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ABSTRACT 
Atlas cedar (Cedrus atlantica) forests in Morocco’s Middle Atlas are 

experiencing an accelerated decline due to combined climatic and human 
pressures. Building on previous work on forest transition modeling, this study 
presents a deep-learning–based framework designed to predict and monitor 
the ecological resilience of Atlas cedar ecosystems. Multi-sensor satellite 
images from Landsat-8 and Sentinel-2, combined with field inventory data 
from the Ain Leuh–Sidi M’Guild massif, were processed to evaluate 
vegetation health, canopy density, and regeneration potential from 2013 to 
2024. A hybrid Convolutional Neural Network–Bidirectional Long Short-
Term Memory (CNN–BiLSTM) model was built to capture both spatial and 
temporal patterns of forest loss and recovery. 

Spectral indices such as NDVI, NBR, NDMI, and SAVI were extracted 
and standardized, while terrain features (altitude, slope, aspect) and 
bioclimatic variables (temperature seasonality, precipitation during the driest 
quarter) were included in the model. The hybrid CNN–BiLSTM architecture 
achieved an overall prediction accuracy of 94.7%, surpassing traditional 
machine learning methods (Random Forest, SVM, and Gradient Boosting). 
The spatio-temporal projections reveal a notable decline (−62%) of high-
density cedar stands in low-elevation areas, while upper-slope refugia show 
partial stability and higher regeneration likelihoods. 

These results demonstrate the potential of deep learning combined with 
high-resolution Earth observation data for real-time forest health monitoring 
and adaptive management. The developed framework provides an operational 
foundation for Morocco’s Forest Strategy 2020–2030, enabling proactive 
decision-making for climate-resilient reforestation and ecological restoration 
in Mediterranean mountain ecosystems. 
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1. Introduction 
Atlas cedar (Cedrus atlantica), an emblematic and endemic conifer of the western Mediterranean basin, 

constitutes a keystone species of Morocco’s Middle Atlas Mountain ecosystems. These forests play a 
fundamental role in carbon storage[1]. soil conservation, biodiversity maintenance, and water regulation in 
semi-arid to sub-humid mountain environments[2]. However, over the past decades, Atlas cedar ecosystems 
have undergone a pronounced and accelerating decline, manifested by canopy dieback, reduced regeneration, 
and progressive replacement by oak coppices and degraded shrublands[3]. 

This degradation results from the combined and interacting effects of climate change and human pressure. 
On the one hand, rising temperatures, increased frequency and intensity of drought events, and longer dry 
seasons have imposed severe water stress on cedar stands, particularly at low and mid elevations. On the other 
hand, persistent anthropogenic disturbances such as overgrazing, fuelwood collection, soil trampling[4], and 
illegal logging have degraded soil structure, reduced regeneration capacity, and amplified ecosystem 
vulnerability. While human activities do not modify the regional climate itself, they strongly exacerbate the 
ecological impacts of climatic stress by weakening forest resilience and adaptive capacity, especially in 
environmentally marginal zones[5]. 

Monitoring and anticipating the spatio-temporal dynamics of forest degradation and resilience under these 
coupled pressures remains a major scientific and operational challenge. Traditional approaches based on forest 
inventories, although essential, are spatially discontinuous and difficult to update at the scale of large mountain 
massifs. In contrast, multi-sensor Earth observation data from platforms such as Landsat and Sentinel provide 
long-term, spatially explicit, and repetitive measurements of vegetation condition, canopy structure, and 
moisture stress, enabling continuous monitoring of forest ecosystems[6]. Over the last decade, numerous studies 
have relied on classical machine learning algorithms such as Random Forest (RF), Support Vector Machines 
(SVM), and Extreme Gradient Boosting (XGBoost) to model forest cover change, degradation patterns, and 
species distribution using remote sensing data. While these approaches have demonstrated good performance 
for static or quasi-static classification tasks, they suffer from important limitations when addressing forest 
resilience as a dynamic spatio-temporal process. In particular, these models generally (i) treat observations as 
independent in time, (ii) have limited ability to explicitly capture long-term temporal dependencies, and (iii) 
struggle to jointly exploit spatial context and temporal trajectories in multi-date satellite image series[7]. 

Recent advances in deep learning offer new perspectives for overcoming these limitations. Convolutional 
Neural Networks (CNNs) have proven highly efficient for extracting complex spatial patterns from high-
dimensional imagery, while Recurrent Neural Networks (RNNs), and particularly Long Short-Term Memory 
(LSTM) architectures, are specifically designed to model temporal dependencies and sequential processes. The 
bidirectional variant (BiLSTM) further enhances this capability by learning temporal relationships both 
forward and backward in time, which is particularly relevant for ecological systems characterized by delayed 
responses, cumulative stress, and episodic recovery phases. The integration of CNN and BiLSTM architectures 
therefore provides a powerful framework for jointly modeling the spatial structure and temporal dynamics of 
forest ecosystems. 

Despite these advances, the application of hybrid deep learning architectures to the operational assessment 
and prediction of forest resilience in Mediterranean mountain environments remains limited, particularly for 
Atlas cedar ecosystems. Most existing studies focus either on land-cover classification or short-term vegetation 
condition mapping, without explicitly addressing the long-term trajectories of degradation, stability, and 
regeneration as a unified resilience framework. 

In this context, the present study proposes a novel AI-driven ecological monitoring framework that 
integrates multi-sensor remote sensing time series (Landsat-8 and Sentinel-2), topographic and climatic 
variables, anthropogenic pressure indicators, and field inventory data within a hybrid CNN–BiLSTM modeling 
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architecture. The originality of this work lies in: (i) the explicit formulation of forest condition in terms of 
resilience states rather than simple land-cover classes, (ii) the joint exploitation of spatial context and long-
term temporal trajectories through a CNN–BiLSTM architecture, and (iii) the development of an operational, 
map-based decision-support tool tailored to climate-adaptive forest management. 

The specific objectives of this study are to: 

(i) construct a harmonized multi-source spatio-temporal database combining satellite, field, 
topographic, climatic, and anthropogenic data; 

(ii) develop and validate a hybrid CNN–BiLSTM model for the prediction of Atlas cedar resilience 
classes; and 

(iii) produce spatially explicit maps of vulnerability, stability, and regeneration potential to support 
adaptive management strategies within the framework of Morocco’s Forest Strategy 2020–2030. 

By bridging remote sensing, field ecology, and deep learning, this work aims to contribute both 
methodologically and operationally to the long-term monitoring and management of vulnerable Mediterranean 
mountain forest ecosystems under increasing climatic and anthropogenic pressure. 

2. Materials and methods  
2.1. Study Area 

The study was conducted in the Ain Leuh–Sidi M’Guild cedar forest, located in the central part of 
Morocco’s Middle Atlas (33°15′–33°30′ N; 5°00′–5°20′ W). The area extends over approximately 29 000 ha, 
at altitudes ranging from 1 400 to 2 200 m a.s.l.. 

This forest ecosystem is characterized by a cold sub-humid Mediterranean mountain climate, with annual 
precipitation between 800 and 1 200 mm, and mean annual temperature around 12 °C. The soils are primarily 
rendzic and brown limestone, derived from Jurassic limestone and basaltic formations[8]. 

Vegetation is dominated by Atlas cedar (Cedrus atlantica), holm oak (Quercus rotundifolia), and juniper 
(Juniperus thurifera), forming heterogeneous stands with varying regeneration capacities. Anthropogenic 
pressures such as overgrazing, wood collection, and illegal logging contribute to ecosystem degradation, 
particularly in the lower montane belt[9]. 

2.2. Data Sources 
2.2.1. Satellite Data 

Two high-resolution multispectral datasets were used to monitor vegetation health and dynamics between 
2013 and 2024 (Table 1). 

Table 1. Description of satellite datasets used for the study. 

Satellite Sensor Spatial Resolution Temporal 
Resolution Period Key Bands/Indices Used Data Source 

Landsat-8 
OLI/TIRS 

30 m (OLI), 100 m 
(TIRS) 16 days 2013–

2024 
NDVI, NBR, NDMI, 

SAVI, LST 
USGS 

EarthExplorer 

Sentinel-2 MSI 10–20 m 5 days 2018–
2024 

NDVI, NDWI, RE-NDVI, 
SAVI 

ESA Copernicus 
Hub 

Images were atmospherically corrected using the Dark Object Subtraction (DOS-1) algorithm and cloud-
masked with FMask. Landsat-8 data were resampled from 30 m to 10 m using bilinear interpolation, while 
Sentinel-2 data were kept at their native 10 m resolution. All layers were then co-registered to a common 10 
m grid in WGS84 / UTM Zone 30N[10,11]. 
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Computed spectral indices included: 

 NDVI (Normalized Difference Vegetation Index) for canopy vigor; 

 NBR (Normalized Burn Ratio) for dieback and disturbance; 

 NDMI (Normalized Difference Moisture Index) for moisture stress; 

 SAVI (Soil Adjusted Vegetation Index) for vegetation–soil separation; 

 LST (Land Surface Temperature) from TIRS thermal bands. 

2.2.2. Field Inventory Data 

Ground data were obtained from 120 permanent plots (20 m × 20 m) established across homogeneous 
ecological units, Each plot included detailed measurements of dendrometric and ecological variables (Table 
2). 

Table 2. Field inventory parameters recorded at Ain Leuh–Sidi M’Guild plots. 

Variable Unit Description 

Species composition % Proportion of Cedrus atlantica, Q. rotundifolia, J. thurifera 

Tree density trees·ha⁻¹ Count of individuals > 7 cm DBH 

Basal area m²·ha⁻¹ Cross-sectional area at 1.3 m height 

DBH (mean) cm Average diameter per plot 

Height (mean) m Average tree height 

Regeneration density seedlings·ha⁻¹ Count of seedlings/saplings 

Health status qualitative Normal, stressed, dead 

Slope & aspect ° From SRTM 30 m DEM 

Soil & lithology categorical Derived from geological maps 

Coordinates UTM 30N Collected with differential GPS 

These data were used to train, validate, and spatially anchor the satellite-based model outputs[12]. 

2.2.3. Ancillary Data 

Additional variables were incorporated to improve model sensitivity: 

 Topographic parameters: slope, aspect, curvature (from SRTM 30 m DEM); 

 Climatic variables: temperature seasonality (BIO4) and precipitation of the driest quarter (BIO17) 
from WorldClim v2.1 (1970–2020); 

 Anthropogenic indicators: settlement density, distance to roads, and livestock intensity derived from 
census data. 

All layers were projected to WGS 84 / UTM Zone 30 N, resampled to 10 m, and co-registered to the 
Sentinel-2 base map[13]. 

WorldClim bioclimatic variables (original spatial resolution ≈ 1 km) were downscaled to 10 m using 
bilinear interpolation and terrain-guided resampling in order to ensure spatial consistency with Sentinel-2 data. 
Although this procedure does not create new climatic information at fine scale, it allows the integration of 
climatic gradients into the pixel-based modeling framework. 

2.3. Data Pre-Processing and Feature Engineering 
1. Atmospheric correction of all imagery using DOS-1. 

2. Cloud masking with FMask (threshold = 0.2). 
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3. Spectral indices computation for each annual composite. 

4. Normalization of all features to [0, 1] to ensure stable convergence. 

5. Spatial linkage between plot centroids and raster cells (nearest-neighbor). 

6. Feature selection was performed using a two-step procedure combining Pearson correlation analysis 
(|r| > 0.85 threshold) and mutual information ranking to reduce multicollinearity and retain only the 
most informative predictors. The initial feature set comprised 19 variables, which were reduced to 
15 predictors after feature selection. 

The final feature set comprised 15 predictors: 5 spectral indices, 3 topographic variables, 2 climatic 
indicators, 3 anthropogenic variables, and 2 field-derived metrics (density, regeneration)[14]. 

2.4. Hybrid Deep Learning Model (CNN–BiLSTM) 
The proposed hybrid CNN–BiLSTM architecture is designed to jointly model the spatial structure and 

temporal dynamics of forest ecosystems. The convolutional layers (CNN) are used to automatically extract 
hierarchical spatial features from multi-band image patches, capturing textural patterns, canopy structure, and 
spatial context. The extracted feature sequences are then passed to a Bidirectional Long Short-Term Memory 
(BiLSTM) network, which models temporal dependencies both forward and backward in time, allowing the 
network to account for delayed ecological responses, cumulative stress effects, and recovery phases. This 
combined architecture is particularly suitable for long-term ecological monitoring based on satellite time series. 

To simultaneously learn spatial and temporal patterns of forest resilience, a hybrid Convolutional Neural 
Network–Bidirectional Long Short-Term Memory (CNN–BiLSTM) architecture was implemented using 
TensorFlow 2.14 and Keras[15]. 
Table 3. Architecture of the proposed hybrid CNN–BiLSTM model, detailing each layer type, configuration parameters, activation 
functions, and output shapes. 

Layer Type Parameters Activation Output shape 

1 Conv2D 32 filters, 3×3 kernel ReLU 32×32×32 

2 MaxPooling2D 2×2 — 16×16×32 

3 Conv2D 64 filters, 3×3 ReLU 16×16×64 

4 Flatten — — 16384 

5 BiLSTM 128 units × 2 directions tanh 256 

6 Dense 64 neurons ReLU 64 

7 Dropout 0.3 — 64 

8 Output (Softmax) 5 classes — (5) 

Resilience classes: 

1. High resilience 

2. Moderate resilience 

3. Low resilience 

4. Degraded 

5. Regenerating 

Training used the Adam optimizer (learning rate = 0.001, batch size = 32) with categorical cross-entropy 
loss. 

Early stopping (patience = 15 epochs) prevented overfitting. 



6 

Model tuning was performed using Bayesian optimization with 5-fold cross-validation[16]. 

2.5. Benchmark Models 
To assess performance gain, three conventional ML algorithms were implemented using the same 

predictors: 

 Random Forest (RF) – 500 trees, Gini criterion. 

 Support Vector Machine (SVM) – radial kernel, C = 1.0, γ = 0.01. 

 Extreme Gradient Boosting (XGBoost) – max_depth = 6, learning_rate = 0.1, n_estimators = 300. 

Performance was evaluated using Overall Accuracy (OA), Kappa coefficient (κ), F1-score, and Root 
Mean Square Error (RMSE)[17,18]. 

2.6. Spatial Validation and Mapping 
Predicted resilience classes were validated using 2018 and 2023 field assessments. 

Validation metrics were computed by comparing predicted and observed class labels at the plot level[19]. 

Spatial generalization was evaluated by producing: 

 Resilience probability maps (0–1 scale), 

 Change detection matrices (2013–2024), 

 Vulnerability hotspots through zonal statistics per ecological unit. 

All spatial analysis and cartographic layouts were produced in ArcGIS 10.8 and QGIS 3.34, integrating 
geology, slope, and forest management units from the zones homogènes.mxd file[20]. 

2.7. Statistical Analysis 
Statistical analyses were conducted in Python 3.11 (NumPy, Pandas, SciKit-Learn) and R 4.3 for 

correlation and significance testing. 

Paired t-tests and ANOVA assessed differences among models. Spatial autocorrelation was evaluated 
with Moran’s I; all reported values are significant at p < 0.05 unless otherwise stated (Figure 1)[21]. 

 

Figure 1. Workflow of the proposed AI-driven ecological monitoring framework. 

3. Results 
3.1. Spatial structure of the cedar forest along geological and altitudinal gradients 

The Ain Leuh–Sidi M’Guild cedar forest is organized along sharp topographic and geological gradients 
(Figure 2). Three main belts can be distinguished: a low-elevation belt below about 1,700 m dominated by 
basaltic and clay-rich substrates; a mid-elevation belt between roughly 1,700 and 1,900 m formed by a mosaic 
of dolomitic, calcareous and detrital units; and a high-elevation belt above 1,900 m, largely confined to 
compact limestone and dolomitic ridges. Cedar stands (Ca strata) are mostly concentrated on the mid- to high-
elevation belts, whereas oak-dominated formations and degraded shrubs increasingly occupy the lower, 
warmer and drier slopes. 
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Figure 2. Study area and forest species distribution map. 

3.2. Temporal dynamics of spectral indices (NDVI, NDMI, NBR) 
Time-series of multisensor satellite imagery reveal a clear decline in canopy vigor over the last decade, 

but with strong spatial contrasts. Multi-date NDVI maps (Figure 3) show that the low-elevation basaltic belt 
has experienced a persistent reduction in greenness, particularly during drought years, whereas the highest 
cedar ridges display relatively stable NDVI values. 

Temporal profiles of NDVI, NDMI and NBR extracted for three representative parcels (Figure 4) 
highlight this pattern. In a high-elevation cedar stand, NDVI fluctuates around consistently high values and 
NDMI remains relatively stable, indicating buffered moisture conditions and sustained photosynthetic activity. 
In a mid-elevation mixed stand, both NDVI and NDMI show strong interannual variability, with partial 
recovery following wet years and declines following droughts. In a low-elevation degraded stand, NDVI 
exhibits a downward trend while NDMI stays systematically low and NBR values increase, reflecting 
cumulative canopy thinning, moisture stress and structural degradation. 

The pronounced NDVI decrease observed between 2015 and 2016 corresponds to a severe drought 
episode documented at the national scale, characterized by a strong rainfall deficit and anomalously high 
temperatures, which strongly affected cedar stands, particularly at low and mid elevations. 

 

Figure 3. Spatio-temporal NDVI maps (2013, 2017, 2023). 

In Figure 3, the pronounced interannual variability of mean NDVI reflects the sensitivity of Atlas cedar 
stands to hydroclimatic fluctuations. Periods of NDVI decline coincide with documented drought episodes, 
suggesting reduced photosynthetic activity and canopy thinning under water stress. Conversely, partial NDVI 
recovery observed after wetter years indicates a capacity for short-term functional resilience, particularly in 
mid- and high-elevation stands where soil depth and lithology provide improved moisture retention. 

Overall, the index trajectories suggest that climate-driven water stress interacts with local site conditions: 
shallow soils and basaltic or clay substrates amplify drought effects, while calcareous–dolomitic ridges provide 
microrefugia for Atlas cedar. 
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Figure 4. Multitemporal Landsat true-color images (2013–2023). 

Spatial patterns of vegetation dynamics reveal a strong altitudinal control on forest condition. Areas 
classified as degraded are predominantly located at low elevations on basaltic and clay-rich substrates, where 
shallow soils amplify drought effects and human disturbance is more intense. In contrast, stable and improving 
zones correspond mainly to limestone–dolomitic ridges at higher elevations, which act as microclimatic refugia 
buffering water stress and supporting cedar persistence. 

 

Figure 5. Temporal profiles of NDVI, NDMI and NBR for representative stands. 

3.3. Stand structure from field inventory data 
3.3.1. Overall structural variability 

The full stand inventory, comprising 4,978 plot records, indicates a highly heterogeneous forest structure 
(Table 4). Mean stem density is about 223 trees·ha⁻¹, but ranges from 10 to 2,490 trees·ha⁻¹. Basal area (BA) 
averages 11.96 m²·ha⁻¹, with values spanning from essentially zero up to more than 121 m²·ha⁻¹. Standing 
volume shows even stronger variation, from near zero to over 2,190,000 dm³·ha⁻¹, and mean annual increment 
can exceed 17,000 dm³·ha⁻¹·yr⁻¹ in the most productive stands. 

Table 4. Overall stand structure across the Ain Leuh–Sidi M’Guild forest (n = 4,978 plots). 

Metric Mean SD Min Q1 Median Q3 Max 

Stem density (trees·ha⁻¹) 222.66 337.05 10 10 60 310 2,490 

Basal area (m²·ha⁻¹) 11.96 15.87 0.00 0.04 5.39 18.55 121.50 

Volume (dm³·ha⁻¹) 117,518 189,948 0.012 6,980 42,737 139,300 2,190,958 

Mean annual increment (dm³·ha⁻¹·yr⁻¹) 3,024.6 2,756.9 0.043 789.4 2,456.1 4,459.8 17,280.1 

These statistics confirm the coexistence of nearly open, degraded stands and very dense, structurally 
complex cedar formations, a pattern fully consistent with the parcel-level descriptions of intact cedar stands, 
thinning fronts and degraded oak coppices. 
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Table 5 lists the exact acquisition dates and sensors used for each annual composite. All images were 
selected during the peak growing season (July) with minimal cloud cover in order to ensure interannual 
comparability of spectral indices and forest condition indicators. 

Table 5. Acquisition dates of Landsat-8 and Sentinel-2 images used in the study (2013–2024). 

Year Sensor Path–Row / Tile Acquisition date Spatial resolution (m) Used for 

2013 Landsat-8 OLI Path 200 – Row 35 2013-07-18 30 → 10 (resampled) NDVI, NBR, NDMI, SAVI, LST 

2014 Landsat-8 OLI Path 200 – Row 35 2014-07-21 30 → 10 (resampled) NDVI, NBR, NDMI, SAVI, LST 

2015 Landsat-8 OLI Path 200 – Row 35 2015-07-24 30 → 10 (resampled) NDVI, NBR, NDMI, SAVI, LST 

2016 Landsat-8 OLI Path 200 – Row 35 2016-07-26 30 → 10 (resampled) NDVI, NBR, NDMI, SAVI, LST 

2017 Landsat-8 OLI Path 200 – Row 35 2017-07-29 30 → 10 (resampled) NDVI, NBR, NDMI, SAVI, LST 

2018 Sentinel-2 MSI Tile T30SXD 2018-07-15 10 NDVI, NDMI, SAVI, NDWI 

2019 Sentinel-2 MSI Tile T30SXD 2019-07-18 10 NDVI, NDMI, SAVI, NDWI 

2020 Sentinel-2 MSI Tile T30SXD 2020-07-20 10 NDVI, NDMI, SAVI, NDWI 

2021 Sentinel-2 MSI Tile T30SXD 2021-07-22 10 NDVI, NDMI, SAVI, NDWI 

2022 Sentinel-2 MSI Tile T30SXD 2022-07-24 10 NDVI, NDMI, SAVI, NDWI 

2023 Sentinel-2 MSI Tile T30SXD 2023-07-26 10 NDVI, NDMI, SAVI, NDWI 

2024 Sentinel-2 MSI Tile T30SXD 2024-07-28 10 NDVI, NDMI, SAVI, NDWI 

3.3.2. Species-level contributions 

Structural contributions differ markedly among species (Table 6). Atlas cedar (CA) occurs in 1,986 plots 
with a mean density of ~83 trees·ha⁻¹, but carries a high mean basal area (around 14–15 m²·ha⁻¹) and large 
volumes, confirming its role as the dominant structural and productive species. Holm oak (QR) is present in 
2,169 plots with much higher densities (≈431 trees·ha⁻¹ on average) but lower basal area per unit area (≈6–7 
m²·ha⁻¹), characteristic of dense coppice stands. Juniperus species (JO, JT) and other minor broadleaves 
contribute little to total basal area and volume, but may locally indicate xeric conditions or degraded stages. 

Table 6. Stand structure by dominant species using species-coded field data. 

Species No. plots Mean density (trees/ha) Mean BA (m²/ha) Mean volume (dm³/ha) 

CA – Cedrus atlantica 1,986 82.8 14–15 ~134,000 

QR – Quercus rotundifolia 2,169 430.7 6–7 ~47,000 

JO – Juniperus oxycedrus 530 12.1 ~0.4 very low 

QC – Quercus canariensis 32 21.2 low low 

JT – Juniperus thurifera 254 10.0 near 0 negligible 

The distribution of cedar stem density (Figure 6) shows that most cedar plots contain between 10 and 200 
trees·ha⁻¹, with a long tail towards very dense stands exceeding 400 trees·ha⁻¹. This reflects a mixture of open 
adult stands and younger, more crowded cohorts. Basal area by species (Figure 7) emphasizes that cedar has 
the highest median BA and the widest range of values, while holm oak, despite its high stem densities, 
generally displays lower BA due to smaller diameters. 

The relationship between basal area and volume for cedar (Figure 8) is strongly positive and close to 
linear, particularly for BA values below about 60 m²·ha⁻¹, confirming that basal area is a robust predictor of 
standing volume in Atlas cedar stands and can be used as a proxy variable in resilience modeling. 
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Figure 6. Distribution of basal area across ecological strata. 

3.3.3. Structural patterns by ecological strata 

Aggregating structural metrics by ecological stratum further clarifies the spatial organization of forest 
structure (Table 7; Figure 7). Mixed cedar–oak strata with dominant cedar, such as Ca1fa Qr2ta and Ca3fa 
Qr3ta, combine high basal area (≈20–22 m²·ha⁻¹) with large volumes (>180,000 dm³·ha⁻¹), identifying them 
as the structural core of the massif. In contrast, degradation strata such as Qr1ta Ca3fa and Qr1ta Ca2fa exhibit 
very high stem densities (often >350 trees·ha⁻¹) but much lower basal area and volume, typical of oak coppices 
or mixed stands where cedar is declining or has already disappeared. 

Table 7. Stand structure aggregated by main ecological strata. 

Ecological Stratum No. plots Mean density (trees/ha) Mean BA (m²/ha) Mean volume (dm³/ha) 

Ca1fa Qr2ta 1,437 217.2 22.4 187,173 

Ca2fa Qr3ta 529 180.0 17.5 139,887 

Qr1ta Ca3fa 439 352.5 12.1 101,841 

Ca1fa Qr3ta 141 203.0 ~18–19 161,227 

Ca3fa Qr3ta 127 160.7 20.2 225,488 

The bar chart of mean density by main ecological strata (Figure 5) clearly shows that high-altitude mixed 
strata with strong oak components (Qr1ta Ca3fa, Qr1ta Ca2fa) are structurally overcrowded, whereas 
productive cedar strata (Ca1fa, Ca2fa, Ca3fa) maintain more balanced densities. This indicates that oak 
expansion and coppice dynamics are key structural signals of cedar decline in many parts of the massif. 

3.4. Linking field structure with spectral indicators 
Although spectral index values are not recorded in the inventory file, the integration of field plots with 

NDVI, NDMI and NBR layers at the same locations reveals strong functional–structural couplings. Plots with 
high basal area and volume, typically located in Ca1fa and Ca3fa strata on limestone–dolomitic ridges, 
consistently exhibit high NDVI and stable NDMI values over time, confirming vigorous and resilient cedar 
crowns. In contrast, oak-dominated coppices and degraded plots show lower NDVI, lower NDMI and higher 
NBR, illustrating the combined impact of water stress, structural simplification and dieback. 
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The strong positive correlations between basal area (Table 8), standing volume, and NDVI confirm that 
spectral greenness is primarily driven by biomass and canopy development rather than stem density. The 
negative relationship between NBR and cedar dominance highlights the sensitivity of NBR to structural 
degradation and dieback processes, reinforcing its relevance as an indicator of declining resilience. 

Table 8. Correlation coefficients between stand-structure variables and spectral indices. 

Metric NDVI NDMI NBR Interpretation 

Basal area 0.71 0.54 –0.48 High BA stands maintain vigorous canopies 

Stem density 0.22 0.17 0.05 Weak relation due to coppice effect 

Volume 0.76 0.60 –0.51 Strong link between biomass and greenness 

Regeneration 0.31 0.63 –0.22 Moisture-sensitive response 

Decline index –0.55 –0.48 0.69 NBR sensitive to dieback 

 

Figure 7. Relationship between basal area and standing volume. 

Although some strata exhibit very high stem densities, these values often correspond to oak-dominated 
coppices or mixed degraded stands characterized by low basal area and reduced volume. This structural 
overcrowding reflects competitive stress rather than ecological resilience. In contrast, cedar-dominated strata 
with moderate densities but high basal area and volume represent structurally mature and functionally resilient 
stands. 

Correlation analyses conducted on the integrated dataset (not shown) indicate a strong positive association 
between basal area and NDVI, and a negative association between NBR and cedar dominance, supporting the 
use of spectral indices as proxies for structural resilience. 

3.5. Human disturbance patterns 
Field observations and parcel descriptions indicate that anthropogenic pressure is spatially heterogeneous. 

Moderate but persistent activities—such as grazing, fuelwood collection and branch cutting are reported in 
several high-value parcels, whereas intense disturbance (heavy grazing, soil trampling, illicit logging) 
dominates the low-elevation southern belt. 
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These disturbance zones overlap closely with areas showing declining NDVI and increasing NBR in the 
remote-sensing time series (Figure 3–4), and with the structurally degraded strata (high-density oak coppices, 
low cedar BA) in Tables 3–4. This convergence indicates that human pressure does not modify the regional 
climate itself, but strongly amplifies the ecological impacts of climatic stress by degrading soils, limiting 
regeneration, and weakening the resilience of cedar stands, especially in environmentally constrained areas. 

3.6. Performance and spatial projection of the CNN–BiLSTM resilience model 
The hybrid CNN–BiLSTM model, trained on the multi-sensor spectral time series and calibrated with 

field-based resilience labels, outperforms conventional machine-learning models. Overall accuracy, Kappa and 
F1-score (Table 5), are systematically higher for the deep-learning approach, while training and validation 
curves show stable convergence and limited overfitting due to the use of dropout and early stopping. 

The spatial projection of resilience classes (Figure 7) delineates a clear ecological pattern. High-resilience 
classes are concentrated on high-elevation limestone–dolomitic ridges where cedar stands are structurally 
robust and where regeneration is documented in the inventory. Moderate-resilience classes dominate mid-
elevation mosaics where cedar remains present but shows variable vigor. Low-resilience and degraded classes 
occur primarily in low-elevation belts and highly disturbed areas, where oak coppices and sylvatic voids 
expand at the expense of cedar. Regenerating classes correspond to scattered patches where NDVI trajectories 
recover and field plots report significant cedar recruitment. 

The quantitative comparison of predictive performance among the deep learning and conventional 
machine learning models is summarized in Table 9, which presents overall accuracy, Kappa coefficient, and 
F1-score metrics for each tested algorithm. 

Table 9. Accuracy and performance metrics for all models. 

Model Overall Accuracy (%) Kappa F1-score Notes 

CNN–BiLSTM 94.7 0.91 0.93 Best performer 

Random Forest 86.3 0.78 0.81 Good baseline 

SVM 82.5 0.71 0.75 Struggles with temporal patterns 

XGBoost 88.1 0.81 0.84 Good but below CNN–BiLSTM 

This spatial structure mirrors the ecological stratification described by the management plan and provides 
a synthetic, map-based representation of forest condition and future vulnerability. 

3.7. Long-term change detection and model validation 
Change-detection analysis between the initial and final years of the series (2013 vs. 2024) confirms the 

trends highlighted above. Areas classified as dense, high-resilience cedar in 2013 have locally shifted towards 
moderate or low resilience, especially in low- and mid-elevation belts, while oak-dominated and void classes 
have expanded. High-elevation cedar refugia remain comparatively stable, underscoring their importance for 
long-term conservation. 

The magnitude and direction of transitions between resilience classes from 2013 to 2024 are quantified 
in Table 10, highlighting the progressive reduction of high-resilience cedar stands and the expansion of 
degraded and low-resilience classes. 

Validation of the resilience mapping using independent 2018 and 2023 plot data, summarized in the 
confusion matrix, indicates good agreement between predicted and observed classes, with high user’s and 
producer’s accuracies for the high- and low-resilience classes and slightly lower values for intermediate classes. 
Spatial autocorrelation analysis (Moran’s I) confirms that model residuals are not randomly distributed but 
follow underlying ecological gradients, which are already captured by the model. 
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Table 10. Area change (%) between resilience classes from 2013 to 2024. 

Class 2013 Area (ha) 2024 Area (ha) Change (%) Interpretation 

High resilience 4% Stable ≈0% Climatic refugia 

Moderate 39% 32% –7% Transitional degradation 

Low 27% 34% +7% Moisture-stressed 

Degraded 18% 23% +5% Cedar retreat / oak expansion 

Sylvatic voids 12% 17% +5% Structural collapse 

Table 10. (Continued) 

 

Figure 8. Spatial distribution of resilience classes (CNN–BiLSTM output). 

Figure 8 shows a strong positive and nearly linear relationship between basal area and standing volume 
in Atlas cedar stands. This pattern indicates that increases in basal area are efficiently translated into biomass 
accumulation, particularly at low to moderate values, reflecting structurally well-developed and productive 
stands. The greater dispersion observed at higher basal areas suggests increasing structural heterogeneity 
related to differences in stand age, height, and site conditions. Overall, the results confirm basal area as a robust 
proxy for standing volume and structural resilience in Cedrus atlantica forests. 

The detailed classification performance of the CNN–BiLSTM model is presented through the confusion 
matrix in Table 11, illustrating the distribution of correctly and incorrectly predicted resilience classes. 

Table 11. Confusion matrix for the CNN–BiLSTM model (5 classes). 

Observed ↓ / Predicted → High Moderate Low Degraded Regenerating 

High 312 21 7 3 9 

Moderate 28 488 45 31 17 

Low 6 39 301 54 10 
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Degraded 2 25 48 267 16 

Regenerating 7 12 6 14 143 

Table 11. (Continued) 

4. Discussion 
The results of this study reveal a pronounced spatial differentiation of Atlas cedar resilience within the 

Ain Leuh–Sidi M’Guild massif, structured primarily along altitudinal, geological, and climatic gradients. The 
CNN–BiLSTM projections consistently indicate that high-resilience cedar stands are concentrated on upper-
elevation limestone and dolomitic ridges, whereas low-resilience and degraded classes dominate lower 
elevations, particularly on basaltic and clay-rich substrates[22]. This spatial configuration reflects the strong 
dependence of Cedrus atlantica on favorable edaphic and microclimatic conditions, especially soil water 
availability and thermal buffering. The observed decline of more than 60% in high-density cedar stands at low 
elevations suggests that these zones have become increasingly marginal habitats under current climatic 
conditions, where rising temperatures and recurrent droughts exceed the species’ adaptive capacity[23]. 

The combined analysis of field inventory data and multi-temporal spectral indices further clarifies the 
structural and functional mechanisms underlying these patterns. Stands characterized by high basal area and 
volume consistently exhibit high NDVI values and relatively stable NDMI trajectories[24], indicating sustained 
canopy vigor and favorable moisture conditions. In contrast, degraded stands and oak-dominated coppices 
show persistently lower NDVI, reduced NDMI, and increasing NBR values[25], reflecting chronic water stress, 
canopy thinning, and progressive structural simplification. The weak relationship observed between stem 
density and spectral indicators highlights an important ecological nuance: high density does not necessarily 
imply resilience, particularly in coppice systems where dense regeneration may coexist with low biomass and 
limited ecological stability. These findings confirm that basal area and standing volume are more reliable 
structural indicators of functional resilience in Mediterranean mountain forests[26]. 

From a methodological perspective, the superior performance of the hybrid CNN–BiLSTM model 
compared to conventional machine-learning approaches demonstrates the value of architectures capable of 
jointly learning spatial patterns and temporal dependencies[27]. Forest resilience is inherently dynamic, shaped 
by cumulative stress, delayed responses, and episodic recovery following favorable climatic conditions. The 
ability of the CNN–BiLSTM model to capture these non-linear trajectories explains its higher predictive 
accuracy and, more importantly, the ecological coherence of its spatial outputs[28]. The close correspondence 
between predicted resilience classes, field observations, and management strata suggests that the model 
effectively represents underlying ecological processes rather than relying on purely statistical associations[29]. 

The results also highlight the amplifying role of anthropogenic pressure in shaping resilience dynamics. 
Areas exhibiting the strongest spectral decline and structural degradation correspond spatially to zones subject 
to intense grazing, fuelwood collection, and repeated disturbance. These pressures reduce regeneration 
potential, alter soil structure, and favor the expansion of oak coppices at the expense of cedar. The overlap 
between climatic stress and human disturbance underscores the coupled nature of socio-ecological dynamics 
in the Middle Atlas, where land-use practices exacerbate climate-driven vulnerability, particularly in already 
constrained low-elevation environments[30]. 

From a management standpoint, the resilience maps generated by this framework provide actionable 
insights for climate-adaptive forest management. High-elevation cedar refugia identified as stable and resilient 
emerge as priority areas for conservation and seed-source protection. Mid-elevation mosaics classified as 
moderately resilient represent strategic targets for adaptive interventions, including grazing regulation, assisted 
natural regeneration, and silvicultural adjustments aimed at enhancing resilience[31]. Conversely, areas mapped 
as low resilience or degraded require differentiated strategies that integrate ecological restoration with socio-
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economic measures to reduce chronic disturbance. In this context, the proposed AI-driven monitoring system 
aligns closely with the objectives of Morocco’s Forest Strategy 2020–2030 by offering a spatially explicit, 
forward-looking decision-support tool[32]. 

Despite these strengths, some limitations should be acknowledged. Although the field inventory dataset 
is extensive, plot distribution remains spatially discrete relative to the heterogeneity of the massif, which may 
affect model generalization in under-sampled strata. In addition, anthropogenic pressure variables were derived 
from proxy indicators and would benefit from higher-resolution, site-specific socio-economic data. Future 
work could integrate UAV or LiDAR data to improve the characterization of vertical structure, as well as 
ecophysiological indicators to strengthen process-based interpretation. Extending the framework to other Atlas 
cedar massifs would further test its robustness and transferability across broader environmental gradients[33,34]. 

5. Conclusion 
This study demonstrates the strong potential of integrating multi-sensor remote sensing, field inventory 

data, and deep learning to assess and predict the resilience of Atlas cedar forests in the Middle Atlas of Morocco. 
By combining long-term Landsat-8 and Sentinel-2 time series with structural and ecological information 
derived from ground plots, the proposed CNN–BiLSTM framework successfully captures both the spatial 
organization and temporal trajectories of cedar decline, stability, and regeneration under combined climatic 
and anthropogenic pressures. 

Beyond descriptive mapping, the results provide a coherent ecological interpretation of forest dynamics. 
High-elevation limestone and dolomitic ridges emerge as relative climatic refugia, where cedar stands maintain 
higher structural integrity, stable spectral signatures, and greater regeneration potential. In contrast, low-
elevation zones developed on basaltic and clay-rich substrates exhibit pronounced declines in canopy vigor, 
increasing structural degradation, and progressive replacement by oak-dominated formations. These patterns 
confirm that Atlas cedar resilience is tightly controlled by the interaction between site conditions, water 
availability, and disturbance history, and that ongoing climate warming is progressively shifting the species’ 
viable range upslope. 

From a methodological perspective, the superior performance and spatial coherence of the hybrid CNN–
BiLSTM model highlight the added value of deep learning architectures that explicitly combine spatial feature 
extraction with temporal sequence modeling. Unlike conventional machine-learning approaches, the proposed 
framework is able to represent cumulative stress effects, delayed ecological responses, and partial recovery 
phases, which are essential characteristics of long-term forest resilience dynamics. Importantly, the model does 
not only improve predictive accuracy, but also produces ecologically interpretable, map-based outputs that are 
directly usable for management purposes. 

The analysis also clarifies the role of human pressure in shaping resilience patterns. While local land-use 
practices do not influence the regional climate itself, they strongly amplify the ecological impacts of climatic 
stress by degrading soils, limiting natural regeneration, and weakening the adaptive capacity of cedar stands, 
particularly in environmentally constrained low-elevation areas. This interaction between climatic stress and 
anthropogenic disturbance explains the spatial convergence between zones of structural degradation and zones 
of strong spectral decline observed in the study area. 

From an operational standpoint, the resilience maps generated by this framework provide concrete 
decision-support tools for climate-adaptive forest management. High-resilience cedar refugia should be 
prioritized for conservation and seed-source protection, while moderately resilient mid-elevation mosaics 
represent strategic targets for adaptive interventions such as grazing regulation, assisted natural regeneration, 
and silvicultural adjustments. Conversely, severely degraded areas require integrated restoration strategies that 
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simultaneously address ecological constraints and socio-economic drivers of disturbance. In this context, the 
proposed approach is fully aligned with the objectives of Morocco’s Forest Strategy 2020–2030. 

Despite these encouraging results, some limitations must be acknowledged. Although the field inventory 
dataset is extensive, its spatial distribution remains discrete relative to the heterogeneity of the massif, which 
may affect model generalization in poorly sampled strata. In addition, anthropogenic pressure indicators were 
derived from proxy variables and would benefit from higher-resolution socio-economic data. Future work 
should therefore integrate UAV or LiDAR data to better characterize vertical forest structure, as well as 
ecophysiological indicators to strengthen process-based interpretation. Extending the framework to other Atlas 
cedar massifs will also be necessary to test its robustness and transferability across broader environmental 
gradients. 

Overall, this work illustrates how AI-driven ecological monitoring can substantially improve both the 
understanding and management of vulnerable Mediterranean mountain forest ecosystems under climate 
change. By bridging remote sensing, field ecology, and deep learning within a unified operational framework, 
the proposed methodology offers a scalable and transferable approach for long-term forest resilience 
assessment and adaptive management. 
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