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ABSTRACT

Bio-energy systems are frequently promoted as low-carbon substitutes
for fossil fuels and are closely related to SDG 7 (Affordable and Clean
Energy) and SDG 13 (Climate Action). Actual environmental performance,
however, is contingent on supply-chain design, choice of feedstock, set-up of
the technology and local operating conditions. The life-cycle assessment
(LCA) is currently the predominant scientific instrument for assessing these
impacts in a comprehensive approach linked to SDG 12 Responsible
Consumption and Production. Traditional LCA, however, has to deal with a
variety of challenges including data scarcity, spatial and temporal variations,
and the necessity to analyze several scenarios depending on changing
circumstances. In recent years, some of these limitations can be mitigated by
using artificial intelligence (Al) and machine learning (ML) techniques. This
approach facilitates inventory data extrapolation, gap filling and estimation of
the nonlinear function between process variables and environmental
parameters, all leading to more dynamic and data rich assessment which
reflects SDG 9 (Industry, Innovation and Infrastructure). This review
consolidates a summary of up-to-date studies on Al-enabled LCA approaches
for bio-energy systems and pollution assessment methods that interface
directly with sustainability evaluation. The paper describes a general

description of key aspects related to bio-energy supply chains in LCAs
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regarding impact categories, including greenhouse gas (GHG), air pollutants, land use and water use with relevance to
SDG 6-Clean Water and Sanitation and SDG 15-Life on Land. It subsequently provides an overview of Al and ML
applications covering the full bio-energy life cycle, including aspects related to biomass resource assessment and
feedstock production as well conversion, upgrading, refining, distribution to end use. Particular focus is given to works
that integrate ML with LCA metrics for the prediction of environmental performance or for the optimization of process
conditions through sustainability-based indicators. The review also presents Al-facilitated pollution monitoring
applications, such as deep learning techniques for emissions detection using remote sensing data, carbon emissions
prediction, and air quality monitoring through ML for betterment of SDG 11 (Sustainable Development Goals:
Sustainable cities and communities). Major challenges including model interpretability, system boundary consistency,
uncertainty propagation and hybrid modelling requirements have been identified. Next, Al focusing on digital twin,
scenario analysis supported by Al and interactive LCA tool for informed decision making.

Keywords: bio-energy; life-cycle assessment; artificial intelligence; machine learning; pollution quantification; emissions

monitoring; remote sensing

1. Introduction

Bio-energy technologies (solid biomass, biogas, bioethanol, biodiesel, advanced bio-oils) are an essential
component for many decarbonization pathways — especially in hard-to-electrify sectors such as heavy industry;
aviation and shipping. But the climate and environmental benefits of bio-energy are not a no-brainer. They
rely on LUC, fertilizer, feedstock logistics, conversion efficiency, by-product use and a point of use emission
control. This weight is imposed by bringing LCA from the cradle to grave and comparing these impacts
between Bio-energy options, fossil and other renewable systems. Although useful, classical LCA methods face
great difficulty in addressing the complexities, data rich nature and dynamicity of bioenergy systems: such
shortcomings can potentially be addressed by artificial intelligence (AI) and machine learning '), For example,
machine learning can help improve data quality and facilitate more realistic LCA modelling by analyzing

23] This combination of machine

large-scale environmental datasets and emulating ecosystem dynamics !
learning and LCA allows one to deal with uncertainties in the data and employ less efforts than traditional
inventory gathering . ML facilitates the automatic calculation of CFs, increases precision of impact
estimations, and closes typical data gaps in classical LCA background datasets >, In bioenergy, ML allows
fast prediction of environmental impacts. Configuration when multiple-products make allocation difficult [~
271 Tt also assists in the evaluation of biomass properties, conversion efficiency and fuel characterizations that
are generally challenging to be measured directly and hence more comprehensive evaluations 8. These

attributes potentiate assessments along the complete bio-energy chain; from feedstock growth to end use 2.

Figure 1 illustrates how implementing Al technology can benefit these existing challenges and
strengthen the traditional practice of bio-energy LCA. In particular, it facilitates analysis interpretation from
data scarcity and chaotic system complexity that arise when conducting such disclosure, since this structured
learning improves our understanding of complex interrelationships. It's also a wake-up call to move away from
black-box opaque algorithms and toward Explainable Al (XAI), because transparency and causal transparent
is critically important for sensible environmental policy.

LCA of bio-energy remains difficult due to spatially dispersed feedstock chains, strong dependence on
local and seasonal conditions, and inconsistent system boundaries across studies. Al and ML support feedstock
prediction, process optimization, and direct estimation of inventory flows and impact indicators, reducing data
gaps and computational effort [!l. Many existing black-box models lack transparency and process-level detail,
which limits traceability and robust attributional or consequential LCA "), This highlights the need for
explainable Al to improve interpretability, trust, policy relevance, and model generalization under data scarcity
and uncertainty [1°-15],
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Figure 1. Framework for Integrating Artificial Intelligence into Bio-energy Life Cycle Assessment (LCA)

In addition, advances in deep learning and remote sensing analyses are revolutionizing how emissions
and air pollutants are tracked across space and time, allowing for LCAs of bio-energy projects that can be both
dynamic (in time) and spatially explicit.

This review focuses on these two intersecting themes:
* Al models that support or extend LCA of bio-energy technologies.
* Al models for pollution quantification that can supply better emission data to LCAs.

Differences in depth by life-cycle stage reflect the distribution of extant work, not scope imbalance.
Conversion technologies and pollution monitoring are emphasized more as there is a relatively greater volume
of literature in the field with richer data and more diverse methodologies, especially for Al/machine learning.
These perturbations also facilitate a direct connection between operational conditions and environmental
effects. Other life-cycle phases are presented more summary-like due to still scarce data and evidence on
dedicated Al studies. Such view considers the whole life-cycle, though it is consistent with level of maturity
of current literature.

The review progresses with a systematic approach in the selection of studies for comprehensiveness and
reproducibility of this review, meeting study scope criteria on artificial intelligence applications to LCA and
pollution quantification from bio-energy systems. Peer-reviewed articles were searched through extensive
searches on main scientific databases (Scopus, Web of Science and ScienceDirect). The timescale of the
literature reviewed mainly includes publications from 2010 to 2025, as these data-driven and Al-assisted LCA
methods have been increasingly researched in this period.

The following criteria were used to select studies: (i) explicit use of artificial intelligence or machine
learning, (ii) specific connection with life-cycle assessment, life-cycle inventory construction or procurement
procedure method impact assessment pollution analysis for bio-energy systems; and (iii) detailed
methodological information provided so that the model structure and context can be interpreted. Review or
extended abstracts, methodological concepts and some selected high-impact cases were incorporated to ensure
a balance between the theoretical progress and applied enhancements. Conference abstracts, non-peer-
reviewed reports, and studies without clear method descriptions were excluded.
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The references were classified based on the main contribution they have to bio-energy life-cycle:
feedstock production, logistics, conversion processes and end-use emissions calculation, direct LCA indicator
prediction. Another categorization was made in terms of type of Al model (i.e., regression and tree-based
methods), artificial neural networks, deep learning, probabilistic models, explainable AI). This two-
dimensional classification allows for a methodical comparison of methodologies’ trends, domains of
applications and identified research gaps in the reviewed source literature.

2. Life-Cycle Assessment of Bio-Energy systems
2.1. Standard LCA framework

The ISO-based LCA framework provides a structured approach to evaluate environmental impacts of bio-
energy systems from resource extraction to final energy use. It consists of four stages: goal and scope definition,
life-cycle inventory (LCI), life-cycle impact assessment (LCIA), and interpretation. In bio-energy studies,
system boundaries generally include all stages that influence the overall environmental burden of the fuel or
product. The biofuel life cycle begins with feedstock production, including crop cultivation, forestry, residue
recovery, and waste handling. These steps determine land use, input requirements such as fertilizers and water,
and upstream emissions. This is followed by transport and storage, where distance, moisture content, and
handling conditions affect energy demand and losses. Biomass then undergoes pre-treatment and conversion
through biochemical, thermochemical, or physical routes, each with distinct material flows and energy
efficiencies. Final use involves combustion or application of the bio-energy product, leading to direct
emissions and potential displacement of fossil fuels ['®!

Conversion pathways such as combustion, gasification, pyrolysis, anaerobic digestion, fermentation, and
transesterification differ in efficiency, emissions, and co-product generation, making this stage central to LCA
comparisons. Waste recovery includes management or beneficial use of residues, which may add or offset
environmental burdens !¢, Functional units, commonly expressed as MJ, kWh, or mass of fuel, enable
consistent comparison across systems ['!¥], For example, bioethanol comparisons with gasoline often rely on
energy content or vehicle distance rather than volume to reflect performance differences ). Co-products such
as biochar, digestate, and glycerol influence burden allocation and system credits. The ISO 14040/44 standards
of the International Organization for Standardization provide guidance for impact assessment and result

(291 Tmpact categories typically include global warming, air pollution, eutrophication,

interpretation
acidification, land use, biodiversity, water use, and ecotoxicity. Despite this, selecting an appropriate

functional unit remains challenging due to the multifunctional nature of biorefineries, which limits direct

comparison across studies without harmonization '-21,
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Figure 2. Standard Bio-Energy Life Cycle Assessment (LCA) Framework and Supply Chain
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The figure 2 illustrates the ISO-standardized LCA stages—Goal, Inventory, Impact, and Interpretation—
applied across the full bio-energy lifecycle, mapping the physical flow from feedstock cultivation to final
energy use. It underscores the relationship between life cycle operational stages and environmental impact
categories while pointing out key methodological constraints such as complexity of allocation, or data paucity
that influence assessment reliability.

2.2. Limitations in traditional Bio-Energy LCAs

Numerous studies have identified common shortfalls in the use of classical LCA methodology for bio-
energy systems. One of the main limitations is the lack of standard units, which do not allow comparison
between trials. Multipurpose-application is usually only partially taken into account, even if more than one
co-product such as heat, biochar or glycerol is involved. Decisions concerning allocation or system extension
heavily influence outcomes, but are not always well documented. Moreover, the accuracy of LCA results is
critically dependent on data quality and availability, and due to lack of access to primary industrial information
(in most studies) could be based on hypothetical assumptions or laboratory-scale calculations [,
Consequently, LCAs of the same bio-energy pathways can vary to a large extent and cast doubts about their
utility in informing policy or investment (. Many biorefinery LCAs also present limited value-chain data,
generic datasets not including uncertainty analysis or overlooking important impact categories, reducing the
confidence in the results *7). Standard LCAs concentrate on a subset of indicators (primarily greenhouse gas
emissions) with little attentiveness to land-use change, biodiversity and water-related effects. They also
assume average spatial and temporal characteristics, whilst there is strong regional and seasonal variability in
yields, emissions and land impacts. The inability to explore multiple scenarios is largely due to static databases
and computational intensity, even though bio-energy systems are dynamic and transforming rapidly. The
flexibility of determining system boundaries, co-product treatment and allocation under ISO standards makes
the comparison between studies even more troublesome and inconsistent results appear even for similar
pathways [!28], These methodological variances diminish the reliance on LCA for policy-relevant findings,
as noted in previous reviews 14?°!, These gaps can be addressed through practical applications of artificial
intelligence, such as enriching absent inventory data, model surrogate for complicated processes or facilitating
fast exploration design space. Such methods bring versatility and rigor into consideration, which is not
normally the case in classic LCA methodologies.

Table 1. Summary of the Standard LCA Framework and Key Limitations in Bio-Energy Assessments

Key Processes / Environmental LCA Notes /
Key Point Description yFactors Indicators Challenges Examples
Affected Identified P
Defines purpose, . All impact Inconsistent
system Feedstock production, . . o . .
Goal & Scope boundary, and  conversion stages, use categories functional units; Functional unit
. RS ’ depending on incomplete often MJ, kWh,
Definition functional unit phase, and waste .
for bio-ener handlin boundary boundary or kg biofuel.
2 & decisions. definitions.

assessment.

Compilation of

Crop cultivation,

GHG emissions,

Data gaps, use of

Many studies

Life-Cycle Inventory input-output fertilisers, water use, nutrient run(?ff, generic datasets, rely on
data across the . land occupation, S .
(LCDH . residues, transport, limited industrial secondary lab-
bio-energy water
. storage. . data. scale data.
chain. consumption.
Translates Combustion, cu tro([});l)\i/(l:)z;tion Narrow focus on
Assessment (LCIA) . PYrolysis, dig i SOx, CO, PM, nang Sty
environmental fermentation, biodiversi and spatial— often omitted.
indicators. transesterification. . 'ty, temporal detail.
ecotoxicity.




Environmental LCA
. o Key Processes / . Notes /
Key Point Description Factors Indicators Challenges Examples
Affected Identified P
Analyses results, Scenario comparison, High variability o
checks e o ISO flexibility
. . sensitivity checks, All indicators of results; low
Interpretation consistency, . . . reduces
X . uncertainty included. transparency in e
identifies . . comparability.
o evaluation. assumptions.
uncertainties.
Handling of .
. . . multiple outputs Allocation, system GHG balance, Incops1stent Co-product
Multifunctionality & . . ) - allocation rules;  method strongly
such as biochar,  expansion, fossil fuel energy credits, .
Co-Products L oo weak influences
digestive, substitution. land-use offsets. . .
justification. results.
glycerol, heat.
Conventional Al-based data Potential to s tlg\l{[[ilcssrglogdgﬁtii’ ML surrogates
Structural Limits & LCA is static, enrichment, surrogate . . & mimic complex
: improve all high
Al Needs data-heavy, and models, scenario Lo . models
) indicators. computational .
slow. exploration. cost efficiently.

Table 1. (Continued)

The main steps of the ISO-compliant LCA framework used for bio-energy systems and the related
environmental indicators and methodological issues are summarized in Table 1. It delivers an abridged
comparative snapshot to illustrate where conventional LCAs are limited and which analysis gaps still exist.

3. Al and machine learning techniques relevant to LCA

The figure 3 groups the main Al methodologies—from regression and tree-based models, for instance
used to predict yield, to deep learning applied in spatial analysis—by a generic class of function they play in
life cycle assessment. It also shows how various algorithms accommodate distinct needs, e.g., employing
neural networks for tracking complex process optimization as opposed to probabilistic methods in estimating
uncertainty and risk. Lastly, it emphasizes the importance of Explainable AI (XAI) in establishing the validity
of these models and bringing transparency to those making real life decisions.

3.1. Regression and tree-based models

Regression and tree-based techniques are commonly used to predict crop yield, energy input, emissions
and bio-oil outputs in bio-energy systems. Ensemble models including the random forest, gradient boosting
and XGBoost are able to address heterogeneous, large-scale data sets with non-linear couplings between
feedstock, climate and operations variables. Regularized and stacked ensembles decrease noise and enhance

30

robustness while recovering critical influences on environmental effects B%. Support vector machines help

implement classification and predication with small samples, which contribute to inventory estimation and

LCIA if only little empirical information is available (4231,

3.2. Artificial Neural Networks (ANNs)

ANN are used when strong non-linear relationships between process variables and environmental
responses occur. MLP have been applied in biodiesel and bioethanol studies to correlate quality of the
feedstock, process conditions, type of catalyst used, to conversion efficiency and emissions for optimization
or life-cycle inventory purposes. Recurrent and convolutional networks solve time-series and image data, both
of which are now emergent in operational data and remote sensing as the field of LCA matures ). ANNs have
also been employed to predict the biomass pyrolysis activation energy, enhancing comprehension of thermal
decomposition and making it possible to estimate better efficiency and pollutant generation w.r.t. different
conditions . The capacity to learn complex patterns from data by avoiding prior assumptions in form of
equations favor ANNs to predict conversion and stability in biodiesel and numerous thermal processes

involving many concomitant parameters -3,
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Figure 3. Classification of Al and Machine Learning Architectures for Bio-Energy LCA

3.3. Deep Learning (DL)

High-dimensional and space—time data are particularly suitable for methods based on deep learning. Deep
learning applied to pixels from satellite images can be used to estimate the supply of biomass, observe land
use change and track emission plumes stemming from bio-energy plants. Models based on sequences (like
recurrent networks) encapsulate the time-varying nature of emissions, power generation, and plant efficiency,
which conventional LCAs tend to simplify B¢, This enhances the resolution in time of the estimates of
environmental impact, which is crucial for bio-energy systems characterized by variable feedstock quality and
operating conditions. The fusion of classical and deep neural architectures with los and mobile inferencing

provides real time data driven LCA analysis, continuous environmental monitoring 7).

3.4. Kernel and probabilistic methods

Predictions are made with quantified uncertainty based on kernel-based methods (e.g. support vector
machines) and probabilistic models (e.g. Gaussian process regression). Such methods yield confidence
intervals to the environmental indicators, which is useful in LCA since inventory data frequently are uncertain
because of regional variation, measurement constraints and small sample sizes. Sensitivity analysis is used to
investigate inputs that dominate overall uncertainty and guides focused data collection for improved
robustness. Probabilistic graphical models, and in particular Bayesian networks represent dependencies over
life-cycle stages, allow for uncertainty propagation and scenario analysis, including incorporation of expert
knowledge on drivers of the scale of land use change *8). In general, probabilistic ML techniques can tackle
both epistemic and aleatory uncertainty issues by providing distributions of possible values other than point
estimations in enabling more risk-informed decisions in bio-energy LCA [,

3.5. Explainable AI (XAI)

Explainable Al techniques reveal why models achieve certain predictions, which is crucial for Al-
supported LCA. Techniques such as SHAP and LIME offer insight into how specific input features affect
emissions, energy demand or land-use impacts that can be verified against well-known physical and process

39401 This transparency builds trust, assists in identifying biases, and facilitates communication

principles !
with non-specialist stakeholders — particularly when the outputs of an Al model are informing bio-energy

policy or industrial planning. New XAI methods such as Shapley values and Relevance propagation have



shown the potential in providing a richer understanding of complex environment processes, taking the analysis

further from mere correlation to that of causal investigation [

41- 45]

Table 2. Al and Machine Learning Techniques Used in Life-Cycle Assessment

Purpose in Common Typical Applications in Handling of
Technique LCA Models Key Strengths Bio-Energy LCA Uncertamt.y /
Nonlinearity
Random
. Ensemble
Predict Forest, Manage large - .
. . . EV energy-use prediction, modelling
Regression & inventory Gradient heterogeneous datasets; L e L e
. . bio-oil yield estimation, reduces noise;
Tree-Based parameters such Boosting, capture nonlinear feedstock qualit strone sensitivit
Models as emissions XGBoost, interactions; identify cX quaity g . y
. . . . classification analysis
and yields Laplacian important variables o
: capability
Regression
e Lamion - Bttt e
Neural MLP, RNN, plant/experimental . cency, piex p
between process . . pyrolysis activation without
Networks . CNN data; strong nonlinear L
variables and e . energy, emission predefined
(ANNGs) prediction ability S .
outputs prediction equations
Analyse high- Extract features from Biomass availability Models dynamic
. . . CNNs, RNN, . . . .
Deep Learning dimensional hybrid ANN- images/time series; mapping, LUC changes often
(DL) spatial and }I])L models model time-varying monitoring, time-variant ignored in
temporal data emissions emission modelling traditional LCA
SVM, Handles
Predict Gaussian . e . epistemic and
Kernel & o . Provide confidence Sensitivity analysis, land-
R indicators with Process . - . aleatory
Probabilistic . . intervals; represent use change modelling, S
quantified Regression, . . . uncertainties;
Methods . . complex dependencies scenario evaluation e
uncertainty Bayesian probabilistic
Networks outputs
Improve SHAP, LIME, Reveals variable n . Explalp S model
. transparency of . . Identifying emission decisions;
Explainable Al L LRP, feature- influence; supports . : . ;
(XAI) ML predictions importance verification with drivers, policy-oriented supports ethical
for LCA . LCA, model diagnostics and robust
o scores physical processes .. .
practitioners decision making

The table 2 gives a comparative view of major Al and machine learning techniques used in life-cycle
assessment, highlighting how each method supports prediction, interpretation, and uncertainty handling. It
shows the strengths of models such as regression, neural networks, deep learning, probabilistic tools, and
explainable Al for analyzing bio-energy systems. The summary helps readers understand which techniques are
suitable for tasks like emission estimation, land-use assessment, scenario analysis, and transparent decision
making.

4. Al Models across the bio-energy life cycle

4.1. The Production of feedstock, land-use and the biomass availability

Bio-energy LCAs depend strongly on accurate estimates of biomass potential and upstream impacts.
Remote sensing-based machine-learnt products provide very stylized spatially and temporally resolved
information on crop yields, forest biomass and residue availability. The use of deep convolutional networks
and random forests with multi-spectral satellite data (e.g., Landsat or Sentinel) can map biomass patterns and
land management. Gradient boosting machines are also applied to estimate soil properties, fertilization
requirement and irrigation needs from field measurements and climatic information. The methods contribute
to the development of better life cycle inventories for cultivation by improving estimates on soil emissions,
particularly N2O as result of fertilizer application, and providing more accurate indicators for land use
intensity and water consumption. Moreover, farm management can be further optimized as machine learning



algorithms are capable of processing vast amounts of agricultural data such as the weather, soil conditions and
yield health to better predict crop growth and yield .

4.2. Logistics and supply-chain stages

The process of bio-energy chain consists from several subsequent tasks (cutting, gathering, baling or
chipping) and interim tools such as storage and final disposable. Tools for Al have now been added to enhance
these steps. Route optimization and fleet scheduling algorithms minimize fuel usage and overall transport
effort. Stochastic models suggest that biomass moisture content, decay and loss rates during storage will all
change. Sensor driven systems in real-time with ML (Machine Learning) algorithms are enabling better
inventory tracking and supply predictability. These refinements have an impact on LCA stage results in
reducing transportations emissions and updated loss fractions used in inventory calculations. The literature
indicates that Al-informed routing has potential to decrease fuel consumption and CO: emissions by in the
order of 10-25%, with observable reductions in life-cycle burdens per unit delivered bio-energy. For example,
machine learning may enhance logistics of biomass supply chain by demand prediction and route optimization
where decreasing transportation cost and better inventory management can be achieved . Machine learning
application in forest and biomass supply chain management have been proven to provide the powerful tool for
sustainable forest management and biomass resources development, solving multifaceted logistics problem for
building multi-feedstock — focused lines ¢!,
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Figure 4. Al Applications across the Bio-Energy Life Cycle Stages

The figure 4 maps specific Al interventions to each stage of the bio-energy value chain, from using
satellite data for feedstock estimation to optimizing logistics and conversion processes. It highlights how



machine learning enables real-time emission monitoring during end-use and facilitates rapid "screening"
assessments by directly predicting environmental indicators like GWP.

4.3. Conversion and upgrading processes

Al techniques are emerging for the optimization of conversion pathways such as pyrolysis, gasification,
hydrothermal liquefaction (HTL), fermentation and transesterification in bio-energy production. Model-based
machine learning couples process parameters (i.e., temperature, residence time, catalyst type and biomass
composition) with product yield, energy use and emissions guiding LCA informed decisions in design.
Biodiesel and bioethanol optimization by ANNs and response-surface methods, where the relationship
between LCA down streaming chemicals separation process operating conditions required to outcome
performance measures, such as efficiency, by-product formation and allocation choices in the product were
presented. ML also facilitates the real-time control of fermentation variables and the development of
microalgae-based systems. In general, the data-driven optimization makes technical goals consistent with life-
cycle indicators (e.g. GHG emissions and cumulative energy demand ['*'), whereas conventional models

conceive most of the aspiration values exogenously or improperly in terms of constraints 3447],

4.4. End Use, combustion and operation emissions

In operation, the Al models predict emissions of boilers, engines and turbines when operating with bio-
fuels or mixtures. NOx, SOx, CO, CO: and particulates generation models with fuel composition and
operational input are calculated. In the biodiesel-diesel and ammonia—hydrogen systems, they also predict the
combustion efficiency of mixed bio-fuel blends and amount levels of unburned hydrocarbons. These factors
lead to more accurate accounting of emission profiles in the life-cycle inventory and for nonlinear interactions
between e.g., oxygen content, fuel nitrogen, and combustion temperature. Under such an approach, the
evaluation of environmental performance of bio-energy system during operation is better consistent and
provide a more reliable estimate which extends beyond simple emission factors to site-specific predictions. In
addition, corresponding real-time monitoring and control systems based on Al technology are able to vary
operational parameters flexibly in order to achieve optimal combustion efficiency and minimize the
generation of pollutants; therefore, they can enhance accuracy of LCA by accounting for actual operational

1. Hence, the use of such predictive models represent a significant improvement over static

conditions [
emission factors and can allow for a more accurate approximation of environmental footprints ). This iterative
process forms a feedback loop in which data from operations fine-tune LCA models so as to increase the
predictive capabilities of LCA towards future bioenergy projects ), Intelligent feedback loops of Al-powered
digital twins optimize dynamic process control, by promoting generation systems that can automatically adapt
the cultivation parameters in real time, according to bioenergy production efficiency and life cycle

491 In addition to operational modifications, Al-based inferential sensors

environmental impact reduction
could enable on-line monitoring of renewable carbon content in co-processed fuels and can help overcome

the difficulty in quantifying renewable carbon without costly offline analyses %,

4.5. Predicting LCA indicators directly

Some of the studies further expand applications of ML methods by considering LCA results as targets
themselves. These models predict potential and cumulative impact indicators (GWP, CED etc.) using the
design variables, feedstock properties and operational conditions. Macro-level methodologies have been
introduced wherein previously published LCA case studies and detailed process simulation are used to learn
machine learning (ML) models that can be used to obtain quick environmental assessments of new bio-energy
designs. This has been implemented for the bio-oil pathways: food-waste-to-biofuels processes as well as
other more general renewable-energy portfolios with biomass. Fast verses full LCA runs It gives a quick
alternative for doing complete LCA's, very useful at an early-stage design or in comparative considerations.
This predictive component enables fast screening of bioenergy system configurations, which are optimized in
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terms of environmental impact, economic viability and technical performance ', For example, an integrated
machine learning model could take databases of HTL, HTC and HTP gasification to integrate with a life cycle
assessment (LCA) model to determine global warming potential and energy return on investment . These
models not only speed up the evaluation but they can also be used to explore high and low cases allowing for
the isolation of key design parameters that affect environment performance ?!. This delivers a more flexible
and iterative design process where the environmental aspects of different choices can be immediately checked
and optimized, in support of sustainable bioenergy industry 2,

5. Artificial intelligence models for pollution quantitation associated to bio-
energy

Estimation of emissions rates and ambient pollutant concentrations are required to quantify pollution. In
the case of bio-energy, these are direct stack emissions from biomass plants and system-level emissions for
bio-energy being run alongside other generation. The chain of processes from pollution sources to exposure is
fortified by Al methods with respect to the detection, and forecast, spatial characterization of pollutants. The
figure 5 illustrates the workflow of using deep learning to process satellite and IoT data for real-time emission
tracking and forecasting. These outputs replace static metrics in Life Cycle Assessments (LCA), enabling more
accurate environmental impact analysis and informed policy decisions.

5.1. Emission plumes, remote sensing, and deep learning

Satellite measurements map a wide range of atmospheric species (NO2, CO2, SO- and aerosols) with good
spatial coverage. These datasets can be utilized with deep learning models to detect emission patterns and
measure plume intensity. CNN classifiers can recognize plumes of smoke; pinpoint the locations of active
combustion and capture features associated with plume behavior. Other approaches deploy CNNs trained on
synthetic or field labelled datasets to predict emission flux from plume geometry, density and meteorology.
Most research is concentrated on fossil-fuel plants, even though the same methods can be extended to biomass
plants. Given plant type and fuel quality, DNNs can predict stack emissions in real time utilizable for emission
monitoring over days or seasons. This will enable dynamic LCA on the basis of time-resolved profiles of bio-

2,3,53

energy operations instead of static averages ! I. Deep learning combined with remote sensing enhances

detection of the pollutant and prediction of air quality, as well as alleviates computational constraints

36, 54,551 These developments enhance source identification,

associated with conventional inverse models !
facilitate targeted mitigation and support countries to build up towards carbon-neutral pathways 1> 6. By
combining simulated and measured data, the output CO- estimates from PP can be further adjusted and large
emitting sources in all sectors are clearly identified B%. Integration of Al and IoT sensors with satellite images
is aiding in real-time industrial monitoring, carbon-stock assessment and environmental management decision

[15.57. 581 The fusion of local IoT data with satellite monitoring enhances understanding of environmental

(weather) conditions, and feeds multi-model systems for air-quality forecast [*°-62!,

5.2. AI-Based carbon emission forecasting

Short-term carbon emission forecasts at the grid level are particularly useful to understand how different
generation sources, including bio-energy, influence system wide emissions. Deep learning techniques, ie
hybrid CNN-LSTMs models, have used to forecast the ins CO2 emissions from past generation data, demand
patterns and market signals for fuels.

The same set of forecasting tools can be used for future grid penetrations with significant bio-energy.
They complement marginal emission factors in that they provide time-variant carbon intensities for bio-
electricity, and are a useful tool to improve prospective LCAs with further spatial and temporal resolution.
This contrasts with the commonly used time-invariant grid emission factors and presents a more appropriate
image of the environmental burdens from bio-energy in transition power systems. Integration of Al and real-
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time carbon monitoring provides a basis for the implementation of global climate decision support in emission
control complexity and risk rebounding among industries 7). This capacity is critical for investment and
policy planning in the context of climate neutrality ¥, Integrated Al systems for surveillance and forecasting
have been shown to yield higher accuracy over traditional techniques ') which can lead to evidence-based
management decisions, and in some instances automated decisions, that result in carbon savings 641,
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Figure 5. Al-Integrated Framework for Bio-energy Pollution Quantification and Dynamic LCA

5.3. Air quality monitoring and emission dispersion

Pollutants are emitted during the burning of garbage at a bio-energy plant including NOx, SOx, VOCs
and particulate matter, all of which can contribute to local and regional air pollution. Al-based approaches
integrate the ground monitoring, satellite observations and meteorological parameters to increase the spatial
granularity and temporal frequency of pollutant estimation. ML interpolation models are used to bridge the
gaps between the sparsely distributed monitoring centers. Prediction models are established to predict the
short-term air-quality indices and estimate the major emission sources with atmospheric dynamic variations.
Such Al-based methods can provide a high level of resolution in recognizing the source apportionment, i.e.,
distinguishing bio energy plants emissions from other industrial or natural related sources for targeted pollution
control %4 Additionally, advanced Al algorithms could use real time sensor data from UAVs and ground-
based mobile lab sensor networks to generate hyper-localized AQ maps that are able to be evaluated
immediately for any exceedances near bio-energy facilities. Data obtained from such granular analyses guide
optimization of operational parameters for environmentally sound and regulatory-compliant oil production (6%,
In addition, Al based models can predict the spread of pollutants in different atmospheric conditions that may
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provide a predictive understanding of exposure pathways and help in designing more effective stacks heights
and emission control devices !'* 7],

Inverse modelling and ML surrogates can help to estimate source strengths and identify hotspots more
accurately. This information flow can enter then into LCIA steps characterizing human-health, and (eco)
system impact potential, so that spatial exposure aspects are included in the assessment instead of only total
emitted mass.

5.4. Linking pollution quantification to LCA

The integration of environmental pollution quantification to LCA depends on a consistent harmonization
between model outputs and inventory flows. Emissions estimated from remote sensing observations need to
be linked to site life cycle stages that allow the separation of plant operation from upstream transportation or
pre-treatment activities. Models may provide temporal profiles to be used for time-sensitive LCls, for example
related to short-lived climate pollutants or seasonal variability in biomass availability and combustion. By
doing so, it provides the means to more holistically understand life cycle impacts in a bio-energy supply chain
and overcome the static and rounded average approach. In addition, the penetration of machine learning in
environmental impact assessments make it possible to predict environmental impacts, optimize land
utilization and meet regulatory standards in the process of producing sustainable biomass *!. This integrated
characteristic facilitates the more informative attribution of environment burdens and benefits, thereby
improving the credibility and applicability when the LCA study is used for policy-making or technology
investment about bio-energy technologies. Such integration is especially important for accounting for non-
climate change impacts such as eutrophication and acidification from fertilizer application, and damage
categories related to loss of biodiversity which are neglected in conventional analyses [, In addition, the Al-
guided pollution quantification seamlessly combines with LCA methods enabling spatial explicit
characterization factors to be constructed so as to include regional differences in environmental damages, an
aspect often overlooked in more general assessments [©7). As such this refined link therefore contributes to a
more comprehensive approach on the environmental performance assessment of bio-energy systems, not only

limited to simplified impact considerations [%],

Table 3. Al Models Used for Pollution Quantification in Bio-Energy Systems

Focus Area Al Methods Used Data Sources Key Functions Representative Re.levance to
Outcomes Bio-Energy
Emission Satellite data Detect emission eni{i:;iilg)ﬁ?iisila:;ic Useful for
Plumes & CNNs, DNNs, Deep (NOz, CO2, SO, . 4y biomass plants
. plumes, estimate LCA profiles, . -
Remote classifiers aerosols), plume . with variable
Sensing gcometry flux, map hotspots improved plume operating loads
identification
Carbon CNN-LSTM hybrids, ~ Orid data, load Short-term CO» Time-variant Supports future
.. . , profiles, fuel ) carbon intensities, grids with high
Emission DL time-series . forecasting, trend . .
Forecasting models mixes, market learning better prospegtlve blo-enefgy
signals LCA resolution penetration
. . ML interpolation, Ground sensors, High-resolution AQ . Hyper—locgl AQ Distinguishes
Air Quality . indices, optimized .
S UAV-sensor Al UAYV data, mapping, pollutant . bio-energy
Monitoring & stack design, ..
. . models, surrogate meteorology, source . > . emissions from
Dispersion . . o . improved emission
dispersion models satellite inputs apportionment control other sources
. More accurate
Emission Align pollution data impact categories Improves
Linking ML-LCA integration, inventories, gnp pact categ ’ assessments for
. . . with LCA flows; regional .
Pollution Data  spatial-temporal ML remote sensing, . . . e seasonal biomass
to LCA models plant operation build time-sensitive dlfferhentlatlon, and variable load
LCIs credible LCA

data

outputs

conditions
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The table 3 summarizes how different Al approaches support pollution quantification in bio-energy
systems by detailing their data sources, functions, outcomes, and relevance to environmental assessment. It
highlights the role of deep learning, forecasting models, air-quality mapping tools, and ML-LCA integration
in improving emission estimation and impact evaluation.

6. Methodological basis for AI-Supported LCA in Bio-Energy

Current research In recent work we introduced structured methods for incorporating Al within LCA and
thus enable more detailed, data-rich and adaptive LC These libraries integrate Al tools into the various
components of an LCA workflow, including environmental modelling and remote sensing combined with
optimization and interpretability. The figure 6 illustrates the integration of artificial intelligence technologies
across the four standard phases of the ISO 14040 LCA framework to enhance bio-energy analysis. It details
how specific tools—such as NLP for scoping, remote sensing for inventory data, and surrogate models for
impact assessment—automate data retrieval and accelerate complex calculations. The workflow culminates in
an iterative interpretation phase where explainable Al and optimization algorithms facilitate proactive design
improvements for more sustainable energy systems.

6.1. Function-oriented golden rules during AI-Assisted goal and scope definition

The early stages of LCA, in particular, may be helped through the use of Al tools text analysis of existing
literature and reports and databases. Clustering and topic-modelling reveal common system boundaries,
recurring functional units and frequently cited hotspots across comparable bio-energy studies. Such techniques
enable a clear and consistent framing of the assessment, for example, with respect to different types of
feedstock or multi-step conversion chains. Additionally, natural language processing algorithms may support
the automated retrieval of relevant parameters and assumptions from unstructured text as part of LCA
initialization . Furthermore, Al-based expert systems could assist practitioners in navigating complex
methodological choices (e.g., allocation procedures for co-products) by advising on best practices inferred
from the agenda setting identified throughout past case studies and regulatory debates !”). By this means a less
variable and stronger LCA scope determination is obtained compared to bio-energy system analyses [!.
1475Al can also define the boundaries of an LCA by automatically retrieving and completing missing data,
hence leading to more dynamic models . Also, machine learning methods can quickly spot influential
parameters and data gaps affecting LCA outcomes so that to optimize resource-distribution process of data
framework-making for the model !. Such an automatic identification procedure guarantees the importance of
LCA data points measured in terms of equivalent CO, emission and helps reduce time-consuming and
resource-intensive efforts normally required for collection of full LCA dataset [©!,
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Figure 6. Framework for Al-Integrated Life Cycle Assessment (LCA) in Bio-Energy
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6.2. Al-Assisted life-cycle inventory

Machine learning has already proven to be beneficial for the life-cycle inventory phase. (Machine-)
models calibrated on inventory database, own process-based experimental data, could be used to estimate
missing inventory flows (energy input, emission factor or material use). Remote-sensing-based proxies—Ilike
land cover change, the crop or pasture biomass production or soil related emissions—are integrated as direct
input values in LCls replacing large averages by spatially differentiate data. Thus more stable upstream stocks
are obtained for the stages of cultivation, transport and processing. Al methods also enrich data generation for
things we have difficulty measuring directly (e.g., to predict: biomass, biofuel properties or to optimize supply
chains) . For example, based on spectral data, machine learning algorithms can predict calorific value or
elemental composition of various types of biomass feedstock without the requiring extensive laboratory
analysis. In addition, more complex Al models can also help to reconcile different data sources and endpoints
(through automatic matching and cleaning of the data), find inconsistencies between datasets or even propose
imputation techniques for improving inventory quality with minimum human intervention . These and
similar developments not only simplify the inventory process but also improve the resolution and accuracy of
data, creating a more solid basis for further impact assessments 1!, Furthermore, machine learning approaches
can connect LCA outcomes with additional relevant data (e.g. economic or social) and offer the possibility to
directly harmonize inventory information into a common unit, harmonizing between different formats of
collected fields by reference databases [°!. This is a highly attractive feature as it cuts down the workload of
costly manual data harmonization which often becomes a bottleneck in full-scale LCA studies *). The use of
Al in LCI also aims for the automated selection of relevant background processes and their related elementary
flows, thereby minimizing manual work required for building a complete inventory 7%,

6.3. Surrogate model assisted impact assessment

Advanced impact assessment techniques such as (that of) climate forcing, ecosystem change and toxicity
generally involve intensive computation. Simplified models for the coefficients trained using full LCIA
simulations have been demonstrated to reproduce those results at only a fraction of computational expense.
This supports rapid assessment of thousands of design options, augmented with comprehensive sensitivity
analysis and makes Monte Carlo analysis of uncertainty realistic for large scale bio-energy systems. The
second one Enable on line system optimization and a change in the design of these systems paving way for
more sustainable and profit-making bio energy solutions !'!. Moreover, Al-based methods are able to identify
primary impact categories and hotspots in the life cycle of bio-energy, allowing the prioritization of mitigation
options for improving ecological efficiency of bio-energy systems ). Additionally, the integration of Al might
contribute to enhancing the precision of impact assessment in view of space-time variation in pollution
burdens and regional emissions that the classical LCA methods have been tending to over-simplify [1,9]. They
allow taking into account dynamic parameters (price and policy) in order to estimate a full and adapted
environmental impact ['). The machine learning methodology, particularly deep leaning, may also benefit from
complex dose-response relationship and the capability of extrapolating environmental impact to larger
ecosystems for the complete landscape analysis of any bio-energy system effect. Generative adversarial
networks could also help to produce synthetic but non-limited environment impact data in order to address

data scarcity in emerging bio-energy technologies [7!],

6.4. Interpretation and scenario exploration

Interpretability is enlightening, with an assist from explainable Al. Methods such as those in SHAP
provide insight into which factors most drive large impacts and can help researchers and policy makers to
understand the ways in which process changes impact environmental performance. Reinforcement learning
and multi-objective optimization generalize the idea, suggesting alternatives to this design. An agent evaluates
candidate designs and is given rewards or punishments based on the estimated LCA performance, enabling the
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exploration of a process design space for optimized cost-efficient environmentally benign processes. This Al-
driven iterative optimization enables to find the optimal routes for an economically and ecologically viable
production of bio-energy. This kind of paradigm shift from rule based to Al-based interpretation and
optimization enables bio-energy systems to be designed in anticipation of lower environmental footprints and
higher resource utilization . Moreover, Al applications may improve the cross-referencing of different
databases (such as economic models, social impact assessment methodologies or regulatory databases) and
even overcome human bias which might provide a more complete treatment than assessing bioenergy
technologies !!!. Doing that kind of «rich» analytics leads to obtaining a detailed map of trade-offs and
synergies across sustainability dimensions, rather than relying on standard single-objective optimization.

These methodologies are also becoming a part of bio-energy research. Research combines process
optimization and environmental performance indicators, comparison of alternative biomass conversion
pathways and analysis of portfolios of bio-energy projects in larger renewable energy systems. Through
infusing Al-enabled applications in the LCA process, these methods enable more granular and interpretable
appraisals which can better respond to developments in data and technology.

Table 4. Dataset Size and Validation Practices in Al-Based Bio-Energy LCA Studies

Life-Cycle Stage / . . Sy Key Performance Real-World
Application Typical Dataset Size Validation Strategy Metrics Relevance
Feedstock assessment 5 105 Spatial or temporal N Regional and satellite-
and land-use analysis 10°-10° samples hold-out validation R?, RMSE based studies
Conversion and 50-300 samples k-fold cross-validation R2, RMSE, MAPE Laboratory and pilot-

upgrading processes scale systems

Direct prediction of Cross-validation; Early-stage design

102-103 cases R2, relative error

LCA indicators external testing screening
: . 3104 e e . e
Plant leve_l emission 10°-10 t{me series Rolling w1r_1d0\_)v MAE, RMSE Sensgr assisted
prediction points temporal validation operational plants
Remote sensing-based 105105 pixels Spatial and temporal Precision, recall, Satellite-supported
pollution monitoring p validation RMSE emission tracking

Table 4 explains the typical dataset sizes and validation practices reported in Al-based studies across key
life-cycle stages of bio-energy systems. It shows that upstream feedstock assessment and pollution monitoring
rely on large, data-intensive sources, while conversion-stage models are often trained on smaller experimental
datasets. The table also highlights the dominant use of cross-validation and temporal testing to assess predictive
robustness. Overall, it provides insight into the practical reliability and transferability of Al approaches used
in life-cycle assessment and pollution quantification.

7. Key challenges and research gaps

Although Al-driven approaches offer significant advantages for bio-energy LCA, several challenges
restrict broader adoption. Current research highlights persistent issues related to data quality, transparency,
system boundaries, uncertainty treatment and integration of wider sustainability dimensions. Addressing these
gaps is essential for developing Al-enhanced LCAs that are robust, credible and suitable for decision-making.

7.1. Data quality, representativeness and bias

The performance of Al in bio-energy LCA depends largely on the quality, quantity, and
representativeness of the training data. Most datasets are of small scale, site-specific in geography, and show
a bias towards well-instrumented and performing plants, thus limiting generalization ability across climates
and management practices, as well as emerging technologies. Data limitations, uncertainty and limited access
to high-quality inventories continue to constrain robust modelling. Better data curation is needed, as well
transparent reporting of model limits, thorough validation and sensor/real time data integration. Advanced
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imputation, generative models and data fusion as well as open-source efforts such as federated learning provide

partial solutions that need to be carefully validated for its real-world relevance />4,

7.2. Transparency, interpretability and reproducibility

The more we use sophisticated ML models, the more it becomes important to explain how they work.
LCA demands transparent documentation of assumptions, allocation methods and impact models — an
expectation that should also be valid when Al drives the results of such assessment. XAl tools can shed light
on feature importance and model behavior, yet interpretation of the tool itself should be careful in not over-
stating causal connections. Reproducibility also requires sharing of the code, the data sets, and trained models
when possible. Without these conventions it is hard to assess the robustness of LCA results supported by Al.
What’s more, some state-of-the-art Al models (or in particular deep learning architectures) are “black-box”
and these black boxes identities of rationale for impact prediction. For this lack of interpretability it may have
an impact on trust with stakeholders and regulatory authorities, making therefore required more sophisticated
types of explainable Al techniques tailored to the requirements of Environmental Impact Assessment [,
Researchers are seeking to address this by developing means of communication from complex model
outcomes to policy-relevant insights, typically interactive visual tooling and simplified explanations ">, On
the other hand, the validation of such models with real environmental data is fundamental to their credibility
and acceptance by the LCA community [!!. However, the strong validation bases for AI models in LCA are
relatively underdeveloped, especially in terms of generalization over a wide diversity of geographical and
technological conditions 1.

7.3. System boundaries and double counting

When the LCA models are embedded into Al-based pollution quantification tools, detailed boundary
definition is necessary. For instance, resource-based emissions estimates could correspond to the fall of the
emissions on emissions already considered in inventory emission units. Misaligned, this is double-counting
(or else incoherent across life-cycle stages). A similar challenge arises when co-products or carbon
sequestration pathways are treated differently across multiple data sources. This would imply that Al outputs
and LCA unit processes are in a one-to-one relationship to maintain consistency. Such integration is based
on elaborate ontological framework and standard formats for data sharing to ensure reliable mapping across
studies, and to eliminate methodological ambiguities [!l. Furthermore, the dynamic nature of bio-energy
systems (e.g. supply chain variations and variable operation conditions) suggests parameterized boundary
setting that enables adequate capture of full life-cycle impacts without over or under estimating environmental

burdens or benefits [76-30

1. The issue of defining system boundaries becomes even more complicated by
evolving bio-energy technology development and the intricate agricultural/industrial systems interlinking in
turn may demand for detailed multi-scale modelling to represent all relevant flows '), This issue becomes
more severe in complex bio-refineries where several co-products and energy carriers are produced, which
require to be neat accounted to avoid both misses and over counting ®'*°1. Consequently, it is important that
strong Al-supported strategies are available to adequately keep and continuously identify system boundaries
across the various bio-energy pathways for obtaining trustworthy LCA results ['!l. In addition, clash between
what is feasible in practice in terms of realizations and timescales at different spatial/temporal scales from the
Al methodologies compared to the LCA elucidates much of the lack of agreement seen here and underscores

[86-94]

that more sophisticated spatiotemporal aggregation methods are necessary . Furthermore, the

subjectiveness in determination of system boundaries for LCA, which is often influenced by study purposes

or policy orientation, might lead to inconsistency of Al-interpreted environmental data [,

7.4. Uncertainty and temporal dynamics

Al models typically result in output that is probabilistic or time-dependent rather than the static emission
factors which are used in reliance on standard LCAs. The propagation of these time-varying and uncertain
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figures through impact assessment begs a methodological question. Trade-offs will have to be made
concerning time horizon, characterization factors and discounting, in particular when considering short-lived
climate pollutants or operations of seasonal biomass. An interesting avenue for the future is to also develop
stochastic LCA frameworks that can handle ML outputs. Therefore, these probabilistic and time-series
predictions should be integrated into the life cycle assessment model at large (the dynamic LCA models) in
order to more accurately represent the actual environmental consequences of the biogenic carbon cycles and
temporal variation in renewable sources %191 Sych integration is essential for informed decisions in bio-
energy systems, since both short-term variations as well as long-term upward or downward trends have

1101 'Bayesian approaches provide computationally expensive

but systematic ways to quantify the uncertainties through combining expert opinions with observed data [''!].

Probabilistic graphical models can also improve the characterization of uncertainty by modelling complex

substantial effects on sustainability indicators !

dependencies between different factors along the bio-energy supply chain P Furthermore, there are no
standardized sustainability criteria for these processes and bio/geophysical interactions are ever-changing —
factors that complicate the LCA into a traditional procedural framework %! This is additionally
challenging considering the paucity of comprehensive biochar emission datasets as well as the limited scope
and applicability of experimental measures generally obtained from single-site studies in a controlled
environment, bearing high uncertainties in representing regional differences and incomparability of results
elsewhere. Hence, it is highly desirable that state-of-the-art Al methods (e.g. deep learning) quantify and
manage these uncertainties at different spatio- temporal scales in bio-energy systems 115128 Explainable Al
methods can cover the challenge of interpretability by giving transparent explanations about decisions made

by non-transparent models, thus building trust and encouraging acceptance from stakeholders [12%],

7.5. Integration of social and economic dimensions

While most Al based LCAs concentrate on environmental factors, they largely neglect social and
economic effects. Factors such as land-tenure changes, the food/fuel debate and rural employment/regional
growth also demand analytical instruments to deal with different datasets. Socio-economic modelling using
machine learning approaches There are available some ML methods for socio-economic modelling (but rarely
these are connected to bio-energy LCA workflows. Integration of AI-LCA into multi-criteria sustainability
assessment: A potential good way forward in tools that address biodiesel’s holistic impact frame. This level
of integration at a more macro scale is required to support sustainability in a holistic sense, not just confined
to environmental indicators but also the dynamic interaction of social justice and economic viability [130-135],
The idea of such a holistic picture argues for Al systems that would learn to interpret interactive qualitative
and quantitative socio-economic data together with environmental readings - including natural language
processing in interpreting policy effects and sentiment among stakeholders '3, This also means such gap
must be extended to available Life Cycle Costing and Social Life Cycle Assessment methods, as well as their
integration into a LCA-based comprehensive Life Cycle Sustainability Assessment framework [37). To
overcome these challenges will need integrated solution where both technological advancements; regulation
ergonomic interventions and stakeholder involvement together with environmentally sound management
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practices must be considered [*®!. The identification of robust indicators and profiles to assess the social

economic and sustainable development dimensions on BECCS projects is still a barrier that requires further

research for comprehensive assessment 1391451,

Moreover, dealing with the difficulties in the harmonization of diverse impact categories and data
comparability between multiple bio-energy systems is also a main issue that should be tackled when
developing comprehensive and generally applicable sustainability assessments. The fundamental challenge of
combining sustainability indicators across environment, social and economic dimensions is a central
methodological issue in holistic assessments of bioenergy approaches.
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8. Future directions

Recent studies suggest several directions where Al can significantly extend the capabilities of LCA for
bio-energy and pollution quantification. These directions focus on tighter integration between models and data,
operational decision support, and better treatment of spatial, temporal and socio-technical complexity.

8.1. Hybrid physics-informed and data-driven models

Black-box data-driven models tend to be limited when the data is scarce, noisy or not a good
representation of future operational scenarios. Hybrid methods which combine first-principles models with
machine learning provide a possible path forward. In these models, the mass and energy balances,
thermodynamic relations and fundamental reaction kinetics are based on process models and only uncertain
(or highly nonlinear) parts of the system dynamics are identified based on data. A prototypical example is that
of physics-informed neural networks. They incorporate conservation laws or governed equations in the loss
function, which enables the network to discover sub-models of chemical reaction kinetics, decay rates or
heat/mass transfer coefficients that were previously unknown without contraventions of underlying physical
principles. For bio-energy processes, it may be possible to reduce the quantity of experimental data needed
and increase the ability to extrapolate to new feedstocks or scales or operating conditions. The resulting hybrid
models can then be used as better surrogates of LCA, particularly in early-stage design tasks or for new
technologies.

8.2. Digital twins of bio-energy systems

These digital twins take this concept one step further, using in real-time. A digital copy of a bio-energy
plant will integrate sensor streams, process simulations and ML-based surrogates to reflect the physical system
throughout. If LCA modules, or calibrations to impact surrogates (see below) have been inserted in the twin it
is also possible to look for environmental indicators combined with technical and economic performance.
Larger biomass power plants, CHP units or integrated bio refineries might use such twins to monitor time-
varying emissions and resource use and key impact indicators for decisions making under real-life operating
conditions. They also allow what-if analysis; for example, operators can see how changes in feedstock mix,
load factor or control strategies would influence emissions and LCA results. This moves LCA away from a
single-point design exercise to a living tool for operational performance optimizations.

8.3. Generative and large language models for scenario design

New methods of building and exploring scenarios generative methods like large language models are
providing new tools. They can also take information from technical reports, policies and datasets to assist in
sketching out plausible future pathways: mixes of feedstocks, technologies, scales, sittings and regulatory
environments. They can also contribute in building the input datasets, documenting assumptions and
identifying key uncertainties. Connected to LCA engines with programmable interfaces, generative models
allow for automatic generation of scenario families, batch triggering and summarizing outcomes. For bio-
energy, this may hasten the examination of alternatives to cascading biomass use, combination with other
renewables or regionally attractive resource mixes comprising residues, energy crops and waste streams. The
problem is how to maintain the transparency and keep up the generated scenarios physically and socio-
economically plausible?

8.4. Interactive AI-Driven LCA dashboards

A further positive is the use of interactive dashboards to combine the Al models with easy user interfaces.
Written using the likes of Python, Streamlet and scikit-learn, these platforms take care of data ingestion, pre-
processing, inventory completion, impact calculation and rudimentary sensitivity analysis. For facility
operators, regulators or project developers, those dashboards could offer near instantaneous feedback on how
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changes in feedstock sourcing and plant operation or technology choices are impacting an environmental
performance index. To researchers, the framework provides a mean to communicate and disseminate Al
enhanced LCA models in a transparent and reproducible manner. In the future, commonly used dashboards
could enable benchmarks across plants and transfer of best practices in the bio-energy industry.

8.5. Stronger coupling of remote sensing, Air-Quality models and LCIA

Advanced remote-sensing platforms together with deep learning further enables spatially explicit LCAs
that connect emissions to exposure. Satellite (or aircraft) based emission estimates along with chemical
transport or dispersion models can provide concentration and exposure fields for pollutants such as PMa.s,
NO: and ozone. Al models contribute to extracting emission fluxes from remote sensing, as well as the
acceleration of dispersion calculations via surrogates. Using such spatially explored exposure metrics directly
in LCIA methods for human health and ecosystems, LCIAs could assess these location specific impacts rather
than based on globally or regionally averaged outcomes. This is particularly relevant for bio-energy plants in
or close to population centers or where sensitive ecosystems may be affected and for major utilization of
residues that could alter regional burning practices, air quality and other patterns.

8.6. Standardisation and guidelines for AI-Enhanced LCA

With the increasing application of Al-based approaches in LCA, demand for methodological
recommendations and sector-specific standards is rising. General frameworks to incorporate Al into LCA
already exist, but bio-energy is unique in its strong connection to land-use change, soil carbon dynamics, co-
product markets and region-specific supply chains.

Future recommendations should focus on:
* Al model documentation (architecture, training data, validation);
* treatment of spatial and temporal variability in biomass systems;

*  consistent accounting of co-products, negative emissions (e.g. BECCS, biochar) and indirect land-
use effects;

*  Uncertainty analysis procedures when applying ML outputs.

This guidance would facilitate the comparison between studies, decrease the likelihood of misapplication
of Al tools and increase confidence in Al-driven bio-energy LCAs employed for policy or investment
decisions.

9. Conclusion

This review reveals that artificial intelligence is transforming the approach to bio-energy systems
environmental impact assessment through all life cycle stages. Classical LCA approaches are handicapped by
long-lasting limitations due to little availability of data, outdated inventories, unclear system boundaries, and
lack of attention to fluctuation over space and time. Many of these problems associated with inventory
compilation can be addressed by Al models that can predict the missing data in inventories, develop more
refined feedstock and process modelling, better estimation of emission rates and spatially dynamic assessments.
The combination of remote sensing, deep learning, and real-time sensing for richer data model of pollution
quantification may result in more reliable impact assessments. At the same time the requirement for
transparent, interpretable and reproducible models is still at the core of a quantitatively robust handling of
uncertainty. The next steps are likely to be on hybrid physics-guided models, digital twins, generative scenario
tools and standardized frameworks that can underpin rigorous and policy-relevant LCAs for emerging bio-
energy technologies.
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Abbreviation

Abbreviation Full Form
Al Artificial Intelligence
ML Machine Learning
DL Deep Learning
ANN Artificial Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
SVM Support Vector Machine
RF Random Forest
XGBoost Extreme Gradient Boosting
GPR Gaussian Process Regression
BN Bayesian Network
XAI Explainable Artificial Intelligence
SHAP SHapley Additive exPlanations
LIME Local Interpretable Model-Agnostic Explanations
LRP Layer-wise Relevance Propagation
LCA Life-Cycle Assessment
LCI Life-Cycle Inventory
LCIA Life-Cycle Impact Assessment
ISO International Organization for Standardization
GHG Greenhouse Gas
GWP Global Warming Potential
CED Cumulative Energy Demand
NOx Nitrogen Oxides
SOx Sulfur Oxides
CO Carbon Monoxide
CO: Carbon Dioxide
PM Particulate Matter
PMz.s Particulate Matter with diameter < 2.5 pm
vVOC Volatile Organic Compounds
IoT Internet of Things
UAV Unmanned Aerial Vehicle
LUC Land-Use Change
BECCS Bioenergy with Carbon Capture and Storage
MAE Mean Absolute Error
RMSE Root Mean Square Error
MAPE Mean Absolute Percentage Error
R? Coefficient of Determination
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