as federated learning provide 

partial solutions that need to be carefully validated for its real-world relevance [73,74]. 

7.2. Transparency, interpretability and reproducibility 

The more we use sophisticated ML models, the more it becomes important to explain how they work. 

LCA demands transparent documentation of assumptions, allocation methods and impact models – an 

expectation that should also be valid when AI drives the results of such assessment. XAI tools can shed light 

on feature importance and model behavior, yet interpretation of the tool itself should be careful in not over-

stating causal connections. Reproducibility also requires sharing of the code, the data sets, and trained models 

when possible. Without these conventions it is hard to assess the robustness of LCA results supported by AI. 

What’s more, some state-of-the-art AI models (or in particular deep learning architectures) are “black-box” 

and these black boxes identities of rationale for impact prediction. For this lack of interpretability it may have 

an impact on trust with stakeholders and regulatory authorities, making therefore required more sophisticated 

types of explainable AI techniques tailored to the requirements of Environmental Impact Assessment [1]. 

Researchers are seeking to address this by developing means of communication from complex model 

outcomes to policy-relevant insights, typically interactive visual tooling and simplified explanations [75]. On 

the other hand, the validation of such models with real environmental data is fundamental to their credibility 

and acceptance by the LCA community [1]. However, the strong validation bases for AI models in LCA are 

relatively underdeveloped, especially in terms of generalization over a wide diversity of geographical and 

technological conditions [9]. 

7.3. System boundaries and double counting 

When the LCA models are embedded into AI-based pollution quantification tools, detailed boundary 

definition is necessary. For instance, resource-based emissions estimates could correspond to the fall of the 

emissions on emissions already considered in inventory emission units. Misaligned, this is double-counting 

(or else incoherent across life-cycle stages). A similar challenge arises when co-products or carbon 

sequestration pathways are treated differently across multiple data sources. This would imply that AI outputs 

and LCA unit processes are in a one-to-one relationship to maintain consistency. Such integration is based 

on elaborate ontological framework and standard formats for data sharing to ensure reliable mapping across 

studies, and to eliminate methodological ambiguities [1]. Furthermore, the dynamic nature of bio-energy 

systems (e.g. supply chain variations and variable operation conditions) suggests parameterized boundary 

setting that enables adequate capture of full life-cycle impacts without over or under estimating environmental 

burdens or benefits [76-80]. The issue of defining system boundaries becomes even more complicated by 

evolving bio-energy technology development and the intricate agricultural/industrial systems interlinking in 

turn may demand for detailed multi-scale modelling to represent all relevant flows [11]. This issue becomes 

more severe in complex bio-refineries where several co-products and energy carriers are produced, which 

require to be neat accounted to avoid both misses and over counting [81-85]. Consequently, it is important that 

strong AI-supported strategies are available to adequately keep and continuously identify system boundaries 

across the various bio-energy pathways for obtaining trustworthy LCA results [11]. In addition, clash between 

what is feasible in practice in terms of realizations and timescales at different spatial/temporal scales from the 

AI methodologies compared to the LCA elucidates much of the lack of agreement seen here and underscores 

that more sophisticated spatiotemporal aggregation methods are necessary [86-94]. Furthermore, the 

subjectiveness in determination of system boundaries for LCA, which is often influenced by study purposes 

or policy orientation, might lead to inconsistency of AI-interpreted environmental data [95-99]. 

7.4. Uncertainty and temporal dynamics 

AI models typically result in output that is probabilistic or time-dependent rather than the static emission 

factors which are used in reliance on standard LCAs. The propagation of these time-varying and uncertain 
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figures through impact assessment begs a methodological question. Trade-offs will have to be made 

concerning time horizon, characterization factors and discounting, in particular when considering short-lived 

climate pollutants or operations of seasonal biomass. An interesting avenue for the future is to also develop 

stochastic LCA frameworks that can handle ML outputs. Therefore, these probabilistic and time-series 

predictions should be integrated into the life cycle assessment model at large (the dynamic LCA models) in 

order to more accurately represent the actual environmental consequences of the biogenic carbon cycles and 

temporal variation in renewable sources [100-109]. Such integration is essential for informed decisions in bio-

energy systems, since both short-term variations as well as long-term upward or downward trends have 

substantial effects on sustainability indicators [110]. Bayesian approaches provide computationally expensive 

but systematic ways to quantify the uncertainties through combining expert opinions with observed data [111]. 

Probabilistic graphical models can also improve the characterization of uncertainty by modelling complex 

dependencies between different factors along the bio-energy supply chain [9]. Furthermore, there are no 

standardized sustainability criteria for these processes and bio/geophysical interactions are ever-changing – 

factors that complicate the LCA into a traditional procedural framework [112-114]. This is additionally 

challenging considering the paucity of comprehensive biochar emission datasets as well as the limited scope 

and applicability of experimental measures generally obtained from single-site studies in a controlled 

environment, bearing high uncertainties in representing regional differences and incomparability of results 

elsewhere. Hence, it is highly desirable that state-of-the-art AI methods (e.g. deep learning) quantify and 

manage these uncertainties at different spatio- temporal scales in bio-energy systems [115-128]. Explainable AI 

methods can cover the challenge of interpretability by giving transparent explanations about decisions made 

by non-transparent models, thus building trust and encouraging acceptance from stakeholders [129]. 

7.5. Integration of social and economic dimensions 

While most AI based LCAs concentrate on environmental factors, they largely neglect social and 

economic effects. Factors such as land-tenure changes, the food/fuel debate and rural employment/regional 

growth also demand analytical instruments to deal with different datasets. Socio-economic modelling using 

machine learning approaches There are available some ML methods for socio-economic modelling (but rarely 

these are connected to bio-energy LCA workflows. Integration of AI–LCA into multi-criteria sustainability 

assessment: A potential good way forward in tools that address biodiesel’s holistic impact frame. This level 

of integration at a more macro scale is required to support sustainability in a holistic sense, not just confined 

to environmental indicators but also the dynamic interaction of social justice and economic viability [130-135]. 

The idea of such a holistic picture argues for AI systems that would learn to interpret interactive qualitative 

and quantitative socio-economic data together with environmental readings - including natural language 

processing in interpreting policy effects and sentiment among stakeholders [136]. This also means such gap 

must be extended to available Life Cycle Costing and Social Life Cycle Assessment methods, as well as their 

integration into a LCA-based comprehensive Life Cycle Sustainability Assessment framework [137]. To 

overcome these challenges will need integrated solution where both technological advancements; regulation 

ergonomic interventions and stakeholder involvement together with environmentally sound management 

practices must be considered [138]. The identification of robust indicators and profiles to assess the social 

economic and sustainable development dimensions on BECCS projects is still a barrier that requires further 

research for comprehensive assessment [139-145]. 

Moreover, dealing with the difficulties in the harmonization of diverse impact categories and data 

comparability between multiple bio-energy systems is also a main issue that should be tackled when 

developing comprehensive and generally applicable sustainability assessments. The fundamental challenge of 

combining sustainability indicators across environment, social and economic dimensions is a central 

methodological issue in holistic assessments of bioenergy approaches. 
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8. Future directions 

Recent studies suggest several directions where AI can significantly extend the capabilities of LCA for 

bio-energy and pollution quantification. These directions focus on tighter integration between models and data, 

operational decision support, and better treatment of spatial, temporal and socio-technical complexity. 

8.1. Hybrid physics-informed and data-driven models 

Black-box data-driven models tend to be limited when the data is scarce, noisy or not a good 

representation of future operational scenarios. Hybrid methods which combine first-principles models with 

machine learning provide a possible path forward. In these models, the mass and energy balances, 

thermodynamic relations and fundamental reaction kinetics are based on process models and only uncertain 

(or highly nonlinear) parts of the system dynamics are identified based on data. A prototypical example is that 

of physics-informed neural networks. They incorporate conservation laws or governed equations in the loss 

function, which enables  the network to discover sub-models of chemical reaction kinetics, decay rates or 

heat/mass transfer coefficients that were previously unknown without contraventions of underlying physical 

principles. For bio-energy processes, it may be possible to reduce the quantity of experimental data needed 

and increase the ability to extrapolate to new feedstocks or scales or operating conditions. The resulting hybrid 

models can then be used as better surrogates of LCA, particularly in early-stage design tasks or for new 

technologies. 

8.2. Digital twins of bio-energy systems 

These digital twins take this concept one step further, using in real-time. A digital copy of a bio-energy 

plant will integrate sensor streams, process simulations and ML-based surrogates to reflect the physical system 

throughout. If LCA modules, or calibrations to impact surrogates (see below) have been inserted in the twin it 

is also possible to look for environmental indicators combined with technical and economic performance. 

Larger biomass power plants, CHP units or integrated bio refineries might use such twins to monitor time-

varying emissions and resource use and key impact indicators for decisions making under real-life operating 

conditions. They also allow what-if analysis; for example, operators can see how changes in feedstock mix, 

load factor or control strategies would influence emissions and LCA results. This moves LCA away from a 

single-point design exercise to a living tool for operational performance optimizations. 

8.3. Generative and large language models for scenario design 

New methods of building and exploring scenarios generative methods like large language models are 

providing new tools. They can also take information from technical reports, policies and datasets to assist in 

sketching out plausible future pathways: mixes of feedstocks, technologies, scales, sittings and regulatory 

environments. They can also contribute in building the input datasets, documenting assumptions and 

identifying key uncertainties. Connected to LCA engines with programmable interfaces, generative models 

allow for automatic generation of scenario families, batch triggering and summarizing outcomes. For bio-

energy, this may hasten the examination of alternatives to cascading biomass use, combination with other 

renewables or regionally attractive resource mixes comprising residues, energy crops and waste streams. The 

problem is how to maintain the transparency and keep up the generated scenarios physically and socio-

economically plausible? 

8.4. Interactive AI-Driven LCA dashboards 

A further positive is the use of interactive dashboards to combine the AI models with easy user interfaces. 

Written using the likes of Python, Streamlet and scikit-learn, these platforms take care of data ingestion, pre-

processing, inventory completion, impact calculation and rudimentary sensitivity analysis. For facility 

operators, regulators or project developers, those dashboards could offer near instantaneous feedback on how 
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changes in feedstock sourcing and plant operation or technology choices are impacting an environmental 

performance index. To researchers, the framework provides a mean to communicate and disseminate AI 

enhanced LCA models in a transparent and reproducible manner. In the future, commonly used dashboards 

could enable benchmarks across plants and transfer of best practices in the bio-energy industry. 

8.5. Stronger coupling of remote sensing, Air-Quality models and LCIA 

Advanced remote-sensing platforms together with deep learning further enables spatially explicit LCAs 

that connect emissions to exposure. Satellite (or aircraft) based emission estimates along with chemical 

transport or dispersion models can provide concentration and exposure fields for pollutants such as PM₂.₅, 

NO₂ and ozone. AI models contribute to extracting emission fluxes from remote sensing, as well as the 

acceleration of dispersion calculations via surrogates. Using such spatially explored exposure metrics directly 

in LCIA methods for human health and ecosystems, LCIAs could assess these location specific impacts rather 

than based on globally or regionally averaged outcomes. This is particularly relevant for bio-energy plants in 

or close to population centers or where sensitive ecosystems may be affected and for major utilization of 

residues that could alter regional burning practices, air quality and other patterns. 

8.6. Standardisation and guidelines for AI-Enhanced LCA 

With the increasing application of AI-based approaches in LCA, demand for methodological 

recommendations and sector-specific standards is rising. General frameworks to incorporate AI into LCA 

already exist, but bio-energy is unique in its strong connection to land-use change, soil carbon dynamics, co-

product markets and region-specific supply chains. 

Future recommendations should focus on: 

 AI model documentation (architecture, training data, validation); 

 treatment of spatial and temporal variability in biomass systems; 

 consistent accounting of co-products, negative emissions (e.g. BECCS, biochar) and indirect land-

use effects; 

 Uncertainty analysis procedures when applying ML outputs. 

This guidance would facilitate the comparison between studies, decrease the likelihood of misapplication 

of AI tools and increase confidence in AI-driven bio-energy LCAs employed for policy or investment 

decisions. 

9. Conclusion 

This review reveals that artificial intelligence is transforming the approach to bio-energy systems 

environmental impact assessment through all life cycle stages. Classical LCA approaches are handicapped by 

long‐lasting limitations due to little availability of data, outdated inventories, unclear system boundaries, and 

lack of attention to fluctuation over space and time. Many of these problems associated with inventory 

compilation can be addressed by AI models that can predict the missing data in inventories, develop more 

refined feedstock and process modelling, better estimation of emission rates and spatially dynamic assessments. 

The combination of remote sensing, deep learning, and real-time sensing for richer data model of pollution 

quantification may result in more reliable impact assessments. At the same time the requirement for 

transparent, interpretable and reproducible models is still at the core of a quantitatively robust handling of 

uncertainty. The next steps are likely to be on hybrid physics-guided models, digital twins, generative scenario 

tools and standardized frameworks that can underpin rigorous and policy-relevant LCAs for emerging bio-

energy technologies. 
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Abbreviation 

Abbreviation Full Form 

AI Artificial Intelligence 

ML Machine Learning 

DL Deep Learning 

ANN Artificial Neural Network 

CNN Convolutional Neural Network 

RNN Recurrent Neural Network 

LSTM Long Short-Term Memory 

SVM Support Vector Machine 

RF Random Forest 

XGBoost Extreme Gradient Boosting 

GPR Gaussian Process Regression 

BN Bayesian Network 

XAI Explainable Artificial Intelligence 

SHAP SHapley Additive exPlanations 

LIME Local Interpretable Model-Agnostic Explanations 

LRP Layer-wise Relevance Propagation 

LCA Life-Cycle Assessment 

LCI Life-Cycle Inventory 

LCIA Life-Cycle Impact Assessment 

ISO International Organization for Standardization 

GHG Greenhouse Gas 

GWP Global Warming Potential 

CED Cumulative Energy Demand 

NOx Nitrogen Oxides 

SOx Sulfur Oxides 

CO Carbon Monoxide 

CO₂ Carbon Dioxide 

PM Particulate Matter 

PM₂.₅ Particulate Matter with diameter ≤ 2.5 µm 

VOC Volatile Organic Compounds 

IoT Internet of Things 

UAV Unmanned Aerial Vehicle 

LUC Land-Use Change 

BECCS Bioenergy with Carbon Capture and Storage 

MAE Mean Absolute Error 

RMSE Root Mean Square Error 

MAPE Mean Absolute Percentage Error 

R² Coefficient of Determination 
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