Published
2024-01-29
Issue
Section
Original Research Article
License
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
Contents of twelve chemical elements in normal human breast determined using inductively coupled plasma atomic emission spectrometry
Vladimir Zaichick
Radionuclide Diagnostics Department, Medical Radiological Research Centre
Denis Dogadkin
Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Science
Irina Gromya
Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Science
Vladimir Kolotov
Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Science
Keywords: Mammary gland of health females, chemical elements, inductively coupled plasma atomic emission spectrometry
Abstract
Inductively coupled plasma atomic emission spectrometry (ICP-AES) has been shown to be an effective method for determining the content of Al, Ca, Cu, Fe, K, Mg, Na, P, S, Si, Sr and Zn in small mass samples of breast tissue. The method is relatively simple and applicable directly in the clinic for express diagnostics. The autopsy material of 38 practically healthy women aged 16-60 years who died suddenly was studied using the developed method of ICP-AES. Mean values (M ± SD) of mass fractions (mg kg-1 of dry tissue) of chemical elements in normal breast tissue of women were: Al 3.62±2.44, Ca 77.7±61.8, Cu 1.03 ±1.01, Fe 13.8±12.3, K 194±114, Mg 18.5±9.0, Na 686±516, P 201±74, S 385±224, Si 8.75±6.22b, Sr 0.50±0.24, and Zn 3.29±1.65. The ability of breast tissue to absorb Al, Fe and Sr from the interstitial fluid was revealed. The selective accumulation of Al, Fe, and Sr should be taken into account in further studies of the role of chemical elements in the etiology of breast pathologies, as well as in the development of methods for the differential diagnosis of diseases, for example, benign and malignant tumors of the mammary gland.
References
1. Marzbani B, Nazari J, Najafi I, et al. Dietary patterns, nutrition, and risk of breast cancer: a case-control study in the west of Iran. Epidemiol Health 2019; 41: e2019003. doi: 10.4178/epih.e20190032. Exley C, Charles LM, Barr L, et al. Aluminium in human breast tissue. J Inorg Biochem 2007; 101(9):1344-1346. doi: 10.1016/j.jinorgbio.2007.06.005
3. Ataollahi MR, Sharifi J, Paknahad MR, et al. Breast cancer and associated factors: a review. J Med Life 2015; 8(Spec Iss 4):6-11.
4. Zaichick V. Medical elementology as a new scientific discipline. J Radioanal Nucl Chem 2006; 269:303-309. doi.org/10.1007/s10967-006-0383-3
5. Iyengar GV. Reevaluation of the trace element in reference man. Radiat Phys Chem 1998; 51(4-6):545-560. doi.org/10.1016/S0969-806X(97)00202-8
6. Lönnerdal B. Regulation of mineral and trace elements in human milk: exogenous and endogenous factors. Nutr Rev 2000; 58(8):223-229. doi: 10.1111/j.1753-4887.2000.tb01869.x.
7. Schroeder HA, Nason AP. Trace-element analysis in clinical chemistry. Clin Chem 1971; 17(6):461-474.
8. Zaichick V. The in vivo neutron activation analysis of calcium in the skeleton of normal subjects, with hypokinesia and bone diseases. J Radioanal Nucl Chem 1993; 169(2):307-316. doi.org/10.1007/BF02042988
9. Zaichick V. Instrumental activation and X-ray fluorescent analysis of human bones in health and disease. J Radioanal Nucl Chem 1994; 179(2):295-303. doi.org/10.1007/BF02040164
10. Zaichick V, Morukov B. In vivo bone mineral studies on volunteers during a 370-day antiorthostatic hypokinesia test. Appl Radiat Isot 1998; 49(5/6):691-694. doi: 10.1016/s0969-8043(97)00205-4
11. Zaichick V, Dyatlov A, Zaichick S. INAA application in the age dynamics assessment of major, minor, and trace elements in the human rib. J Radioanal Nucl Chem 2000; 244(1):189-193. doi.org/10.1023/A:1006797006026
12. Zaichick V, Tzaphlidou M. Determination of calcium, phosphorus, and the calcium/phosphorus ratio in cortical bone from the human femoral neck by neutron activation analysis. Appl Radiat Isot 2002; 56:781-786. doi: 10.1016/s0969-8043(02)00066-0
13. Zaichick S, Zaichick V. Human bone as a biological material for environmental monitoring. Int J Environment and Health 2010; 4:278-292. doi: 10.1504/IJENVH.2010.033714
14. Zaichick S, Zaichick V. The effect of age and gender on 38 chemical element contents in human iliac crest investigated by instrumental neutron activation analysis. J Trace Elem Med Biol 2010; 24(1):1-6. doi:10.1016/j.jtemb.2009.07.002
15. Zaichick S, Zaichick V, Karandashev V, et al. The effect of age and gender on 59 trace element contents in human rib bone investigated by inductively coupled plasma mass spectrometry. Biol Trace Elem Res 2011; 143(1):41-57. doi: 10.1007/s12011-010-8837-4
16. Zaichick S, Zaichick V. Neutron activation analysis of Ca, Cl, Mg, Na, and P content in human bone affected by osteomyelitis or osteogenic sarcoma. J Radioanal Nucl Chem 2012; 293(1):241-246. doi.org/10.1007/s10967-012-1645-x
17. Zaichick V. Chemical elements of human bone tissue investigated by nuclear analytical and related methods. Biol Trace Elem Res 2013; 153:84-99. doi: 10.1007/s12011-013-9661-4
18. Zaichick V. Data for the Reference Man: skeleton content of chemical elements. Radiat Environ Biophys 2013; 52(1):65-85. doi: 10.1007/s00411-012-0448-3
19. Zaichick S, Zaichick V. Trace elements of normal, benign hypertrophic and cancerous tissues of the human prostate gland investigated by neutron activation analysis. Appl. Radiat. Isot 2012; 70:81-87. doi: 10.1016/j.apradiso.2011.08.021
20. Zaichick S, Zaichick V. Relations of morphometric parameters to zinc content in paediatric and nonhyperplastic young adult prostate glands. Andrology 2013; 1(1):139–146. doi: 10.1111/j.2047-2927.2012.00005.x.
21. Zaichick V, Zaichick S. INAA application in the assessment of chemical element mass fractions in adult and geriatric prostate glands. Appl Radiat Isot 2014; 90:62-73. doi: 10.1016/j.apradiso.2014.03.010
22. Zaichick V, Zaichick S. Androgen-dependent chemical elements of prostate gland. Androl Gynecol: Curr Res 2014; 2:2. doi: 10.4172/2327-4360.1000121
23. Zaichick V. The variation with age of 67 macro- and microelement contents in nonhyperplastic prostate glands of adult and elderly males investigated by nuclear analytical and related methods. Biol Trace Elem Res 2015; 168(1): 44-60. doi: 10.1007/s12011-015-0342-3
24. Zaichick V, Zaichick S, Davydov G. Differences between chemical element contents in hyperplastic and nonhyperplastic prostate glands investigated by neutron activation analysis. Biol. Trace Elem. Res 2015; 164:25-35. doi: 10.1007/s12011-014-0204-4
25. Zaichick V, Zaichick S. Global contamination from uranium: insights into problem based on the uranium content in the human prostate gland. J Environ Health Sci 2015; 1(4):1-5. doi:10.15436/2378-6841.15.026
26. Zaichick V, Zaichick S, Wynchank S. Intracellular zinc excess as one of the main factors in the etiology of prostate cancer. Journal of Analytical Oncology 2016; 5(3):124-131. doi:10.6000/1927-7229.2016.05.03.5
27. Zaichick V, Zaichick S, Rossmann M. Intracellular calcium excess as one of the main factors in the etiology of prostate cancer. AIMS Molecular Science 2016; 3(4):635-647. doi:10.3934/molsci.2016.4.635
28. Zaichick V, Zaichick S. Comparison of 66 chemical element contents in normal and benign hyperplastic prostate. Asian Journal of Urology 2019; 6(3):275-289. doi:10.1016/j.ajur.2017.11.009
29. Zaichick V, Tsyb A, Vtyurin BM. Trace elements and thyroid cancer. Analyst 1995; 120:817-821. doi: 10.1039/an9952000817.
30. Zaichick V, Choporov YuYa. Determination of the natural level of human intra-thyroid iodine by instrumental neutron activation analysis. J Radioanal Nucl Chem 1996; 207(1):153-161. doi.org/10.1007/bf02036535
31. Zaichick V, Zaichick S. Normal human intrathyroidal iodine. Sci Total Environ 1997; 206(1):39-56. doi: 10.1016/s0048-9697(97)00215-5
32. Zaichick V. Iodine excess and thyroid cancer. J Trace Elements in Experimental Medidicne 1998; 11(4):508-509.
33. Zaichick V, Zaichick S. Associations between age and 50 trace element contents and relationships in intact thyroid of males. Aging Clin Exp Res 2018; 30(9):1059-1070. doi: 10.1007/s40520-018-0906-0.
34. Zaichick V, Zaichick S. Variation with age of chemical element contents in females’ thyroids investigated by neutron activation analysis and inductively coupled plasma atomic emission spectrometry. J Biochem Analyt Stud 2018; 3(1): 1-10. doi:10.16966/2576-5833.114
35. Zaichick V, Zaichick S. Fifty trace element contents in normal and cancerous thyroid. Acta Scientific Cancer Biology 2018; 2(8):21-38.
36. Zaichick V, Zaichick S. Association between female subclinical hypothyroidism and inadequate quantities of some intra-thyroidal chemical elements investigated by X-ray fluorescence and neutron activation analysis. Gynaecology and Perinatology 2018; 2(4):340-355.
37. Zaichick V, Zaichick S. Investigation of association between the high risk of female subclinical hypothyroidism and inadequate quantities of twenty intra-thyroidal chemical elements. Clin Res: Gynecol Obstet 2018; 1(1):1-18. doi.org/10.31829/2640-6284/crgo2018-1(1)-104
38. Zaichick V, Zaichick S. Investigation of association between high risk of female subclinical hypothyroidism and inadequate quantities of intra-thyroidal trace elements using neutron activation and inductively coupled plasma mass spectrometry. Acta Scientific Medical Sciences 2018; 2(9):23-37.
39. Zaichick V, Zaichick S. Levels of chemical element contents in thyroid as potential biomarkers for cancer diagnosis (a preliminary study). J Cancer Metastasis Treat 2018; 4: 60. doi.org/10.20517/2394-4722.2018.52
40. Linhart C, Talasz H, Morandi EM, et al. Use of underarm cosmetic products in relation to risk of breast cancer: A Case-Control Study. The Lancet 2017;21:79-85. doi.org/10.1016/j.ebiom.2017.06.005
41. Millos J, Costas-Rodrнguez M, Lavilla I, et al. Multiple small volume microwave-assisted digestions using conventional equipment for multielemental analysis of human breast biopsies by inductively coupled plasma optical emission spectrometry. Talanta 2009; 77:1490–1496. doi.org/10.1016/j.talanta.2008.09.033
42. Farah LO, Nguyen PX, Arslan Z, et al. Significance of differential metal loads in normal versus cancerous cadaver tissues – biomed 2010. Biomedical Sciences Instrumentation 2010; 46:312-317.
43. Soman SD, Joseph KT, Raut SJ, et al. Studies on major and trace element content in human tissues. Health Phys 1970; 19(5):641-656. doi: 10.1097/00004032-197011000-00006
44. Geraki K, Farquharson MJ, Bradlley DA. Concentrations of Fe, Cu and Zn in breast tissue: A synchrotron XRF study. Phys Med Biol 2002; 47(13):2327-2339. doi: 10.1088/0031-9155/47/13/310
45. Sivakumar S, Mohankumar N. Mineral Status of female breast cancer patients in Tami Nadu. Int J Res Pharm Sci 2012; 3(4):618–621. doi: 10.13140/RG.2.2.26122.52169
46. Geraki K, Farquharson MJ, Bradley DA. X-ray fluorescence and energy dispersive x-ray diffraction for the quantification of elemental concentrations in breast tissue. Phys Med Biol 2004; 49(1):99-110. doi: 10.1088/0031-9155/49/1/007
47. Ionescy JG, Novotny J, Stejskal V, et al. Breast tumours strongly accumulate transition metals. Medica J Clin Med 2007; 2(1):5-9.
48. Constantinou C. Phantom materials for radiation dosimetry. I. Liquids and gels. Br J Radiol 1982; 55(651):217-224. doi: 10.1259/0007-1285-55-651-217
49. Zakutinski DI, Parfyenov YuD, Selivanova LN. Data book on the radioactive isotopes toxicology. Moscow: State Publishing House of Medical Literature, 1962.
50. Sivakumar S, Mohankumar N. Mineral Status of female breast cancer patients in Tami Nadu. Int J Res Pharm Sci 2012; 3(4):618–621. doi:10.13140/RG.2.2.26122.52169
51. White DR, Woodard HQ, Hammond SM. Average soft-tissue and bone models for use in radiation dosimetry. Br J Radiol 1987; 60(717):907-913. doi.org/10.1259/0007-1285-60-717-907.
52. Ivanova EI. The content of microelements in malignant tumors during their growth. In: Application of trace elements in agriculture and medicine. Riga, 1959. 149-151.
53. Shams N, Said SB, Salem TAR, et al. Metal-induced oxidative stress in egyptian women with breast cancer. J Clinic Toxicol 2012; 2: 141. doi:10.4172/2161-0495.1000141
54. Iyengar GV, Kollmer WE, Bowen HGM. The elemental composition of human tissues and body fluids. A compilation of values for adults. Weinheim-New York: Verlag Chemie, 1978.
55. Kizalaite A, Brimiene V, Brimas G, et al. Determination of trace elements in adipose tissue of obese people by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry. Biol Trace Elem Res 2019; 189(1):10-17. doi.org/10.1007/s12011-018-1450-7
56. Zaichick V, Wynchank S. Reference man for radiological protection: 71 chemical elements’ content of the prostate gland (normal and cancerous). Radiat Environ Biophys 2021; 60:165–178. doi: 10.1007/s00411-020-00884-5
57. Zaichick V. Diagnosis of thyroid malignancy using levels of chemical element contents in nodular tissue. J Health Care and Research 2022; 3(1): 16-30 Zaichick V, Zaichick S. Association between age and twenty chemical element contents in intact thyroid of males. SM Gerontol Geriatr Res 2018; 2(1):1014 (pp.1-10). doi: 10.36876/smggr.1014
58. Kolotov VP, Dogadkin DN, Zaichiсk V, et al. Analysis of low-weight biological samples by ICP-MS using acidic microwave digestion of several samples in a common atmosphere of a standard autoclave. Journal of Analytical Chemistry 2023; 78(3):216-222. doi:10.1134/s1061934823030061
59. Zaichick V. Application of neutron activation analysis for the comparison of eleven trace elements contents in thyroid tissue adjacent to thyroid malignant and benign nodules. International Journal of Radiology Sciences 2022; 4(1):6-12.
60. Zaichick V. Comparison of thirty trace elements contents in thyroid tissue adjacent to thyroid malignant and benign nodules. Archives of Clinical Case Studies and Case Reports 2022; 3(1):280-289.
61. Santoliquido PM, Southwick HW, Olwin JH. Trace metal levels in cancer of the breast. Surg Gynecol Obstet 1976; 142(1):65-70. https://pubmed.ncbi.nlm.nih.gov/1244691/
62. ICRP 23. The International Commission on Radiological Protection. Publication 23. Report of the task group on Reference Man. Oxford, New York, Toronto, Sydney: Pergamon Press, 1975.
63. ICRU 46. Inernational Commission on Radiological Units. Report 46. Photon, electron, proton and neutron interaction data for body tissues. Bethesda, Md.: ICRU, 1992.