Published
2024-01-04
Issue
Section
Original Research Article
License
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
Probing Ti–Doped (Al–Ga) Surface as Nanosensor for Adsorbing the S–& N–Containing Heterocyclic Compounds
Fatemeh Mollaamin
Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University
Majid Monajjemi
Department of Chemical engineering, Central Tehran Branch, Islamic Azad University
Keywords: (S–& N–heterocycles) @(Ti–Al–Ga) complexes, BTA, 2MBT, 8HQ, ATR, DFT, Langmuir adsorption, CAM-B3LYP/EPR-III, LANL2DZ, 6-31 G(d, p)
Abstract
Aluminum-Gallium doped with titanium by using ONIOM method through structural, electrical, and thermodynamic properties was studied in detail. Crystal structure of Ti–(Al–Ga) surface was coated by S- & N-heterocyclic carbenes of benzotriazole (BTA), 2-mercaptobenzothiazole (2MBT), 8- hydroxyquinoline (8HQ) and 3-amino-1,2,4-triazole-5-thiol (ATR).
The "NMR" spectroscopy of the adsorption of BTA, 2MBT, 8HQ, and ATR on the Ti–doped Al–Ga nanoalloy surface represents that this surface can be employed as the magnetic S–&N–heterocyclic carbene sensors. In fact, "Ti" site in "Ti–(Al–Ga)" nanoalloy surface has bigger interaction energy amount from "Van der Waals’ forces" with BTA, 2MBT, 8HQ, and ATR that might cause them large stable towards coating data on the nanosurface. It has been estimated that the criterion for choosing the surface linkage of "S" and "N" atom in BTA, 2MBT, 8HQ, and ATR in adsorption sites can be impacted by the existence of close atoms of aluminum and gallium in the "Ti–(Al–Ga)" surface. The fluctuation of "NQR" has estimated the inhibiting role of BTA, 2MBT, 8HQ, and ATR for Ti–doped Al–Ga alloy nanosheet due to "S" and "N" atoms in the benzene cycle of heterocyclic carbenes being near the monolayer surface of ternary "Ti–(Al–Ga)" nanoalloy. Moreover, "IR" spectroscopy has exhibited that Ti–doped Al–Ga alloy nanosheet with the fluctuation in the frequency of intra-atomic interaction leads us to the most considerable influence in the vicinage elements generated due to inter-atomic interaction. Comparison to amounts versus dipole moment has illustrated a proper accord among measured parameters based on the rightness of the chosen isotherm for the adsorption steps of the formation of BTA @Ti–(Al–Ga), 2MBT @Ti–(Al–Ga), 8HQ @Ti–(Al–Ga), and ATR @Ti–(Al–Ga) complexes. Thus, the interval between sulfur, nitrogen and oxygen atoms in BTA, 2MBT, 8HQ, and ATR during interaction with transition metal of "Ti" in "Ti–(Al–Ga)" nanoalloy, (N→Ti, O→Ti, S→Ti), has been estimated with relation coefficient of R² = 0.9509. Thus, the present has exhibit the influence of "Ti" doped on the "Al–Ga" surface for adsorption of S–&N–heterocyclic carbenes of BTA, 2MBT, 8HQ, and ATR by using theoretical methods. Furthermore, the "partial electron density" or "PDOS" has estimated a certain charge assembly between Ti–(Al–Ga) and S– & N–heterocycles of BTA, 2MBT, 8HQ, and ATR which can remark that the complex dominant of metallic features and an exact degree of covalent traits can describe the augmenting of the sensitivity of "Ti–(Al–Ga)" surface as a potent sensor for adsorption of BTA, 2MBT, 8HQ, and ATR heterocycles.
References
1. Ahmad Z. Principles of Corrosion Engineering and Corrosion Control. Butterworth-Heinemann; 2006.2. Wei C. Electrochemical deposition of aluminum (Chinese). Technological Innovation and Application 2019; 18: 80–81.
3. Yang HM, Qiu ZX, Zhang G. Low Temperature Aluminum Electrolysis (Chinese); Northeast University Press; 2009.
4. Lu HM, Qiu ZX. Research progress of low temperature aluminum electrolysis (Chinese). Light Metals 1997; 4: 27–29.
5. Machnikova E, Whitmire KH, Hackerman N. Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives. Electrochimica Acta 2008; 53(20): 6024–6032. doi: 10.1016/j.electacta.2008.03.021
6. Benabdellah M, Touzani R, Aouniti A, et al. Inhibitive action of some bipyrazolic compounds on the corrosion of steel in 1M HCl. Materials Chemistry and Physics 2007; 105(2–3): 373–379. doi: 10.1016/j.matchemphys.2007.05.001
7. Fiala A, Chibani A, Darchen A, et al. Investigations of the inhibition of copper corrosion in nitric acid solutions by ketene dithioacetal derivatives. Applied Surface Science 2007; 253(24): 9347–9356. doi: 10.1016/j.apsusc.2007.05.066
8. Prabhu RA, Shanbhag AV, Venkatesha TV. Influence of tramadol [2-[(dimethylamino)methyl]-1-(3-methoxyphenyl) cyclohexanol hydrate] on corrosion inhibition of mild steel in acidic media. Journal of Applied Electrochemistry 2007; 37(4): 491–497. doi: 10.1007/s10800-006-9280-2
9. Tian G, Li J, Hua Y. Application of ionic liquids in metallurgy of nonferrous metals (Chinese). Chinese Journal of Process Engineering 2009; 1: 9. doi: 10.3321/j.issn:1009-606X.2009.01.039
10. Tian G, Li J, Hua Y. Application of ionic liquids in hydrometallurgy of nonferrous metals. Transactions of Nonferrous Metals Society of China 2010; 20(3): 513–520. doi: 10.1016/S1003-6326(09)60171-0
11. Monajjemi M, Afsharnezhad S, Jaafari MR, et al. Investigation of energy and NMR isotropic shift on the internal rotation Barrier of Θ4 dihedral angle of the DLPC: A GIAO study. Chemistry 2008; 16(3): 55–69.
12. Tian GC. Ionic liquids as green electrolytes for Aluminum and Aluminum-alloy production. Materials Research Foundations 2019; 54: 249–293. doi: 10.21741/9781644900314-11
13. Zhong X, Xiong T, Lu J, et al. Advances of electro-deposition and aluminum refining of aluminum and aluminum alloy in ionic liquid electrolytes system (Chinese). Nonferrous Metals Science and Engineering 2014; 5(2): 8. doi: 10.13264/j.cnki.ysjskx.2014.02.008
14. Zheng Y, Wang Q, Zheng Y, Lv H. Advances in research and application of aluminum electrolysis in ionic liquid systems (Chinese). Chinese Journal of Process Engineering 2015; 15(4): 8.
15. Fleury V, Kaufman JH, Hibbert DB. Mechanism of a morphology transition in ramified electrochemical growth. Nature 1994; 367(6462): 435–438. doi: 10.1038/367435a0
16. Yue G, Lu X, Zhu Y, et al. Surface morphology, crystal structure and orientation of aluminium coatings electrodeposited on mild steel in ionic liquid. Chemical Engineering Journal 2009; 147(1): 79–86. doi: 10.1016/j.cej.2008.11.044
17. Barth JV, Brune H, Ertl G, Behm RJ. Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects. Physical Review B 1990; 42(15): 9307–9318. doi: 10.1103/physrevb.42.9307
18. Esken D, Turner S, Lebedev OI, et al. Au@ZIFs: Stabilization and encapsulation of cavity-size matching gold clusters inside functionalized zeolite imidazolate frameworks, ZIFs. Chemistry of Materials 2010; 22(23): 6393–6401. doi: 10.1021/cm102529c
19. Mollaamin F, Monajjemi M. Fractal dimension on carbon nanotube-polymer composite materials using percolation theory. Journal of Computational and Theoretical Nanoscience 2012; 9(4): 597–601. doi: 10.1166/jctn.2012.2067
20. Liu B, Smit B. Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs. The Journal of Physical Chemistry C 2010; 114(18): 8515–8522. doi: 10.1021/jp101531m
21. Keskin S. Atomistic simulations for adsorption, diffusion, and separation of gas mixtures in zeolite imidazolate frameworks. Journal of Physical Chemistry C 2010; 115(3): 800–807. doi: 10.1021/jp109743e
22. Tran UPN, Le KKA, Phan NTS. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction. ACS Catalysis 2011; 1(2): 120–127. doi: 10.1021/cs1000625
23. VandeVondele J, Krack M, Mohamed F, et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Computer Physics Communications 2005; 167(2): 103–128. doi: 10.1016/j.cpc.2004.12.014
24. Phan A, Doonan CJ, Uribe-Romo FJ, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research 2009; 43(1): 58–67. doi: 10.1021/ar900116g
25. Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review Journals 1964; 136(3B): B864–B871. doi: 10.1103/physrev.136.b864
26. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Physical Review Journals 1965; 140(4A): A1133–A1138. doi: 10.1103/physrev.140.a1133
27. Lippert G, Hutter J, Parrinello M. A hybrid Gaussian and plane wave density functional scheme. Molecular Physics 1997; 92(3): 477–487. doi: 10.1080/00268979709482119
28. Hartwigsen C, Goedecker S, Hutter J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Physical Review B 1998; 58(7): 3641–3662. doi: 10.1103/physrevb.58.3641
29. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters 1996; 77(18): 3865–3868. doi: 10.1103/physrevlett.77.3865
30. VandeVondele J, Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. The Journal of Chemical Physics 2007; 127(11): 114105-1–110105-9. doi: 10.1063/1.2770708
31. Monajjemi M, Mahdavian L, Mollaamin F. Characterization of nanocrystalline silicon germanium film and nanotube in adsorption gas by Monte Carlo and Langevin dynamic simulation. Bulletin of the Chemical Society of Ethiopia 2008; 22(2): 277–286. doi: 10.4314/bcse.v22i2.61299
32. Mavrikakis M, Stoltze P, Nørskov JK. Making gold less noble. Catalysis Letters 2000; 64: 101–106. doi: 10.1023/A:1019028229377
33. Dal Corso A. Ab initio phonon dispersions of transition and noble metals: Effects of the exchange and correlation functional. Journal of Physics: Condensed Matter 2013; 25(14): 145401. doi: 10.1088/0953-8984/25/14/145401
34. Subhadarshini S, Singh R, Mandal A, et al. Silver nanodot decorated dendritic copper foam as a hydrophobic and mechano-chemo bactericidal surface. Langmuir 2021; 37(31): 9356–9370. doi: 10.1021/acs.langmuir.1c00698.
35. Mollaamin F, Baei MT, Monajjemi M, et al. A DFT study of hydrogen chemisorption on V (100) surfaces. Russian Journal of Physical Chemistry A 2008; 82(13): 2354–2361. doi: 10.1134/s0036024408130323
36. Yildirim H, Greber T, Kara A. Trends in adsorption characteristics of benzene on transition metal surfaces: Role of surface chemistry and van der Waals interactions. Journal of Physical Chemistry C 2013; 117(40): 20572–20583. doi: 10.1021/jp404487z
37. Monajjemi M, Baie MT, Mollaamin F. Interaction between threonine and cadmium cation in [Cd(Thr) n ]2+ (n = 1–3) complexes: Density functional calculations. Russian Chemical Bulletin 2010; 59(5): 886–889. doi: 10.1007/s11172-010-0181-5
38. Hoefling M, Iori F, Corni S, Gottschalk K. The conformations of amino acids on a Gold(111) surface. ChemPhysChem 2010; 11(8): 1763–1767. doi: 10.1002/cphc.200900990
39. Bakhshi K, Mollaamin F, Monajjemi M. Exchange and correlation effect of hydrogen chemisorption on nano V(100) surface: A DFT study by generalized gradient approximation (GGA). Journal of Computational and Theoretical Nanoscience 2011; 8(4): 763–768. doi: 10.1166/jctn.2011.1750
40. Valencia H, Kohyama M, Tanaka S, Matsumoto H. Ab initio study of EMIM-BF4 crystal interaction with a Li (100) surface as a model for ionic liquid/Li interfaces in Li-ion batteries. The Journal of Chemical Physics 2009; 131(24): 244705. doi: 10.1063/1.3273087
41. Clarke-Hannaford J, Breedon M, Best AS, Spencer MJS. The interaction of ethylammonium tetrafluoroborate [EtNH3+][BF4−] ionic liquid on the Li(001) surface: Towards understanding early SEI formation on Li metal. Physical Chemistry Chemical Physics 2019; 21(19): 10028–10037. doi: 10.1039/c9cp01200a
42. Zhang Q. Study on Electrodeposition of Aluminum and Aluminum Alloy in Ionic Liquid (Chinese) [PhD thesis]. University of Chinese Academy of Sciences; 2014.
43. Mollaamin F, Monajjemi M. Harmonic linear combination and normal mode analysis of semiconductor nanotubes vibrations. Journal of Computational and Theoretical Nanoscience 2015; 12(6): 1030–1039. doi: 10.1166/jctn.2015.3846
44. Ali SA, Mazumder MAJ, Nazal MK, Al-Muallem HA. Assembly of succinic acid and isoxazolidine motifs in a single entity to mitigate CO2 corrosion of mild steel in saline media. Arabian Journal of Chemistry 2020; 13(1): 242–257. doi: 10.1016/j.arabjc.2017.04.005
45. Amar H, Benzakour J, Derja A, et al. A corrosion inhibition study of iron by phosphonic acids in sodium chloride solution. Journal of Electroanalytical Chemistry 2003; 558: 131–139. doi: 10.1016/S0022-0728(03)00388-7
46. El-Sayed MS. Corrosion and corrosion inhibition of aluminum in Arabian Gulf seawater and sodium chloride solutions by 3-amino-5-mercapto-1,2,4-triazole. International Journal of Electrochemical Science 2011; 6(5): 1479–1492. doi: 10.1016/S1452-3981(23)15087-5
47. El-Sayed MS. A comparative study on the electrochemical corrosion behavior of iron and X-65 steel in 4.0 wt % sodium chloride solution after different exposure intervals. Molecules 2014; 19(7): 9962–9974. doi: 10.3390/ molecules19079962
48. Yang D, Zhang M, Zheng J, Castaneda H. Corrosion inhibition of mild steel by an imidazolium ionic liquid compound: the effect of pH and surface pre-corrosion. RSC Advances 2015; 5(115): 95160–95170. doi: 10.1039/C5RA14556B
49. Finšgar M, Milošev I. Inhibition of copper corrosion by 1,2,3-benzotriazole: A review. Corrosion Science 2010; 52(9): 2737–2749. doi: 10.1016/j.corsci.2010.05.002
50. Kothari DH, Kanchan DK. Study of study of electrical properties of gallium-doped lithium titanium aluminum phosphate compounds. Ionics 2014; 21(5): 1253–1259. doi: 10.1007/s11581-014-1287-9
51. Subhadarshini S, Pavitra E, Rama Raju GS, et al. One-pot facile synthesis and electrochemical evaluation of selenium enriched cobalt selenide nanotube for supercapacitor application. Ceramics International 2021; 47(11): 15293–15306. doi: 10.1016/j.ceramint.2021.02.093
52. Monajjemi M, Mollaamin F, Gholami MR, et al. Quantum chemical parameters of some organic corrosion inhibitors, pyridine, 2-picoline 4-picoline and 2,4-lutidine, adsorption at aluminum surface in hydrocholoric and nitric acids and comparison between two acidic media. Main Group Metal Chemistry 2003; 26(6): 349–362. doi: 10.1515/mgmc.2003.26.6.349
53. Mollaamin F, Shahriari S, Monajjemi M, Khalaj Z. Nanocluster of aluminum lattice via organic inhibitors coating: A study of freundlich adsorption. Journal of Cluster Science 2022; 34(3): 1547–1562. doi: 10.1007/s10876-022-02335-1
54. Mollaamin F, Monajjemi M. Corrosion inhibiting by some organic heterocyclic inhibitors through langmuir adsorption mechanism on the Al-X (X = Mg/Ga/Si) Alloy Surface: A study of quantum three-layer method of CAM-DFT/ONIOM. Journal of Bio- and Tribo-Corrosion 2023; 9(2): 33. doi: 10.1007/s40735-023-00751-y
55. Mollaamin F, Monajjemi M. Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach. Molecular Simulation 2022; 49(4): 365–376. doi: 10.1080/08927022.2022.2159996
56. Mollaamin F, Monajjemi M. In Silico-DFT investigation of nanocluster alloys of Al-(Mg, Ge, Sn) coated by nitrogen heterocyclic carbenes as corrosion inhibitors. Journal of Cluster Science 2023. doi: 10.1007/s10876-023-02436-5.
57. Zupanič F, Žist S, Albu M, et al. Dispersoids in Al-Mg-Si alloy AA 6086 modified by Sc and Y. Materials 2023; 16(8): 2949. doi: 10.3390/ma16082949
58. Li S, Dong H, Wang X, Liu Z. Quenching sensitivity of Al-Zn-Mg alloy after non-isothermal heat treatment. Materials 2019; 12(10): 1595. doi: 10.3390/ma12101595
59. Wang Z, Zhang P, Zhao X, Rao S. The corrosion behavior of Al-Cu-Li alloy in NaCl solution. Coatings 2022; 12(12): 1899. doi: 10.3390/coatings12121899
60. Amberchan G, Lopez I, Ehlke B, et al. Aluminum nanoparticles from a Ga–Al composite for water splitting and hydrogen generation. ACS Applied Nano Materials 2022; 5(2): 2636–2643. doi: 10.1021/acsanm.1c04331
61. Svensson M, Humbel S, Froese RDJ, et al. ONIOM: A multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for diels-alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. The Journal of Physical Chemistry 1996; 100(50): 19357–19363. doi: 10.1021/jp962071j
62. Mingdao,L, Lu-An, Y, Qing, Y, et al. A study on correlation between electronic structure and inhibition properties of five-membered dinitrogen heterocyclic compounds. Journal of Chinese Society of Corrosion and Protection 1996; 16(3): 195-200.
63. Brandt F, Jacob CR. Systematic QM region construction in QM/MM calculations based on uncertainty quantification. Journal of Chemical Theory and Computation 2022; 18(4): 2584–2596. doi: 10.1021/acs.jctc.1c01093
64. Blöchl PE. Projector augmented-wave method. Physical Review B 1994; 50(24): 17953–17979. doi: 10.1103/physrevb.50.17953
65. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters 1996; 77(18): 3865–3868. doi: 10.1103/physrevlett.77.3865
66. Ziesche P, Kurth S, Perdew JP. Density functionals from LDA to GGA. Computational Materials Science 1998; 11(2): 122–127. doi: 10.1016/S0927-0256(97)00206-1
67. Arrigoni M, Madsen GKH. Comparing the performance of LDA and GGA functionals in predicting the lattice thermal conductivity of III-V semiconductor materials in the zincblende structure: The cases of AlAs and BAs. Computational Materials Science 2019; 156: 354–360. doi: 10.1016/j.commatsci.2018.10.005
68. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993; 98(7): 5648–5652. doi: 10.1063/1.464913
69. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988; 37(2): 785–789. doi: 10.1103/physrevb.37.785
70. Kim K, Jordan KD. Comparison of density functional and MP2 calculations on the water monomer and Dimer. The Journal of Physical Chemistry 1994; 98(40): 10089–10094. doi: 10.1021/j100091a024
71. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry 1994; 98(45): 11623–11627. doi: 10.1021/j100096a001
72. Cramer CJ. Essentials of Computational Chemistry: Theories and Models, 2nd ed. Wiley; 2004.
73. Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics 1980; 58(8): 1200–1211. doi: 10.1139/p80-159
74. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016. Available online: https://gaussian.com/ (accessed on 24 September 2021).
75. Dennington R, Keith TA, Millam J. GaussView Version 6. Available online: https://gaussian.com/gaussview6/ (accessed on 11 February 2023).
76. Sohail U, Ullah F, Binti Zainal Arfan NH, et al. Transition metal sensing with nitrogenated holey graphene: A first-principles investigation. Molecules 2023; 28(10): 4060. doi: 10.3390/molecules28104060
77. Smith JAS. Nuclear quadrupole resonance spectroscopy. Journal of Chemical Education 1971; 48: 39–41.
78. Garroway AN. Nuclear quadrupole resonance. Available online: https://studylib.net/doc/12810542/nuclear-quadrupole-resonance--paper-ii--introduction--nuc. (accessed on 25 October 2023).
79. Poleshchuck OK, Kalinna EL, Latosinska JN, Koput J. Application of density functional theory to the analysis of electronic structure and quadrupole interaction in dimers of transition and non-transition elements. Journal of Molecular Structure: THEOCHEM 2001; 547(1–3): 233–243. doi: 10.1016/S0166-1280(01)00636-4
80. Young HA, Freedman RA. Sears and Zemansky’s University Physics with Modern Physics, 13th ed. Addison-Wesley; 2012. p. 754.