Published
2023-01-18
Issue
Section
Review Article
License
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Organic sensing element approach in electrochemical sensor for automated and accurate pesticides detection
Saira Bano
Jamia Millia Islamia
Prasanta Kumar Sahu
University of Delhi
Vinod Kumar
Jawaharlal Nehru University
Vandana Kumari
Himachal Pradesh University
Akanksha Gupta
University of Delhi
Ravi Kant
University of Delhi
Ravinder Kumar
Gurukula Kangri (Deemed to be University)
DOI: https://doi.org/10.24294/ace.v6i1.1933
Keywords: Pesticides, Sensing Elements, Electrochemical Sensor, Pesticide Detection, Sensitivity
Abstract
The primary component for human health is food quality and its safety. The world has crossed 8 billion population highlighting major demand to fulfil high consumption food requirement. To overcome food security issue, inorganic farming trend is booming. In the process of boosting agriculture and allied products, unethical practices of using pesticides achieve heights. Protection of plants is necessary from weeds and pests. Thus, in order, to minimize the curb of unwanted growth of weeds and pest attack, pesticides act as an agent for protection and helping for immense production of crops. Therefore, swift and precise detection of harmful pesticides in agriculture products is required in urgent demand. In this review, the distinct organic material-based sensor such as colorimetric sensing, fluorescent sensors, gas chromatography-mass spectrometry, and liquid chromatography, with the organic compounds as sensing elements to monitor pesticides level in distinct samples due to their specificity, reusability, stability, high sensitivity, and selectivity. Apart from it, this study provides a comprehensive overview of the recent major advancement in organic sensing elements in electrochemical sensor pesticides detection based on molecularly imprinted, multimodal sensor polydopamine and conductive polymer at low-cost production.Author Biographies
Saira Bano, Jamia Millia Islamia
Ms. Saira Bano received her B.sc.(Hons) Physics and M.Sc. (Electronics) degree from Jamia Millia Islamia, Central University, Delhi, India. Currently, she is a research trainee candidate under the supervision of Dr. Vinod Kumar at the Special Centre for Nanoscience, Jawaharlal Nehru University situated at New Delhi, India. Her current research focuses on synthesis of metal oxide nanoparticles and their various applications in sensors, energy harvesting.Prasanta Kumar Sahu, University of Delhi
Dr. Prasanta Kumar Sahu is an Associate Professor in the Department of Chemistry, Shivaji Colloge, University of Delhi, Delhi, India since 1994. He completed his Ph.D. from Department of Chemistry, University of Delhi, Delhi, India. He worked on the application of nanomaterials in biological activities.
Vinod Kumar, Jawaharlal Nehru University
Currently, Dr. Vinod Kumar is an Assistant Professor in the Special Centre for Nanoscience in Jawaharlal Nehru University, Delhi, India. Earlier, he was an Assistant Professor in Kirori Mal College, University of Delhi. He completed his Ph.D. in Materials Chemistry from Department of Chemistry and M.Sc. and B.Sc. (Hons) Chemistry from Kirori Mal College, University of Delhi, India. His research focuses on the “Synthesis, structure and properties of binary/mixed metal oxides nanomaterials” and their applications in water splitting, electrode materials of Li-ion batteries, SAW based sensors, water purification and nanomedicine along with nanotoxicity.Vandana Kumari, Himachal Pradesh University
Assistnat Professor in Department of Biosciences, Himachal Pradesh University, Summer Hill, Shimla, HP, IndiaAkanksha Gupta, University of Delhi
Dr. Akanksha Gupta did Ph.D. in Materials Science from Department of Chemistry, University of Delhi, India. She completed M.Sc. and B.Sc. (Hons) Chemistry from Hansraj College, University of Delhi, Delhi, India. She has vast experience in synthesis, crystallography and characterization of several mixed metal oxides having potential applications in cathode materials for lithium ion batteries and photocatalysis. Currently, she is an Assistant Professor in Sri Venkateswara College, University of Delhi, IndiaRavi Kant, University of Delhi
Dr Ravi Kant working as Assistant Professor in Zakir Husain Delhi College, University of Delhi. He completed M.Sc. and B.Sc. (Hons) Chemistry from St Stephen's College, University of Delhi, Delhi, India. He completed his Ph.D. in Chemistry from University of Delhi, Delhi. His research focus on in synthesis and characterization of coordination complexes, polymer, materials and its applicationRavinder Kumar, Gurukula Kangri (Deemed to be University)
Dr. Ravinder Kumar is an Assistant Professor in the Department of Chemistry, Gurukula Kangri (Deemed to be University) Haridwar, Uttarakhand, India. Before joining Gurukula Kangri he has served Ramjas College, University of Delhi. He has more than eight years of teaching and research experiences. Dr. Ravinder completed his Ph.D in synthesis, design and application of catalyst from Department of Chemistry, University of Delhi, Delhi and completed M.Sc. in Inorganic Chemistry from Kirori Mal College, University of Delhi, Delhi, India. His research focus on Synthesis, structural and catalytic application of metal complexes for organic transformation specially in the development of heterogeneous catalytic systems for sustainable and efficient catalysis for waste water treatment and storage of energy.References
1. Wang W, Wang X, Cheng N, et al. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. TrAC Trends in Analytical Chemistry 2020; 132: 116041. doi: 10.1016/j.trac.2020.116041.2. Abhilash PC, Singh N. Pesticide use and application: An Indian scenario. Journal of Hazardous Materials 2009; 165(1–3): 1–12. doi: 10.1016/j.jhazmat.2008.10.061.
3. Kumar V, Vaid K, Bansal SA, Kim KH. Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: Current status and perspectives. Biosensors and Bioelectronics 2020; 165: 112382. doi: 10.1016/j.bios.2020.112382.
4. Su D, Li H, Yan X, et al. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC Trends in Analytical Chemistry 2021; 134: 116126. doi: 10.1016/j.trac.2020.116126.
5. Kaur N, Khunger A, Wallen SL, et al. Advanced green analytical chemistry for environmental pesticide detection. Current Opinion in Green and Sustainable Chemistry 2021; 30: 100488. doi: 10.1016/j.cogsc.2021.100488.
6. Kim D, Na SY, Kim HJ. A fluorescence turn-on probe for a catalytic amount of cyanides through the cyanide-mediated cinnamate-to-coumarin transformation. Sensors and Actuators B: Chemical 2016; 226: 227–231. doi: 10.1016/j.snb.2015.11.122.
7. Chen H, Zhang L, Hu Y, et al. Nanomaterials as optical sensors for application in rapid detection of food contaminants, quality and authenticity. Sensors and Actuators B: Chemical 2021; 329: 129135. doi: 10.1016/j.snb.2020.129135.
8. López Ó, Fernández-Bolaños JG, Gil MV. New trends in pest control: The search for greener insecticides. Green Chemistry 2005; 7(6): 431–442. doi: 10.1039/B500733J.
9. Sharma A, Shukla A, Attri K, et al. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety 2020; 201: 110812. doi: 10.1016/j.ecoenv.2020.110812.
10. Cebi N, Manav OG, Olgun EO. Analysis of pesticide residues in hazelnuts using the QuEChERS method by liquid chromatography–tandem mass spectrometry. Microchemical Journal 2021; 166: 106208. doi: 10.1016/j.microc.2021.106208.
11. Patel S, Jamunkar R, Sinha D, et al. Recent development in nanomaterials fabricated paper-based colorimetric and fluorescent sensors: A review. Trends in Environmental Analytical Chemistry 2021; 31: e00136. doi: 10.1016/j.teac.2021.e00136.
12. Fang L, Jia M, Zhao H, et al. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends in Food Science & Technology 2021; 116: 387–404. doi: 10.1016/j.tifs.2021.07.039.
13. Fragoso DFM, Túler AC, Pratissoli D, et al. Biological activity of plant extracts on the small tomato borer Neoleucinodes elegantalis, an important pest in the Neotropical region. Crop Protection 2021; 145: 105606. doi: 10.1016/j.cropro.2021.105606.
14. Du H, Xie Y, Wang J. Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications. TrAC Trends in Analytical Chemistry 2021; 135: 116178. doi: 10.1016/j.trac.2020.116178.
15. Liu X, Cheng H, Zhao Y, et al. Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide. Biosensors and Bioelectronics 2022; 199: 113906. doi: 10.1016/j.bios.2021.113906.
16. Yan L, Yan X, Li H, et al. Reduced graphene oxide nanosheets and gold nanoparticles covalently linked to ferrocene-terminated dendrimer to construct electrochemical sensor with dual signal amplification strategy for ultra-sensitive detection of pesticide in vegetable. Microchemical Journal 2020; 157: 105016. doi: 10.1016/j.microc.2020.105016.
17. Bhawna, Kumar S, Sharma R, et al. Recent insights into SnO2-based engineered nanoparticles for sustainable H2 generation and remediation of pesticides. New Journal of Chemistry 2022; 46(9): 4014–4048. doi: 10.1039/D1NJ05808H.
18. Singh AP, Balayan S, Hooda V, et al. Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. International Journal of Biological Macromolecules 2020; 164: 3943–3952. doi: 10.1016/j.ijbiomac.2020.08.215.
19. Wen T, Yu J, Yuan L, et al. Behavior and mechanism of in-situ synthesis of auxiliary electrode for electrochemical sulfur sensor by calcium aluminate system. Ceramics International 2020; 46(4): 4256–4264. doi: 10.1016/j.ceramint.2019.10.146.
20. Ibrahim H, Temerk Y. A novel electrochemical sensor based on gold nanoparticles decorated functionalized carbon nanofibers for selective determination of xanthine oxidase inhibitor febuxostat in plasma of patients with gout. Sensors and Actuators B: Chemical 2021; 347: 130626. doi: 10.1016/j.snb.2021.130626.
21. Suresh I, Selvaraj S, Nesakumar N, et al. Nanomaterials based non-enzymatic electrochemical and optical sensors for the detection of carbendazim: A review. Trends in Environmental Analytical Chemistry 2021; 31: e00137. doi: 10.1016/j.teac.2021.e00137.
22. Madianos L, Skotadis E, Tsekenis G, et al. Ιmpedimetric nanoparticle aptasensor for selective and label free pesticide detection. Microelectronic Engineering 2018; 189: 39–45. doi: 10.1016/j.mee.2017.12.016.
23. Musarurwa H, Tawanda Tavengwa N. Extraction and electrochemical sensing of pesticides in food and environmental samples by use of polydopamine-based materials. Chemosphere 2021; 266: 129222. doi: 10.1016/j.chemosphere.2020.129222.
24. Liu J, Siavash Moakhar R, Mahshid S, et al. Multimodal electrochemical and SERS platform for chlorfenapyr detection. Applied Surface Science 2021; 566: 150617. doi: 10.1016/j.apsusc.2021.150617.
25. Wen S, Liang R, Zhang L, Qiu J. Multimodal assay of arsenite contamination in environmental samples with improved sensitivity through stimuli-response of multiligands modified silver nanoparticles. ACS Sustainable Chemistry & Engineering 2018; 6: 6223–6232. doi: 10.1021/acssuschemeng.7b04934.
26. Amatatongchai M, Sitanurak J, Sroysee W, et al. Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination. Analytica Chimica Acta 2019; 1077: 255–265. doi: 10.1016/j.aca.2019.05.047.
27. Ding S, Lyu Z, Li S, et al. Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection. Biosensors and Bioelectronics 2021; 191: 113434. doi: 10.1016/j.bios.2021.113434.
28. Zhang Y, Zhang W, Zhang L, et al. A molecularly imprinted electrochemical BPA sensor based on multi-walled carbon nanotubes modified by CdTe quantum dots for the detection of bisphenol A. Microchemical Journal 2021; 170: 106737. doi: 10.1016/j.microc.2021.106737.
29. Liu L, Guo J, Ding L. Polyaniline nanowire arrays deposited on porous carbon derived from raffia for electrochemical detection of imidacloprid. Electroanalysis 2021; 33: 2048–2052. doi: 10.1002/elan.202100162.
30. Dong S, Zhang J, Huang G, et al. Conducting microporous organic polymer with –OH functional groups: Special structure and multi-functional integrated property for organophosphorus biosensor. Chemical Engineering Journal 2021; 405: 126682. doi: 10.1016/j.cej.2020.126682.
31. Chang J, Yu L, Hou T, et al. Direct and specific detection of glyphosate using a phosphatase-like nanozyme-mediated chemiluminescence strategy. Analytical Chemistry 2022; 95(9): 4479–4485. doi: 10.1021/acs.analchem.2c05198.
32. Zhang X, Wu D, Zhou X, et al. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends in Analytical Chemistry 2018; 121: 115668. doi: 10.1016/j.trac.2019.115668.
33. Sun Y, Wei J, Zou J, et al. Electrochemical detection of methyl-paraoxon based on bifunctional cerium oxide nanozyme with catalytic activity and signal amplification effect. Journal of Pharmaceutical Analysis 2021; 11(5): 653–660. doi: 10.1016/j.jpha.2020.09.002.
34. Borah SJ, Gupta A, Sahu PK, et al. Science through the lens of nature: Recent advances in biomimetic approach towards pesticide degradation. SynOpen 2023; 7(1): 33–42. doi: 10.1055/a-2004-7289.
35. Wu J, Yang Q, Li Q, et al. Two-dimensional MnO2 nanozyme-mediated homogeneous electrochemical detection of organophosphate pesticides without the interference of H2O2 and color. Analytical Chemistry 2021; 93(8): 4084–4091. doi: 10.1021/acs.analchem.0c05257.
36. Zhu Y, Wu J, Han L, et al. Nanozyme sensor arrays based on heteroatom-doped graphene for detecting pesticides. Analytical Chemistry 2020; 92(11): 7444–7452. doi: 10.1021/acs.analchem.9b05110.
37. Shen Y, Gao X, Chen H, et al. Ultrathin C3N4 nanosheets-based oxidase-like 2D fluorescence nanozyme for dual-mode detection of organophosphorus pesticides. Journal of Hazardous Materials 2023; 451: 131171. doi: 10.1016/j.jhazmat.2023.131171.
38. Jiang J, Zou S, Ma L, et al. Surface-enhanced raman scattering detection of pesticide residues using transparent adhesive tapes and coated silver nanorods. ACS Applied Materials & Interfaces 2018; 10(10): 9129–9135. doi: 10.1021/acsami.7b18039.
39. Sammi H, Nair RV, Sardana N. Recent advances in nanoporous AAO based substrates for surface-enhanced raman scattering. Materials Today: Proceedings 2020; 41(4): 843–850. doi: 10.1016/j.matpr.2020.09.233.
40. Wang TJ, Barveen NR, Liu ZY, et al. Transparent, flexible plasmonic Ag NP/PMMA substrates using chemically patterned ferroelectric crystals for detecting pesticides on curved surfaces. ACS Applied Materials & Interfaces 2021; 13(29): 34910–34922. doi: 10.1021/acsami.1c08233.
41. Xu R, Dai S, Dou M, et al. Simultaneous, label-free and high-throughput SERS detection of multiple pesticides on Ag@three-dimensional silica photonic microsphere array. Journal of Agricultural and Food Chemistry 2022; 71(6): 3050–3059. doi: 10.1021/acs.jafc.2c07846.
42. Yu M, Chang Q, Zhang L, et al. Ultra-sensitive detecting OPs-isocarbophos using photoinduced regeneration of aptamer-based electrochemical sensors. Electroanalysis 2022; 34(6): 995–1000. doi: 10.1002/elan.202100222.
43. Tu X, Gao F, Ma X, et al. Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. Journal of Hazardous Materials 2020; 396: 122776. doi: 10.1016/j.jhazmat.2020.122776.
44. Singh AP, Balayan S, Gupta S, et al. Detection of pesticide residues utilizing enzyme-electrode interface via nano-patterning of TiO2 nanoparticles and molybdenum disulfide (MoS2) nanosheets. Process Biochemistry 2021; 108: 185–193. doi: 10.1016/j.procbio.2021.06.015.
45. Qader B, Hussain I, Baron M, et al. A molecular imprinted polymer sensor for biomonitoring of fenamiphos pesticide metabolite fenamiphos sulfoxide. Electroanalysis 2021; 33(5): 1129–1136. doi: 10.1002/elan.202060599.
46. Zhao Y, Zheng X, Wang Q, et al. Electrochemical behavior of reduced graphene oxide/cyclodextrins sensors for ultrasensitive detection of imidacloprid in brown rice. Food Chemistry 2020; 333: 127495. doi: 10.1016/j.foodchem.2020.127495.
47. Majdinasab M, Daneshi M, Marty JL. Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Talanta 2021; 232: 122397. doi: 10.1016/j.talanta.2021.122397.
48. Almutairi M, Alsaleem T, Jeperel H, et al. Determination of inorganic arsenic, heavy metals, pesticides and mycotoxins in Indian rice (Oryza sativa) and a probabilistic dietary risk assessment for the population of Saudi Arabia. Regulatory Toxicology and Pharmacology 2021; 125: 104986. doi: 10.1016/j.yrtph.2021.104986.
49. Li X, Gao X, Gai P, et al. Degradable metal-organic framework/methylene blue composites-based homogeneous electrochemical strategy for pesticide assay. Sensors and Actuators B: Chemical 2020; 323: 128701. doi: 10.1016/j.snb.2020.128701.
50. Mahmoudpour M, Torbati M, Mousavi MM, et al. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. TrAC Trends in Analytical Chemistry 2020; 129: 115943. doi: 10.1016/j.trac.2020.115943.