Published
2022-09-07
Issue
Section
Original Research Article
License
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Aluminum doping and lithium tungstate surface coating double effect to improve the cycle stability of lithium-rich manganese-based cathode materials
Xuqiang Ren
School of materials science and engineering, Chang’an University
Donglin Li
School of materials science and engineering, Chang’an University
Zhenzhen Zhao
School of materials science and engineering, Chang’an University
Guangqi Chen
School of materials science and engineering, Chang’an University
Kun Zhao
School of materials science and engineering, Chang’an University
Xiangze Kong
School of materials science and engineering, Chang’an University
Tongxin Li
School of materials science and engineering, Chang’an University
DOI: https://doi.org/10.24294/ace.v5i2.1642
Keywords: Lithium-Ion Battery, Sol-Gel Method, Lithium-Rich Manganese-Based Cathode Material, Li2WO4, Al Doping
Abstract
Al doped lithium-rich manganese-based Li1.2Mn0.54−xAlxNi0.13Co0.13O2 (x = 0, 0.03) cathode materials for lithium-ion batteries were synthesized with sol-gel method, and then Li2WO4 coating was prepared by one-step liquid phase method. The effects of Al doping and Li2WO4 coating on the electrochemical properties of lithium-rich manganese-based cathode materials were systematically studied. The results show that Al doping significantly improves the cycle stability of lithium-rich manganese-based cathode material, and the coating Li2WO4 significantly improves its magnification performance and the voltage attenuation of discharge plateau. The coating amount of Li2WO4 is 5%, and the specific capacity of Li1.2Mn0.51Al0.03Ni0.13Co0.13O2 cathode material is still up to about 110 mAh·g−1 in the charge and discharge voltage range of 2.0-4.8 V and the current density of 1,000 mA·g−1. At the same time, the capacity retention rate of 300 cycles at the current density of 100 mA·g−1 is 78%, and the voltage attenuation of the discharge plateau during the cycle is also significantly reduced. This work provides a new idea for solving the cycle stability and platform voltage attenuation of lithium-ion battery lithium-rich manganese-based cathode materials.
References
[1] Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001; 414: 359–367.[2] Armand M, Tarascon JM. Building better batteries. Nature 2008; 451: 652–657.
[3] Park KS, Cho MH, Jin SJ, et al. Effect of Li ion in transition metal sites on electrochemical behavior of layered lithium manganese oxides solid solutions. Solid State Ionics 2004; 171(1–2): 141–146.
[4] Kang K, Meng YS, Breger J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006; 311: 977–980.
[5] Fergus JW. Ceramic and polymeric solid electrolytes for lithium-ion batteries. Journal of Power Sources 2010; 195(15): 4554–4569.
[6] Mohanty D, Kalnaus S, Meisner RA, et al. Structural transformation in a Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold. RSC Advances 2013; 3: 7479–7485.
[7] Gallagher KG, Croy JR, Balasubramanian M, et al. Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. Electrochemistry Communications 2013; 33: 96–98.
[8] Croy JR, Gallagher GK, Balasubramanian M, et al. Examining hysteresis in composite xLi2MnO3∙(1−x)LiMO2 cathode structures. The Journal of Physical Chemistry C 2013; 117: 6525.
[9] Liu S, Liu Z, Shen X, et al. Li–Ti cation mixing enhanced structural and performance stability of Li-rich layered oxide. Advanced Engineering Materials 2019; 9(32): 1901530.
[10] Zhang JN, Li Q, Ouyang C, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Natural Energy 2019; 4: 594–603.
[11] He W, Yuan DD, Qian JF, et al. Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. Journal of Materials Chemistry A 2013; 1: 11397.
[12] Li Q, Li G, Fu C, et al. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Applied Materials & Interfaces 2014; 6(13): 10330–10341.
[13] Xiang Y, Li J, Wu X, et al. Synthesis and electrochemical characterization of Mg-doped Li-rich Mn-based cathode material. Ceramics International 2016; 42: 8833.
[14] Knight JC, Nandakumar P, Kan WH, et al. Effect of Ru substitution on the first charge–discharge cycle of lithium-rich layered oxides. Journal of Materials Chemistry A 2015; 3: 2006–2011.
[15] Deng ZQ, Manthiram A. Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. Journal of Physical Chemistry C 2011; 115: 7097–7103.
[16] Du J, Shan Z, Zhu K, et al. Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by doping with molybdenum for lithium battery. Journal of Solid State Electrochemistry 2015; 19(4): 1037–1044.
[17] Yu SH, Yoon T, Mun JY, et al. Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium-ion batteries. Journal of Materials Chemistry A 2013; 1: 2833–2839.
[18] Li L, Song BH, Chang YL, et al. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Journal of Power Sources 2015; 283: 162–170.
[19] An J, Shi LY, Chen GR, et al. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. Journal of Materials Chemistry A 2017; 5: 19728.
[20] Li Z, Wang Z, Ban L, et al. Recent Advances on Surface Modification of Li- and Mn-Rich Cathode Materials. Acta Chim. Sinica 2019; 77: 1115.
[21] Lim SN, Seo JY, Jung DS, et al. The crystal structure and electrochemical performance of Li1.167Mn0.548Ni0.18Co0.105O2 composite cathodes doped and co-doped with Mg and F. Journal of Electroanalytical Chemistry 2015; 740: 88.
[22] Hu S, Cheng G, Cheng M, et al. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries. Journal of Power Sources 2009; 188: 554.
[23] Zheng JM, Li J, Zhang ZR, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics 2008; 179(27–32): 1794–1799.
[24] Zhang X, Belharouak I, Li L, et al. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Advanced Energy Materals 2013; 3: 1299–1307.
[25] Wu Q, Yin Y, Sun S, et al. Novel AlF3 surface modified spinel LiMn1.5Ni0.5O4, for lithium-ion batteries: Performance characterization and mechanism exploration. Electrochimica Acta 2015; 158: 73–80.
[26] Wu Y, Muruga VA, Manthiram A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4. Journal of the Electrochemical Society 2008; 155: A635.
[27] Li CD, Yao ZL, Xu J, Tang P, Xiong X. Surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoparticles with LaF3 as cathode for Li-ion battery. Ionics 2017; 23: 549–558.
[28] Ma D, Zhang P, Li Y, et al. Li1.2Mn0.54Ni0.13Co0.13O2-encapsulated carbon nanofiber network cathodes with improved stability and rate capability for Li-ion batteries. Scientific Reports 2015; 5: 11257.
[29] Xiang Y, Yin Z, Zhang Y, et al. Effects of synthesis conditions on the structural and electrochemical properties of the Li-rich material Li[Li0.2Ni0.17Co0.16Mn0.47]O2 via the solid-state method. Electrochimica Acta 2013; 19: 214.
[30] Chen Y, Xu G, Li J, et al. High capacity 0.5 Li2MnO3·0.5LiNi0.33Co0.33Mn0.33O2 cathode material via a fast co-precipitation method. Electrochimica Acta 2013; 87: 686.
[31] Song C, Feng W, Su W, et al. Influence of the pH of li-rich Li1.2Mn0.54Ni0.13Co0.13O2 on the electrochemical performance by sol–gel method. Integrated Ferroelectrics 2019; 200(1): 117–127.
[32] Huang X, Zhang Q, Chang H, et al. Hydrothermal synthesis of nanosized LiMnO2-Li2MnO3 compounds and their electrochemical performances. Journal of the Electrochemical Society 2009; 156(3): A162.
[33] Li Z, Chernova NA, Feng J, et al. Stability and rate capability of Al substituted lithium-rich high-manganese content oxide materials for Li-ion batteries. Journal of the Electrochemical Society 2012; 159: A116.
[34] Yan W, Xie Y, Jiang J, et al. Enhanced rate performance of Al-doped Li-rich layered cathode material via nucleation and post-solvothermal method. ACS Sustainable Chemistry & Engineering 2018; 6(4): 4625–4632.
[35] Yahaya AH, Ibrahim ZA, Arof AK. Thermal, electrical and structural properties of Li2WO4. Journal of Alloys and Compounds 1996; 241(1–2): 148–152.
[36] Nassau K, Glass AM, Grasso M, et al. Rapidly quenched tungstate and molybdate composition containing lithium: Glass formation and ionic conductivity. Journal of the Electrochemical Society 1980; 127(12): 2743.
[37] Hayashi T, Okada J, Toda E, et al. Electrochemical effect of lithium tungsten oxide modification on LiCoO2 thin film electrode. Journal of Power Sources 2015; 285: 559–567.
[38] Hayashi T, Matsuda Y, Kuwata N, et al. High-power durability of LiCoO2 thin film electrode modified with amorphous lithium tungsten oxide. Journal of Power Sources 2017; 354: 41–47.
[39] Hayashi T, Miyazaki T, Matsuda Y, et al. Effect of lithium-ion diffusibility on interfacial resistance of LiCoO2 thin film electrode modified with lithium tungsten oxides. Journal of Power Sources 2016; 305: 46–53.
[40] Li X, Cao Z, Dong H, et al. Investigation of the structure and performance of Li[Li0.13Ni0.305Mn0.565]O2 Li-rich cathode materials derived from eco-friendly and simple coating techniques. RSC Advances 2020; 10(6): 3166–3174.
[41] Yue P, Wang Z, Guo HJ, et al. A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2−zFz cathode materials. Electrochimical Acta 2013; 92: 1–8.
[42] Nayak PK, Grinblat J, Levi M, et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Advanced Engineering Materials 2016; 6: 1502398–1502411.
[43] Thackeray MM, Kang SH, Johnson CS, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. Journal of Materials Chemistry 2007; 17(30): 3112–3125.
[44] Zhen ZH, Li Q. Introduction to Rietveld refinement with X-ray power diffraction data GSAS software. Beijing: China Building Materials Press; 2016.
[45] Guilmard M, Rougier A, Grüne M, et al. Effects of aluminum on the structural and electrochemical properties of LiNiO2. Journal of Power Sources 2003; 115(2): 305–314.
[46] Guo H, Xia Y, Zhao H, et al. Stabilization effects of Al doping for enhanced cycling performances of Li-rich layered oxides. Ceramics International 2017; 43(16): 13845–13852.