Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 8 No. 1 (2025): Vol. 8 No. 1(Publishing) > Review Article
ACE-5612

Published

2025-04-21

Issue

Vol. 8 No. 1 (2025): Vol. 8 No. 1(Publishing)

Section

Review Article

License

Copyright (c) 2025 Prakash Patel, Zulfiquar Naimuddin Ansari, Yogeshkumar Bhoya

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Patel, P., Naimuddin Ansari, Z., & Bhoya, Y. (2025). Technical review on active and passive solar stills to improve the performance of enhanced condensers using nanoparticles. Applied Chemical Engineering, 8(1). https://doi.org/10.59429/ace.v8i1.5612
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Technical review on active and passive solar stills to improve the performance of enhanced condensers using nanoparticles

Prakash Patel

Drs. Kiran & Pallavi Patel Global University, Vadodara, 382355, India

Zulfiquar Naimuddin Ansari

GLA University, Mathura, 281406, India

Yogeshkumar Bhoya

Mechanical Engg. Dept., Government Engineering college, Bharuch, Gujarat, 392002, India


DOI: https://doi.org/10.59429/ace.v8i1.5612


Keywords: solar desalination; phase change material; solar still; nano particle; productivity


Abstract

As the global population continues to grow, the need for freshwater is becoming increasingly urgent. It has increased the acceptance of desalination technology, with solar stills emerging as popular, low-cost, and low-maintenance options. However, solar energy still suffers from low freshwater production, and hence, there is a need to evaluate different approaches utilised by researchers to increase productivity. This study presents a systematic review of various active and passive solar stills and the modifications incorporated in their designs to increase productivity. Furthermore, this study also explores the significant advancements in the context of nanoparticles and condensers used to improve the performance of solar stills. To ensure a huge spread in the adoption of solar still-applied science, ongoing research is necessary. The findings of the research work offer findings and data on the continuing state of Solar still applications and suggest possible areas for future research. Finally, this study can aid in the creation of economical and sustainable solutions to expanding freshwater needs.


References

[1]. H. Panchal, I. Mohan. Various methods have been applied to solar stills to enhance distillate output. Desalination, 415 (2017), pp. 76-89

[2]. H.N. Panchal. Enhancement of distillate output of double-basin Solar still with vacuum tubes J. King Saud Univ. Eng. Sci. (2013), 10.1016/j.jksues. 2013.06.007

[3]. E. Ghandourah, H. Panchal, O. Fallatah, H. M. Ahmed, E. B. Moustafa, A. H. Elsheikh, Performance enhancement and economic analysis of pyramid solar stills with corrugated absorber plate and conventional solar stills: A case study. Case Stud. Therm. Eng. 2022, 35, 101966.

[4]. A.S. Abdullah, W.H. Alawee, S.A. Mohammed, A. Majdi, Z.M. Omara, F.A. Essa. Increasing the productivity of the modified cord pyramid solar still using an electric heater and various wick materials. Environ. Prot., 169 (2023), pp. 169-176x.

[5]. Panchal, H., Patel, K., Elkelawy, M., Bastawissi, H. A. E. (2019). Use of various phase change materials on the performance of solar stills: A review. International Journal of Ambient Energy, 42(13), 1575–1580. https://doi.org/10.1080/01430750.2019.1594376

[6]. Panchal, H.N., Thakkar, H. Theoretical and experimental validation of evacuated tubes directly coupled with the solar stills. Therm. Eng. 63, 825–831 (2016). https://doi.org/10.1134/S0040601516110045.

[7]. Panchal, H., Awasthi, A. Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes. Heat Mass Transfer 53, 1943–1955 (2017). https://doi.org/10.1007/s00231-016-1953-8

[8]. H. N. Panchal, “Use of thermal energy storage materials for enhancement in distillate output of solar still: A review,” Renew. Sustain. Energy Rev., vol. 61, no. C, pp. 86–96, 2016.

[9]. Panchal, H. N. and Shah, P. K. (2014). 'Improvement of Solar Still Productivity by Energy Absorbing Plates,’ Journal of Renewable Energy and Environment, 1(1), pp. 1-7. doi: 10.30501/jree.2014.70052

[10]. Hitesh N. Panchal, Sanjay Patel. An extensive review of different designs and climatic parameters to increase the distillate output of solar stills. Renew. Sust. Energ. Rev., 69 (2017), pp. 750-758

[11]. M. S. S. Abujazar, S. Fatihah, A. E. Kabeel, “Seawater desalination using inclined stepped solar stills with copper trays in a wet tropical climate,” Desalination, vol. 423, pp. 141–148, Dec. 2017, doi: 10.1016/j.desal.2017.09.020.

[12]. S. Rashidi, M. Bovand, N. Rahbar, and J. A. Esfahani, "Steps optimisation and productivity enhancement in a nanofluid cascade solar still", Renew. Energy, vol. 118, pp. 536–545, Apr. 2018, doi: 10.1016/j.renene.2017.11.048.

[13]. H. N. Panchal, “Use of thermal energy storage materials for enhancement in distillate Output of solar still: A review,” Renew. Sustain. Energy Rev., vol. 61, no. C, pp. 86–96,2016.

[14]. V. K. Sonker, J. P. Chakraborty, and A. Sarkar, "Development of a frugal solar still using phase change material and nanoparticles integrated with commercialisation through a novel economic model," J. Energy Storage. 51, p. 104569, Jul. 2022, doi: 10.1016/j.est.2022.104569.

[15]. A.S. Abdullah, Z. M. Omara, Habib Ben Bacha, M. M. Younes. Employing a convex-shaped absorber for enhancing the performance of Solar still desalination system, Journal of Energy Storage, 47, 2022,103573

[16]. H. Ajdari, A. Ameri. Performance assessment of inclined stepped solar still integrated with PCM and CuO/GO nanocomposite as nanofluid J. Build. Eng., 49 (2022), Article 104090

[17]. Saleh, B., Essa, F.A., Aly, A., et al. Investigating the performance of a dish solar distiller with phase change material mixed with Al2O3 nanoparticles at different water depths. Environ Sci Pollut Res 29, 28115–28126 (2022). https://doi.org/10.1007/s11356-021-18295-4 https://link.springer.com/article/10.1007/s11356-021-18295-4

[18]. Abdullah, A.S., Alawee W.H., Mohammed SA, et al. Performance improvement of tubular solar stills via tilting glass cylinder, nano-coating, and nano-PCM: experimental approach. Environ Sci Pollut Res 29, 65088–65099 (2022). https://doi.org/10.1007/s11356-022-20207-z

[19]. P. Manoj Kumar et al., “Performance study on solar still using nano-disbanded phase change material (NDPCM),” Mater. Today Proc., vol. 62, pp. 1894–1897, Jan. 2022, doi: 10.1016/j.matpr.2022.01.050.

[20]. F. Selimefendigil, C. Şirin, and H. F. Öztop, "Experimental analysis of combined utilisation of CuO nanoparticles in latent heat storage unit and absorber coating in a single-slope solar desalination system,” Sol. Energy, vol. 233, pp. 278–286, Feb. 2022, doi: 10.1016/j.solener.2022.01.039.

[21]. Goshayeshi, H. R., Chaer, I., Yebiyo, M., et al. Experimental investigation on semicircular, triangular, and rectangular absorbers of solar stills with nano-based PCM. J Therm Anal Calorim 147, 3427–3439 (2022). https://doi.org/10.1007/s10973-021-10728-z

[22]. D. Dsilva Winfred Rufuss et al. “combined the effects of composite thermal energy storage and magnetic field to enhance productivity in solar desalination,” Renew. Energy, vol. 181, pp. 219–234, Jan. 2022, doi: 10.1016/j.renene.2021.07.124.

[23]. S. Shoeibi, H. Kargarsharifabad, S. A. A. Mirjalily, and T. Muhammad, “Solar district heating with solar desalination using energy storage material for domestic hot water and drinking water – Environmental and economic analysis,” Sustain. Energy Technol. Assess., vol. 49, p. 101713, Feb. 2022, doi: 10.1016/j.seta.2021.101713.

[24]. F. A. Essa et al., “Experimental enhancement of tubular solar still performance using rotating cylinder, nanoparticles’ coating, parabolic solar concentrator, and phase change material,” Case Stud. Therm. Eng., vol. 29, p. 101705, Jan. 2022, doi: 10.1016/j.csite.2021.101705.

[25]. M. Asbik, H. Boushaba, H. Hafs, A. Koukouch, A. Sabri, and A. Muthu Manokar, “Investigating the effect of sensible and latent heat storage materials on the performance of a single basin solar still during winter days,” J. Energy Storage, vol. 44, p. 103480, Dec. 2021, doi: 10.1016/j.est.2021.103480.

[26]. S. Shoeibi, H. Kargarsharifabad, and N. Rahbar, “Effects of nano-enhanced phase change material and nano-coated on the performance of solar stills,” J. Energy Storage, vol. 42, p. 103061, Oct. 2021, doi: 10.1016/j.est.2021.103061.

[27]. G. B. Abdelaziz et al., “Performance enhancement of tubular solar still using nano-enhanced energy storage material integrated with v-corrugated aluminum basin, wick, and nanofluid,” J. Energy Storage, vol. 41, p. 102933, Sep. 2021, doi: 10.1016/j.est.2021.102933.

[28]. Suraparaju SK , Sampathkumar A , Natarajan SK . Experimental and economic analysis of an energy storage-based single-slope solar still with a hollow-finned absorber basin. Heat Transfer. 2021; 50: 5516–5537. https://doi.org/10.1002/htj.22136 https://onlinelibrary.wiley.com/doi/abs/10.1002/htj.22136

[29]. M. Abdelgaied, Y. Zakaria, A. E. Kabeel, and F. A. Essa, “Improving the tubular solar still performance using square and circular hollow fins with phase change materials,” J. Energy Storage, vol. 38, p. 102564, Jun. 2021, doi: 10.1016/j.est.2021.102564.

[30]. J. Kateshia and V. J. Lakhera, “Analysis of solar still integrated with phase change material and pin fins as absorbing material,” J. Energy Storage, vol. 35, p. 102292, Mar. 2021, doi: 10.1016/j.est.2021.102292.

[31]. M. Jahanpanah, S. J. Sadatinejad, A. Kasaeian, M. H. Jahangir, and H. Sarrafha, “Experimental investigation of the effects of low-temperature phase change material on single-slope solar still,” Desalination, vol. 499, p. 114799, Feb. 2021, doi: 10.1016/j.desal.2020.114799.

[32]. V. K. Sonker, R. K. Singh, J. P. Chakraborty, and A. Sarkar, “Performance assessment of a passive solar still integrated with thermal energy storage and nanoparticle stored in copper cylinders,” Int. J. Energy Res., vol. 45, no. 2, pp. 2856–2869, 2021, doi: 10.1002/er.5982.

[33]. A. E. Kabeel, M. Abdelgaied, K. Harby, and A. Eisa, “Augmentation of diurnal and nocturnal distillate of modified tubular solar still having copper tubes filled with PCM in the basin,” J. Energy Storage, vol. 32, p. 101992, Dec. 2020, doi: 10.1016/j.est.2020.101992.

[34]. A. E. Kabeel, R. Sathyamurthy, A. M. Manokar, S. W. Sharshir, F. A. Essa, and A. H. Elshiekh, “Experimental study on tubular solar still using Graphene Oxide Nano particles in Phase Change Material (NPCM) for fresh water production,” J. Energy Storage, vol. 28, p. 101204, Apr. 2020, doi: 10.1016/j.est.2020.101204.

[35]. D. Dsilva, Winfred Rufuss, L. Suganthi, S. Iniyan, and P. A. Davies, “Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity,” J. Clean. Prod., vol. 192, pp. 9–29, Aug. 2018, doi: 10.1016/j.jclepro.2018.04.201.

[36]. S. Shanmugan, S. Palani, and B. Janarthanan, “Productivity enhancement of solar still by PCM and Nanoparticles miscellaneous basin absorbing materials,” Desalination, vol. 433, pp. 186–198, May 2018, doi: 10.1016/j.desal.2017.11.045.

[37]. Muntadher Mohammed Ali Saeed, Dhafer Manea Hachim, Hassanain Ghani Hameed. (2024). Numerical investigation of single-slope solar still performance with optimal amount of Nano-PCM. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 63(2), 302–316.

[38]. S. Moreno, C. Álvarez, J. F. Hinojosa, and V. M. Maytorena, “Numerical analysis of a solar still with phase change material under the basin,” J. Energy Storage, vol. 55, p. 105427, Nov. 2022, doi: 10.1016/j.est.2022.105427.

[39]. B. Thamarai Kannan et al., “Improved freshwater generation via hemispherical solar desalination unit using paraffin wax as phase change material encapsulated in waste aluminum cans,” Desalination, vol. 538, p. 115907, Sep. 2022, doi: 10.1016/j.desal.2022.115907.

[40]. R. Grewal and M. Kumar, “Investigations on effect of mass of phase change material on sugarcane juice concentration and distillate production in a stepped solar system,” J. Energy Storage, vol. 52, p. 104878, Aug. 2022, doi: 10.1016/j.est.2022.104878.

[41]. R. Agrawal and K. D. P. Singh, “Experimental investigation and computational modelling of double-slope solar still integrated with eutectic phase change material,” J. Energy Storage, vol. 52, p. 104802, Aug. 2022, doi: 10.1016/j.est.2022.104802.

[42]. T. R. Sathish Kumar and S. Jegadheeswaran, “Experimental Investigation on Finned Solar Still With Enhanced Thermal Energy Storage,” J. Therm. Sci. Eng. Appl., vol. 14, no. 091001, Feb. 2022, doi: 10.1115/1.4053228.

[43]. A. Sampathkumar and S. K. Natarajan, “Experimental analysis on single slope solar still by the inclusion of Agar-Agar (Eucheuma) Fibre and micro Phase Change Material for productivity enhancement,” J. Energy Storage, vol. 50, p. 104284, Jun. 2022, doi: 10.1016/j.est.2022.104284.

[44]. Z. Y. Ho, R. Bahar, and C. H. Koo, “Passive solar stills coupled with Fresnel lens and phase change material for sustainable solar desalination in the tropics,” J. Clean. Prod., vol. 334, p. 130279, Feb. 2022, doi: 10.1016/j.jclepro.2021.130279.

[45]. A. Sampathkumar and S. K. Natarajan, “Performance assessment of single slope solar still by the incorporation of palm flower powder and micro phase change material for the augmentation of productivity,” Environ. Sci. Pollut. Res., vol. 29, no. 49, pp. 73957–73975, Oct. 2022, doi: 10.1007/s11356-022-21039-7.

[46]. R. Samuel Hansen, M. Blessy Queen Mary, S. Somesh Subramanian, J. Aldrin Raj, S. Joe Patrick Gnanaraj, and M. Appadurai, "Utilisation of PCM in inclined and single basin solar stills to improve the daily productivity," Mater. Today Proc., vol. 62, pp. 967–972, Jan. 2022, doi: 10.1016/j.matpr.2022.04.092.

[47]. Q. A. Abed and D. M. Hachim, “Enhancing the Productivity of Tubular Solar Still by Using the Phase Change Material,” Arab. J. Sci. Eng., vol. 46, no. 12, pp. 11645–11660, Dec. 2021, doi: 10.1007/s13369-021-05561-3.

[48]. A. A. F. Al-Hamadani and A. H. Yaseen, “A multistage solar still with photovoltaic panels and DC water heater using a pyramid glass cover enhanced by external cooling shower and PCM,” Heat Transf., vol. 50, no. 7, pp. 7001–7019, 2021, doi: 10.1002/htj.22214.

[49]. A. H. Mohammed, M. Attalla, and A. N. Shmroukh, “Performance enhancement of single-slope solar still using phase change materials,” Environ. Sci. Pollut. Res., vol. 28, no. 14, pp. 17098–17108, Apr. 2021, doi: 10.1007/s11356-020-12096-x.

[50]. V. S. Vigneswaran et al., “Energy, Exergy, and Economic Analysis of Low Thermal Conductivity Basin Solar Still Integrated with Phase Change Material for Energy Storage,” J. Energy Storage, vol. 34, p. 102194, Feb. 2021, doi: 10.1016/j.est.2020.102194.

[51]. P. Khalilmoghadam, A. Rajabi-Ghahnavieh, and M. B. Shafii, “A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe,” Renew. Energy, vol. 163, pp. 2115–2127, Jan. 2021, doi: 10.1016/j.renene.2020.10.073.

[52]. S. Khanmohammadi and Khanmohammadi, “Energy, exergy and exergo-environment analyses, and tri-objective optimisation of a solar still desalination with different insulations," Energy, vol. 187, p. 115988, Nov. 2019, doi: 10.1016/j.energy.2019.115988.

[53]. V. K. Sonker, J. P. Chakraborty, A. Sarkar, and R. K. Singh, “Solar distillation using three different phase change materials stored in a copper cylinder,” Energy Rep., vol. 5, pp. 1532–1542, Nov. 2019, doi: 10.1016/j.egyr.2019.10.023.

[54]. M. S. Yousef and H. Hassan, “Assessment of different passive solar stills via exergoeconomic, exergoenvironmental, and exergoenviroeconomic approaches: A comparative study,” Sol. Energy, vol. 182, pp. 316–331, Apr. 2019, doi: 10.1016/j.solener.2019.02.042.

[55]. F. Sarhaddi, F. Farshchi Tabrizi, H. Aghaei Zoori, and S. A. H. S. Mousavi, “Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis,” Energy Convers. Manag., vol. 133, pp. 97–109, Feb. 2017, doi: 10.1016/j.enconman.2016.11.044.

[56]. O. Ansari, O., Asbik, M., Bah, A., Arbaoui, A., Khmou,, A.“Desalination of brackish water using a passive solar still with a heat energy storage system,” Desalination, vol. 324, pp. 10–20, Sep. 2013, doi: 10.1016/j.desal.2013.05.017.

[57]. A. S. Abdullah et al., “Enhancing trays solar still performance using wick finned absorber, nano- enhanced PCM,” Alex. Eng. J., vol. 61, no. 12, pp. 12417–12430, Dec. 2022, doi: 10.1016/j.aej.2022.06.033.

[58]. U. F. Alqsair, A. S. Abdullah, and Z. M. Omara, "Enhancement the productivity of drum solar still utilising parabolic solar concentrator, phase change material and nanoparticles' coating," J. Energy Storage. 55, p. 105477, Nov. 2022, doi: 10.1016/j.est.2022.105477.

[59]. S. M. Parsa, A. Yazdani, D. Javadi, M. Afrand, N. Karimi, and H. M. Ali, “Selecting efficient side of thermoelectric in pyramid-shape solar desalination units incorporated phase change material (PCM), nanoparticle, turbulator with battery storage powered by photovoltaic,” J. Energy Storage, vol. 51, p. 104448, Jul. 2022, doi: 10.1016/j.est.2022.104448.

[60]. M. Abdelgaied, A. S. Abdulla, G. B. Abdelaziz, and A. E. Kabeel, "Performance improvement of modified stepped solar distillers using three effective hybrid optimisation modifications," Sustain. Energy Technol. Assess., vol. 51, p. 101936, Jun. 2022, doi: 10.1016/j.seta.2021.101936.

[61]. B. F. Felemban et al., “Experimental investigation on dish solar distiller with modified absorber and phase change material under various operating conditions,” Environ. Sci. Pollut. Res., vol. 29, no. 42, pp. 63248–63259, Sep. 2022, doi: 10.1007/s11356-022-20285-z.

[62]. M. M. Younes, A. S. Abdullah, F. A. Essa, Z. M. Omara, and M. I. Amro, “Enhancing the wick solar still performance using half barrel and corrugated absorbers,” Process Saf. Environ. Prot., vol. 150, pp. 440–452, Jun. 2021, doi: 10.1016/j.psep.2021.04.036.

[63]. M. Tafavogh and A. Zahedi, “Design and production of a novel encapsulated nano phase change materials to improve thermal efficiency of a quintuple renewable geothermal/hydro/biomass/solar/wind hybrid system,” Renew. Energy, vol. 169, pp. 358–378, May 2021, doi: 10.1016/j.renene.2020.12.118.

[64]. M. M. Dawood, T. Nabil, A. E. Kabeel, A. I. Shehata, A. M. Abdalla, and B. E. Elnaghi, “Experimental study of productivity progress for a solar still integrated with parabolic trough collectors with a phase change material in the receiver evacuated tubes and in the still,” J. Energy Storage, vol. 32, p. 102007, Dec. 2020, doi: 10.1016/j.est.2020.102007.

[65]. A. Mahmoud, H. Fath, S. Ookwara, and M. Ahmed, “Influence of partial solar energy storage and solar concentration ratio on the productivity of integrated solar still/humidification-dehumidification desalination systems,” Desalination, vol. 467, pp. 29–42, Oct. 2019, doi: 10.1016/j.desal.2019.04.033.

[66]. S. S. Tuly, M. S. Rahman, M. R. I. Sarker, and R. A. Beg, “Combined influence of fin, phase change material, wick, and external condenser on the thermal performance of a double slope solar still,” J. Clean. Prod., vol. 287, p. 125458, Mar. 2021, doi: 10.1016/j.jclepro.2020.125458.

[67]. M. M. Khairat Dawood et al., “Experimental investigation of a stepped solar still employing a phase change material, a conical tank, and a solar dish,” Int. J. Energy Res., vol. 46, no. 12, pp. 16762–16776, 2022, doi: 10.1002/er.8337.

[68]. K. Ganesan, D. P. Winston, S. Ravishankar, and S. Muthusamy, “Investigational study on improving the yield from hybrid PV/T modified conventional solar still with enhanced evaporation and condensation technique - An experimental approach,” Energy Sources Part Recovery Util. Environ. Eff., vol. 44, no. 2, pp. 5267–5286, Jun. 2022, doi: 10.1080/15567036.2022.2083273.

[69]. M. Benhammou and Y. Sahli, “Energetic and exergetic analysis of a sloped solar still integrated with a separated heat storage system incorporating phase change material,” J. Energy Storage, vol. 40, p. 102705, Aug. 2021, doi: 10.1016/j.est.2021.102705.

[70]. Ghadamgahi M, Ahmadi-Danesh-Ashtiani H, Delfani S. Experimental investigation of multi-stage Solar still using phase-change material. Environ Prog Sustainable Energy. 2021; 40:e13477. https://doi.org/10.1002/ep.13477

[71]. M. Abu-Arabi, M. Al-harahsheh, M. Ahmad, and H. Mousa, “Theoretical modeling of a glass-cooled solar still incorporating PCM and coupled to flat plate solar collector,” J. Energy Storage, vol. 29, p. 101372, Jun. 2020, doi: 10.1016/j.est.2020.101372.

[72]. A. Amarloo and M. B. Shafii, “Enhanced solar still condensation by using a radiative cooling system and phase change material,” Desalination, vol. 467, pp. 43–50, Oct. 2019, doi: 10.1016/j.desal.2019.05.017.

[73]. A. R. A. Elbar and H. Hassan, “Experimental investigation on the impact of thermal energy storage on the solar still performance coupled with PV module via new integration,” Sol. Energy, vol. 184, pp. 584–593, May 2019, doi: 10.1016/j.solener.2019.04.042.

[74]. A. E. Mazraeh, M. Babayan, M. Yari, A. M. Sefidan, and S. C. Saha, “Theoretical study on the performance of a solar still system integrated with PCM-PV module for sustainable water and power generation,” Desalination, vol. 443, pp. 184–197, Oct. 2018, doi: 10.1016/j.desal.2018.05.024.

[75]. M. Al-harahsheh, M. Abu-Arabi, H. Mousa, and Z. Alzghoul, “Solar desalination using solar still enhanced by external solar collector and PCM,” Appl. Therm. Eng., vol. 128, pp. 1030–1040, Jan. 2018, doi: 10.1016/j.applthermaleng.2017.09.073..

[76]. M. Faegh and M. B. Shafii, “Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes,” Desalination, vol. 409, pp. 128–135, May 2017, doi: 10.1016/j.desal.2017.01.023.

[77]. A. E. Kabeel and M. Abdelgaied, “Observational study of modified solar still coupled with oil serpentine loop from cylindrical parabolic concentrator and phase changing material under basin,” Sol. Energy, vol. 144, pp. 71–78, Mar. 2017, doi: 10.1016/j.solener.2017.01.007.

[78]. T. Arunkumar, D. Denkenberger, R. Velraj, R. Sathyamurthy, H. Tanaka, and K. Vinothkumar, “Experimental study on a parabolic concentrator assisted solar desalting system,” Energy Convers. Manag., vol. 105, pp. 665–674, Nov. 2015, doi: 10.1016/j.enconman.2015.08.021.



ISSN: 2578-2010
21 Woodlands Close #02-10 Primz Bizhub Singapore 737854

Email:editorial_office@as-pub.com