Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol 4, No 2 (Published) > Original Research Article
PDF
Untitled

Published

2021-07-13

Issue

Vol 4, No 2 (Published)

Section

Original Research Article

License

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Ye, J., & Liu, S. (2021). Photocatalytic simultaneous removal of nitrite and ammonia via zinc ferrite/N-doped graphene catalyst. Applied Chemical Engineering, 4(2), 9–16. https://doi.org/10.24294/ace.v4i2.1344
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Photocatalytic simultaneous removal of nitrite and ammonia via zinc ferrite/N-doped graphene catalyst

Jia Ye

School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology

Shouqing Liu

Jiangsu Key Laboratory of Environmental Functional Materials


DOI: https://doi.org/10.24294/ace.v4i2.1344


Keywords: ZnFe2O4/NG, Nitrite, Ammonia Nitrogen, Photocatalysis, Simultaneous Removal


Abstract

Zinc ferrite/N-doped graphene catalysts were synthesized by hydrothermal reaction. The synthesized materials were characterized by XRD, TEM, Raman and UV-VIS-DRS. We explored the photocatalytic simultaneous removal of nitrite and ammonia via zinc ferrite/N-doped graphene as the photocatalyst. The effects of Ph, amount of catalyst, N-doped graphene content, and initial concentration of ammonia on photocatalytic removal of nitrite and ammonia were examined. The results show that the removal ratio of nitrite–N and ammonia–N is 90.95% and 62.84% respectively, when the dosage of ZnFe2O4/NG (NG 5.0 wt%) is 1.5 g·L-1 and the initial concentrations of nitrite–N 50 mg·L-1,ammonia–N 100 mg·L-1 with pH 9.5 under anaerobic conditions upon white light irradiation for 3 h. After the solution is aerated for 30 mins and irradiated for 10 h under aerobic conditions, the removal ratios of nitrite–N,ammonia–N and total nitrogen are 92.04%, 89.44% and 90.31% respectively. The complete removal of nigrogen is done.

References

[1] Yang J, Xu K. Microbiology in sewage treatment (in Chinese). Science and Technology & Innovation 2017; (12): 71.

[2] Zhang L, Xu J, Qiao X. New process for high-concentration AN wastewater treatment (in Chinese). Process 2017; (10): 20-22.

[3] Wei N, Zhao S, Sun Y, et al. Strategies for dosing carbon source for enhanced nitrogen removal in wastewater treatment plant. China Water & Wastewater 2017; 33(1): 71-75.

[4] Liu S, Zhu X, Zhou Y, et al. Smart photocatalytic removal of ammonia through molecular recognition of zinc ferrite/reduced graphene oxide hybrid catalyst under visible-light irradiation. Catalysis Science & Technology 2017; 7(15): 3210-3219.

[5] Zhang H, Liu S. Catalytic properties of graphene/molybdenum sulfide under near-infrared light irradiation. Journal of Suzhou University of Science and Technology (Natural Science Edition) 2017; 34(4): 37-41, 53.

[6] Xue T, Zhang H, Liu S. Synthesis of reduced graphene oxide-cerium oxide hybrid catalyst and the degradation of ammonia under visible light irradiation. Journal of Functional Materials 2017; 48(3): 3218-3222.

[7] Zou C, Liu S, Shen Z, et al. Efficient removal of ammonia with a novel graphene-supported BiFeO3 as a reusable photocatalyst under visible light. Chinese Journal of Catalysis 2017; 38(1): 20-28.

[8] Xiao B, Liu S. Photocatalytic oxidation of ammonia via an activated carbon-nickel ferrite hybrid catalyst under visible light irradiation. Acta Physico-Chimica Sinica 2014; 30(9): 1697-1705.

[9] Kominami H, Kitsui K, Ishiyama Y, et al. Simultaneous removal of NN and ammonia as zinitrogen in aqueous suspensions of a titanium (IV) oxide photocatalyst under reagent-free and metal-free conditions at room temperature. RSC Advances 2014; 46(7): 51576-51579.

[10] Liu S, Xiao B, Feng L, et al. Graphene oxide enhances the Fenton-like photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation. Carbon 2013; 64(9): 197-206.

[11] Wang Z, Schiferl D, Zhao Y, et al. High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4. Journal of Physics and Chemistry of Solids 2003; 64(12): 2517-2523.

[12] Yang C, Li Z, Yu L, et al. Mesoporous zinc ferrite microsphere-decorated graphene Oxide as a flame retardant additive: preparation,characterization, and flame retardance evaluation. Industrial & Engineering Chemistry Research 2017; 56(27): 7720-7729.

[13] Akhavan O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 2010; 48(2): 509-519.



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com