Published
2023-07-24
Issue
Section
Review Article
License
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Recent advances in self-assembled cyclic peptide-based smart nanostructures
Monika Kherwal
School of Physical Sciences, Jawaharlal Nehru University
Akanksha Gupta
Department of Chemistry, Sri Venkateshwara College, University of Delhi
Mercykutty Jacob
Department of Chemistry, Sri Venkateshwara College, University of Delhi
Anshuman Chandra
School of Physical Sciences, Jawaharlal Nehru University
Prashanta Kumar Sahu
Department of Chemistry, Shivaji College, University of Delhi
Vijay Kumar Goel
School of Physical Sciences, Jawaharlal Nehru University
Vinod Kumar
Special Centre for Nano Science, Jawaharlal Nehru University
DOI: https://doi.org/10.24294/ace.v6i1.1989
Keywords: Peptides, Cyclic Peptides, Therapeutic, Nanotubes, Nanowires, Nanospheres, Drug Delivery
Abstract
Peptide chemistry has emerged as one of the growing fields of research. Peptide chemistry has positively impacted various areas, including biochemistry, medicine, hormonal therapy, drug delivery, food and the cosmetic industry, materials science, and nanotechnology, via the development of ways to change and imitate the shape and function of peptide structures. The structural changes of peptides and the employment of innovative synthetic techniques have left an indelible mark on a number of scientific disciplines. Numerous nanostructures based on simple and complicated peptides have been constructed so far; however, cyclic peptides have attracted a great deal of interest from the scientific community due to their wide range of applications and distinctive properties. These properties include self-assembly, morphogenesis, and charge distribution, among others. In addition, nanostructured cyclic peptides offer increased and effective performance due to their high stability, prolonged plasma half-life, membrane permeability, and efficient transport, among other attributes. Recent work indicates the manufacture of nanostructured cyclic peptides by chemical means. In this review, a brief investigation of the morphology of cyclic peptides was conducted. In addition, the therapeutic potential of these nanostructured cyclic peptides and the prognosis for a variety of potential applications are also discussed.References
1. Demmer O, Dijkgraaf I, Schottelius M, et al. Introduction of functional groups into peptides via n-alkylation. Organic Letters 2008; 10: 2015–2018. doi: 10.1021/ol800654n.2. Valeur E, Guéret SM, Adihou H, et al. New modalities for challenging targets in drug discovery. Angewandte Chemie International Edition 2017; 56(35): 10294–10323. doi: 10.1002/anie.201611914.
3. Qi G, Gao Y, Wang L, Wang H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Advanced Materials 2018; 30(22): e1703444. doi: 10.1002/adma.201703444.
4. Wang C, Hong T, Cui P, et al. Antimicrobial peptides towards clinical application: Delivery and formulation. Advanced Drug Delivery Reviews 2021; 175: 113818. doi: 10.1016/j.addr.2021.05.028.
5. Sharma R, Borah SJ, Bhawna, et al. Functionalized peptide-based nanoparticles for targeted cancer nanotherapeutics: A state-of-the-art review. ACS Omega 2022; 7(41): 36092–36107. doi: 10.1021/acsomega.2c03974.
6. Moore TS, Winmill TF. CLXXVII.—The state of amines in aqueous solution. Journal of the Chemical Society, Transactions 1912; 101: 1635–1676. doi: 10.1039/CT9120101635.
7. Buckton LK, Rahimi MN, McAlpine SR. Cyclic peptides as drugs for intracellular targets: The next frontier in peptide therapeutic development. Chemistry—A European Journal 2021; 27(5): 1487–1513. doi: 10.1002/chem.201905385.
8. Abdullah T, Bhatt K, Eggermont LJ, et al. Supramolecular self-assembled peptide-based vaccines: Current state and future perspectives. Frontiers in Chemistry 2020; 8: 598160. doi: 10.3389/fchem.2020.598160.
9. Sato K, Hendricks MP, Palmer LC, Stupp SI. Peptide supramolecular materials for therapeutics. Chemical Society Reviews 2018; 47: 7539–7551. doi: 10.1039/c7cs00735c.
10. McLaughlin CK, Hamblin GD, Sleiman HF. Supramolecular DNA assembly. Chemical Society Reviews 2011; 40: 5647–5656. doi: 10.1039/c1cs15253j.
11. Sharma R, Gupta A, Kumar R, et al. An update on COVID-19: Role of nanotechnology in vaccine development. SMC Bulletin 2020; 11: 88–96.
12. Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: A review of recent success in drug delivery. Clinical and Translational Medicine 2017; 6: 1–21. doi: 10.1186/s40169-017-0175-0.
13. Kumar S, Sharma R, Bhawna, et al. Prospects of biosensors based on functionalized and nanostructured solitary materials: Detection of viral infections and other risks. ACS Omega 2022; 7(26): 22073–22088. doi: 10.1021/acsomega.2c01033.
14. Kim HS, Hartgerink JD, Ghadiri MR. Oriented self-assembly of cyclic peptide nanotubes in lipid membranes. Journal of the American Chemical Society 1998; 120(18): 4417–4424. doi: 10.1021/ja9735315.
15. Webber MJ, Kessler JA, Stupp SI. Emerging peptide nanomedicine to regenerate tissues and organs. Journal of Internal Medicine 2010; 267: 71–88. doi: 10.1111/j.1365-2796.2009.02184.x.
16. Yu C, Huang W, Li Z, et al. Progress in self-assembling peptide-based nanomaterials for biomedical applications. Current Topics in Medicinal Chemistry 2015; 16(3): 281–290. doi: 10.2174/1568026615666150701114527.
17. Song Q, Cheng Z, Kariuki M, et al. Molecular self-assembly and supramolecular chemistry of cyclic peptides. Chemical Reviews 2021; 121(22): 13936–13995. doi: 10.1021/acs.chemrev.0c01291.
18. Zhao X, Zhang S. Self-assembling nanopeptides become a new type of biomaterial. Advances in Polymer Science 2006; 203: 145–170. doi: 10.1007/12_088.
19. Rovero P, Quartara L, Fabbri G. Synthesis of cyclic peptides on solid support. Tetrahedron Letters 1991; 32(23): 2639–2642. doi: 10.1016/S0040-4039(00)78806-X.
20. Chow HY, Zhang Y, Matheson E, Li X. Ligation technologies for the synthesis of cyclic peptides. Chemical Reviews 2019; 119(17): 9971–10001. doi: 10.1021/acs.chemrev.8b00657.
21. Mandal D, Shirazi AN, Parang K. Cell-penetrating homochiral cyclic peptides as nuclear-targeting molecular transporters. Angewandte Chemie International Edition 2011; 50: 9633–9637. doi: 10.1002/anie.201102572.
22. Panigrahi B, Singh RK, Suryakant U, et al. Cyclic peptides nanospheres: A ‘2-in-1’ self-assembled delivery system for targeting nucleus and cytoplasm. European Journal of Pharmaceutical Sciences 2022; 171: 106125. doi: 10.1016/j.ejps.2022.106125.
23. Kumar V, Van Rensburg W, Snoep JL, et al. Antimicrobial nano-assemblies of tryptocidine C, a tryptophan-rich cyclic decapeptide, from ethanolic solutions. Biochimie 2023; 204: 22–32. doi: 10.1016/j.biochi.2022.08.017.
24. Shimizu T, Ding W, Kameta N. Soft-matter nanotubes: A platform for diverse functions and applications. Chemical Reviews 2020; 120(4): 2347–2407. doi: 10.1021/acs.chemrev.9b00509.
25. Hamley IW. Peptide nanotubes. Angewandte Chemie International Edition 2014; 53(27): 6866–6881. doi: 10.1002/anie.201310006.
26. Priegue JM, Louzao I, Gallego I, et al. 1D alignment of proteins and other nanoparticles by using reversible covalent bonds on cyclic peptide nanotubes. Organic Chemistry Frontiers 2022; 9: 1226–1233. doi: 10.1039/d1qo01349a.
27. Katouzian I, Jafari SM. Protein nanotubes as state-of-the-art nanocarriers: Synthesis methods, simulation and applications. Journal of Controlled Release 2019; 303: 302–318. doi: 10.1016/j.jconrel.2019.04.026.
28. Ghadiri MR, Granja JR, Milligan RA, et al. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 1993; 366: 324–327.
29. Garcia-Fandino R, Amorin M, Castedo L, Granja JR. Transmembrane ion transport by self-assembling α,γ-peptide nanotubes. Chemical Science 2012; 3: 3280–3285.
30. Yang NJ, Hinner MJ. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. In: Site-specific protein labeling: Methods and protocols. Totowa: Humana Press; 2015. p. 29–53.
31. Surís-Valls R, Hogervorst TP, Schoenmakers SMC, et al. Inhibition of ice recrystallization by nanotube-forming cyclic peptides. Biomacromolecules 2022; 23: 520–529. doi: 10.1021/acs.biomac.1c01267.
32. Konda M, Bhowmik S, Mobin SM, et al. Modulating hydrogen bonded self-assembled patterns and morphological features by a change in side chain of third amino acid of synthetic γ- Amino acid based tripeptides. ChemistrySelect 2016; 1(11): 2586–2593. doi: 10.1002/slct.201600557.
33. Zhao K, Xing R, Yan X. Cyclic dipeptides: Biological activities and self-assembled materials. Journal of Peptide Science 2021; 113: e24202. doi: 10.1002/pep2.24202.
34. Tao K, Fan Z, Sun L, et al. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nature Communications 2018; 9: 3217. doi: 10.1038/s41467-018-05568-9.
35. Blunden BM, Chapman R, Danial M, et al. Drug conjugation to cyclic peptide-polymer self-assembling nanotubes. Chemistry–A European Journal 2014; 20(40): 12745–12749. doi: 10.1002/chem.201403130.
36. Mendive-Tapia L, Wang J, Vendrell M. Fluorescent cyclic peptides for cell imaging. Journal of Peptide Science 2021; 113: e24181. doi: 10.1002/pep2.24181.
37. Dougherty PG, Sahni A, Pei D. Understanding cell penetration of cyclic peptides. Chemical Reviews 2019; 119(17): 10241–10287. doi: 10.1021/acs.chemrev.9b00008.
38. Abriouel H, Lucas R, Omar NB, et al. Potential applications of the cyclic peptide enterocin AS–48 in the preservation of vegetable foods and beverages. Probiotics and Antimicrobial Proteins 2010; 2: 77–89. doi: 10.1007/s12602-009-9030-y.
39. Thorstholm L, Craik DJ. Discovery and applications of naturally occurring cyclic peptides. Drug Discovery Today: Technologies 2012; 9(1): e13–e21. doi: 10.1016/j.ddtec.2011.07.005.
40. Gran L. On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacologica et Toxicologica 1973; 33(5): 400–408. doi: 10.1111/j.1600-0773.1973.tb01541.x.
41. Tam JP, Lu YA, Yang JL, Chiu KW. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proceedings of the National Academy of Sciences of the United States of America 1999; 96(16): 8913–8918. doi: 10.1073/pnas.96.16.8913.
42. Gerlach SL, Rathinakumar R, Chakravarty G, et al. Anticancer and chemosensitizing abilities of cycloviolacin O2 from Viola odorata and psyle cyclotides from Psychotria leptothyrsa. Biopolymers 2010; 94: 617–625. doi: 10.1002/bip.21435.
43. Pränting M, Lööv C, Burman R, et al. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. Journal of Antimicrobial Chemotherapy 2010; 65: 1964–1971. doi: 10.1093/jac/dkq220.
44. Pinto MEF, Batista J, Koehbach J, et al. Ribifolin, an orbitide from jatropha ribifolia, and its potential antimalarial activity. Journal of Natural Products 2015; 78: 374–380. doi: 10.1021/np5007668.
45. Lázár V, Martins A, Spohn R, et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nature Microbiology 2018; 3: 718–731. doi: 10.1038/s41564-018-0164-0.
46. Bechinger B, Gorr SU. Antimicrobial peptides: Mechanisms of action and resistance. Journal of Dental Research 2017; 96(3): 254–260. doi: 10.1177/0022034516679973.
47. Ribeiro R, Pinto E, Fernandes C, Sousa E. Marine cyclic peptides: Antimicrobial activity and synthetic strategies. Marine Drugs 2022; 20(6): 397. doi: 10.3390/md20060397.
48. Han H, Gao Y, Chai M, et al. Biofilm microenvironment activated supramolecular nanoparticles for enhanced photodynamic therapy of bacterial keratitis. Journal of Controlled Release 2020; 327: 676–687. doi: 10.1016/j.jconrel.2020.09.014.
49. Sulthana R, Archer AC. Bacteriocin nanoconjugates: Boon to medical and food industry. Journal of Applied Microbiology 2021; 131(3): 1056–1071. doi: 10.1111/jam.14982.
50. Shimomura Y, Ito M. Human hair keratin-associated proteins. Journal of Investigative Dermatology Symposium Proceedings 2005; 10(3): 230–233. doi: 10.1111/j.1087-0024.2005.10112.x.
51. Kung B, Anderson GH, Paré S, et al. Effect of milk protein intake and casein-to-whey ratio in breakfast meals on postprandial glucose, satiety ratings, and subsequent meal intake. Journal of Dairy Science 2018; 101(10): 8688–8701. doi: 10.3168/jds.2018-14419.
52. Winder SJ, Ayscough KR. Actin-binding proteins. Journal of Cell Science 2005; 118: 651–654. doi: 10.1242/jcs.01670.