Published
2023-08-07
Issue
Section
Original Research Article
License
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Phase equilibria in the Ag8SiSe6-Ag8SiTe6 system and characterization of the solid solutions Ag8SiSe6-xTex
Aynura Jabbar Amiraslanova
Ganja State University
Kamala Naghi Babanly
Institute of Catalysis and Inorganic Chemistry named after academician Murtuza Naghiyev
Samira Zakir Imamaliyeva
Institute of Catalysis and Inorganic Chemistry named after academician Murtuza Naghiyev
Yusif Amrali Yusibov
Ganja State University
Mahammad Baba Babanly
Institute of Catalysis and Inorganic Chemistry named after academician Murtuza Naghiyev
DOI: https://doi.org/10.24294/ace.v6i2.2162
Keywords: silver-silicon chalcogenides, argyrodite-like compounds, differential thermal analysis, X-ray diffraction analysis, phase equilibria, solid solutions, polymorphic transformation
Abstract
Due to polymorphism and complex crystal structure, compounds of the argyrodite family and phases based on them exhibit several interesting functional properties, such as thermoelectric, photoelectric, optical, as well as ionic conductivity for Cu+ and Ag+ cations. The paper presents the results of the study of phase equilibria in the Ag8SiSe6-Ag8SiTe6 system by DTA, XRD, and SEM methods. Refined data on the melting temperature (1278 K) and polymorphic transitions (315 K and 354 K) of the Ag8SiSe6 compound are presented. The crystallographic parameters of LT-Ag8SiSe6 (Cubic, F-43m, a = 1.0965 nm) and IT-Ag8SiSe6 (Cubic, P4232, a = 1.0891 nm) are also determined. It has been established that the investigated system is quasi-binary and its phase diagram is characterized by the formation of a continuous series of substitutional solid solutions between HT-Ag8SiSe6 and Ag8SiTe6. This process is accompanied by a strong decrease in the temperatures of polymorphic transformations of Ag8SiSe6, which leads to the stabilization of the ion-conducting cubic phase at room temperature in the >10 mol% Ag8SiTe6 compositions area. The crystal lattice parameters of the synthesized solid solutions are calculated by indexing the powder diffraction patterns. The stabilization of the high-temperature cubic phase at room temperature achieved by us presents new opportunities for the development of environmentally friendly thermoelectrics and ion-electronic conductors based on silicon argyrodites with desired composition and properties.References
1. Liu X, Lee S, Furdyna JK, et al. Chalcogenide: From 3D to 2D and Beyond. Elsevier; 2019.2. Woodrow P. Chalcogenides: Advances in Research and Applications. Nova Science Publishers; 2018.
3. Alonso-Vante N. Chalcogenide Materials for Energy Conversion: Pathways to Oxygen and Hydrogen Reactions. Springer; 2018.
4. Ahluwalia GK. Applications of Chalcogenides: S, Se, and Te. Springer-Verlag; 2016.
5. Scheer R, Schock HW. Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. Wiley, VCH; 2011.
6. Babanly MB, Yusibov YuA, Abishev VT. Ternary Chalcogenides on the Base of Copper and Silver (Russian). Baku: Baku Girls University; 1993.
7. Mitra D, Kang ET, Neoh KG. Antimicrobial copper-based materials and coatings: Potential multifaceted biomedical applications. ACS Applied Materials & Interfaces 2020; 12(19): 21159–21182. doi: 10.1021/acsami.9b17815
8. Nieves LM, Mossburg K, Hsu JC, et al. Silver chalcogenide nanoparticles: A review of their biomedical applications. Nanoscale 2021; 13: 19306–19323. doi: 10.1039/D0NR03872E
9. Tee SY, Ponsfordm D, Lay CL, et al. Thermoelectric silver-based chalcogenides. Advanced Science 2022; 9(36): 2204624. doi: 10.1002/advs.202204624
10. Kumar M, Meena B, Subramanyam P, et al. Emerging copper-based semiconducting materials for photocathodic applications in solar driven water splitting. Catalysts 2022; 12(10): 1198. doi: 10.3390/catal12101198
11. Mensah-Darkwa K, Ampong DN, Agyekum E, et al. Recent advancements in chalcogenides for electrochemical energy storage applications. Energies 2022; 15(11): 4052. doi: 10.3390/en15114052
12. Ramasamy K, Gupta RK, Palchoudhury S, et al. Layer-structured copper antimony chalcogenides (CuSbSexS2–x): Stable electrode materials for supercapacitors. Chemistry of Materials 2015; 27(1): 379–386. doi: 10.1021/cm5041166
13. Lin S, Li W, Pei Y. Thermally insulative thermoelectric argyrodites. Materials Today 2021; 48: 198–213. doi: 10.1016/j.mattod.2021.01.007
14. Schwarzmüller S, Souchay D, Günther D, et al. Argyrodite-type Cu8GeSe6–xTex (0 ≤ x ≤ 2): Temperature-dependent crystal structure and thermoelectric properties. Zeitschrift für anorganische und allgemeine Chemie 2018; 644(2): 1915–1922. doi: 10.1002/zaac.201800453
15. Jiang B, Qiu P, Eikeland E, et al. Cu8GeSe6-based thermoelectric materials with an argyrodite structure. Journal of Materials Chemistry C 2017; 5: 943–952. doi: 10.1039/C6TC05068A
16. Jiang Q, Li S, Luo Y, et al. Ecofriendly highly robust Ag8SiSe6-based thermoelectric composites with excellent performance near room temperature. ACS Applied Materials & Interfaces 2020; 12(49): 54653–54661. doi: 10.1021/acsami.0c15877
17. Fan Y, Wang G, Wang R, et al. Enhanced thermoelectric properties of p-type argyrodites Cu8GeS6 through Cu. Journal of Alloys and Compounds 2020; 822: 153665. doi: 10.1016/j.jallcom.2020.153665
18. Charoenphakdee A, Kurosaki K, Muta H, et al. Ag8SiTe6: A new thermoelectric material with low thermal conductivity. Japanese Journal of Applied Physics 2009; 48: 011603. doi: 10.1143/JJAP.48.011603
19. Heep BK, Weldert KS, Krysiak Y, et al. High electron mobility and disorder induced by silver ion migration lead to good thermoelectric performance in the argyrodite Ag8SiSe6. Chemistry of Materials 2017; 29(11): 4833–4839. doi: 10.1021/acs.chemmater.7b00767
20. Shen X, Xia Y, Yang C, et al. High thermoelectric performance in sulfide-type argyrodites compound Ag8Sn(S1−xSex)6 enabled by ultralow lattice thermal conductivity and extended cubic phase regime. Advanced Functional Materials 2020; 30: 2000526. doi: 10.1002/adfm.202000526
21. Semkiv I, Ilchuk N, Kashuba A. Photoluminescence of Ag8SnSe6 argyrodite. Low Temperature Physics 2022; 48(1): 12–15. doi: 10.1063/10.0008957
22. Brammertz G, Vermang B, ElAnzeery H, et al. Fabrication and characterization of ternary Cu8SiS6 and Cu8SiSe6 thin film layers for optoelectronic applications. Thin Solid Films 2016; 616: 649–654. doi: 10.1016/j.tsf.2016.09.049
23. Slade TJ, Gvozdetskyi V, Wilde JM, et al. A Low-temperature structural transition in canfieldite, Ag8SnS6, single crystals. Inorganic Chemistry 2021; 60(24): 19345–19355. doi: 10.1021/acs.inorgchem.1c03158
24. Gorochov O. Les composés Ag8MX6 (M = Si, Ge, Sn et X = S, Se, Te). Bulletin de la Société Chimique de France 1968; 101: 2263–2275.
25. Yang M, Shao G, Wu B, et al. Irregularly shaped bimetallic chalcogenide ag8sns6 nanoparticles as electrocatalysts for hydrogen evolution. ACS Applied Nano Materials 2021; 4(7): 6745–6751. doi: 10.1021/acsanm.1c00769
26. Yeh LY, Cheng KW. Modification of Ag8SnS6 photoanodes with incorporation of Zn ions for photo-driven hydrogen production. Catalysts 2021; 11(3): 363. doi: 10.3390/catal11030363
27. Ivanov-Shits AK, Murin IV. Ionika tverdogo tela. Solid State Ionics 2000; 1: 132.
28. Li L, Liu Y, Dai J, et al. High thermoelectric performance of superionic argyrodite compound Ag8SnSe6. Journal of Materials Chemistry C 2016; 4: 5806–5813. doi: 10.1039/C6TC00810K
29. Sardarly RM, Ashirov GM, Mashadiyeva LF, et al. Ionic conductivity of the Ag8GeSe6 compound. Modern Physics Letters B 2023; 36: 2250171. doi: 10.1142/S0217984922501718
30. Studenyak IP, Pogodin AI, Studenyak VI, et al. Electrical properties of copper- and silver-containing superionic (Cu1−xAgx)7SiS5I mixed crystals with argyrodite structure. Solid State Ionics 2020; 345: 115183. doi: 10.1016/j.ssi.2019.115183
31. Li W, Lin S, Ge B, et al. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science 2016; 3(11): 1600196. doi: 10.1002/advs.201600196
32. Weldert KS, Zeier WG, Day TW, et al. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility. Journal of the American Chemical Society 2014; 136: 12035–12040. doi: 10.1021/ja5056092
33. West DRF. Ternary Phase Diagrams in Materials Science, 3rd ed. CRC Press; 2019.
34. Saka H. Introduction to phase diagrams. In: Materials Science and Engineering. World Scientific Publishing Company; 2020.
35. Babanly MB, Mashadiyeva LF, Babanly DM, et al. Some issues of complex investigation of the phase equilibria and thermodynamic properties of the ternary chalcogenide systems by the EMF method. Russian Journal of Inorganic Chemistry 2019; 64(13): 1649–1671. doi: 10.1134/S0036023619130035
36. Imamaliyeva SZ, Babanly DM, Tagiev DB, et al. Physicochemical aspects of development of multicomponent chalcogenide phases having the Tl5Te3 structure: A review. Russian Journal of Inorganic Chemistry 2018; 13: 1703–1730.
37. Imamaliyeva SZ, Alakbarzade GI, Mamedov AN, et al. Modeling the phase diagrams of the Tl9SmTe6-Tl4PbTe3 and Tl9SmTe6-Tl9BiTe6 systems. Azerbaijan Chemical Journal 2020; 4: 12–16. doi: 10.32737/0005-2531-2020-4-12-16
38. Mammadov FM, Amiraslanov IR, Efendiyeva NN, et al. Phase diagrams of the FeGa2S4-FeIn2S4 and FeS-FeGaInS4 systems. Chemical Problems 2019; 58–65. doi: 10.32737/2221-8688-2019-1-58-65
39. Imamaliyeva SZ, Mamedov AN, Babanly MB. Modeling the phase diagram of the Tl9GdTe6-Tl4PbTe3-Tl9BiTe6 system. New Materials, Compounds and Applications 2021; 2: 142–149. doi: 10.1007/978-3-030-64058-3_60
40. Ashirov GM. Phase equilibria in the Ag8SiTe6–Ag8GeTe6 system. Azerbaijan Chemical Journal 2022; 1: 89–93. doi: 10.32737/0005-2531-2022-1-89-93
41. Alverdiyev IJ, Aliev ZS, Bagheri SM, et al. Study of the 2Cu2S+GeSe2↔2Cu2Se+GeS2 reciprocal system and thermodynamic properties of the Cu8GeS6-хSex solid solutions. Journal of Alloys and Compounds 2017; 691: 255–262. doi: 10.1016/J.JALLCOM.2016.08.251
42. Aliyeva ZM, Bagheri SM, Aliev ZS, et al. The phase equilibria in the Ag2S-Ag8GeS6-Ag8SnS6 system. Journal of Alloys and Compounds 2014; 611: 395–400. doi: 10.1016/j.jallcom.2014.05.112
43. Aliyeva ZM, Bagheri SM, Alverdiyev IJ, et al. Phase equilibria in the quasi-ternary system Ag2Se-Ag8GeSe6-Ag8SnSe6. Inorganic Materials 2014; 50(10): 981–986. doi: 10.1134/S002016851410001X
44. Abbasova VA, Alverdiyev IJ, Mashadiyeva LF, et al. Phase relations in the Cu8GeSe6-Ag8GeSe6 system and some properties of solid solutions. Azerbaijan Chemical Journal 2017; 1: 30–33.
45. Alverdiyev IJ, Bagheri SM, Aliev ZM, et al. Phase equilibria in the Ag2Se-GeSe2-SnSe2 system and thermodynamic properties of the solid solutions Ag8Ge1–xSnxSe6. Inorganic Materials 2017; 53(8): 786–796. doi: 10.1134/S0020168517080027
46. Mashadieva LF, Alieva ZM, Mirzoeva RD, et al. Phase equilibria in the Cu2Se–GeSe2–SnSe2 system. Russian Journal of Inorganic Chemistry 2022; 67(5): 670–682. doi: 10.1134/S0036023622050126
47. Hofmann AM. Silver-Selenium-Silicon, Ternary Alloys. VCH 2; 1988. pp. 559–560.
48. Venkatraman M, Blachnik R, Schlieper A. The phase diagrams of M2X-SiX2 (M is Cu, Ag; X is S, Se). Thermochimica Acta 1995; 249: 13–20. doi: 10.1016/0040-6031(95)90666-5
49. Piskach LV, Parasyuk OV, Olekseyuk ID, et al. Interaction of argyrodite family compounds with the chalcogenides of II-b elements. Journal of Alloys and Compounds 2006; 421: 98–104. doi: 10.1016/j.jallcom.2005.11.056
50. Boucher F, Evain M, Brec R. Single-crystal structure determination of γ-Ag8SiTe6 and Powder X-ray study of low-temperature α and β phases. Journal of Solid State Chemistry 1992; 100(2): 341–355. doi: 10.1016/0022-4596(92)90109-9
51. Emsley J. The Elements, 3rd ed. Oxford University Press; 1998. p. 300.
52. International Centre for Diffraction Data. ICDD.PDF-2012. Available online: https://www.icdd.com/ (accessed on 28 July 2023).