Published
2023-11-08
Issue
Section
Original Research Article
License
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
EXTRACTION AND MODIFICATION OF CELLULOSE FROM ARTOCARPUS HETEROPHYLLUS FOR BIOSORPTION OF LEAD ION FROM AQUEOUS SOLUTION AS COST EFFECTIVE BIOSORBENT.
Debela Jufar Turunesh
Department of Chemistry, Collage of Natural and Computational Science, Mizan Tepi University
Gashaw Tadele Zewudie
Department of Chemistry, Collage of Natural and Computational Science, Mizan Tepi University
Dereba Workineh Dereba Workineh Seboka
Department of Biology, Collage of Natural and Computational Science, Mizan Tepi University
Keywords: Biosorption, Isotherm, Cellulose, Lead, Jackfruit
References
1. Furlan FL, Filho NC, Consolin MFB, et al. Use of agricultural and agroindustrial residues as alternative adsorbents of manganese and iron in aqueous solution. Revista Ambiente & Água 2018; 13(2): 1. doi: 10.4136/ambi-agua.21812. Viman OV, Oroian I, Fleşeriu A. Types of water pollution: Point source and nonpoint source. AACL Bioflux 2010; 3(5): 393–397.
3. Park M, Choi YS, Shin HJ, et al. A comparison study of runoff characteristics of non-point source pollution from three watersheds in South Korea. Water 2019; 11(5): 966. doi: 10.3390/w11050966
4. Akl M, Ismail MA, Hashem MA, Ali DA. Synthesis, spectroscopic characterization and adsorption studies of Cu2+, Hg2+ and Pb2+ from environmental water samples. Research Square 2021; preprint.
5. Boudrahem F, Aissani-Benissad F, Soualah A. Adsorption of lead(II) from aqueous solution by using leaves of date trees as an adsorbent. Journal of Chemical & Engineering Data 2011; 56(5): 1804–1812. doi: 10.1021/je100770j
6. Verma A, Kumar S, Kumar S. Biosorption of lead ions from the aqueous solution by Sargassum filipendula: Equilibrium and kinetic studies. Journal of Environmental Chemical Engineering 2016; 4(4): 4587–4599. doi: 10.1016/j.jece.2016.10.026
7. Morosanu I, Teodosiu C, Paduraru C, Ibanescu D, Tofan L. Biosorption of lead ions from aqueous effluents by rapeseed biomass. New Biotechnology 2017; 39: 110–124. doi: 10.1016/j.nbt.2016.08.002
8. Neolaka YAB, Lawa Y, Naat J, et al. Indonesian Kesambi wood (Schleichera oleosa) activated with pyrolysis and H2SO4 combination methods to produce mesoporous activated carbon for Pb (II) adsorption from aqueous solution. Environmental Technology & Innovation 2021; 24: 101997. doi: 10.1016/j.eti.2021.101997
9. Darmokoesoemo H, Magdhalena, Putranto TWLC, Kusuma HS. Telescope snail (Telescopium sp) and mangrove crab (Scylla sp) as adsorbent for the removal of Pb2+ from aqueous solutions. RASAYAN Journal of Chemistry 2016; 9(4): 680–685.
10. Marwani HM, Lodhi MU, Khan SB, Asiri AM. Cellulose-lanthanum hydroxide nanocomposite as a selective marker for detection of toxic copper. Nanoscale Research Letters 2014; 9(1): 466. doi: 10.1186/1556-276x-9-466
11. Hassan M, Liu Y, Naidu R, et al. Mesoporous biopolymer architecture enhanced the adsorption and selectivity of aqueous heavy-metal ions. ACS Omega 2021; 6(23): 15316–15331. doi: 10.1021/acsomega.1c01642
12. Ha HT, Huong NT, Dan LL, et al. Removal of heavy metal ion using polymer-functionalized activated carbon: Aspects of environmental economic and chemistry education. Journal of Analytical Methods in Chemistry 2020; 2020: 8887488. doi: 10.1155/2020/8887488
13. Neolaka YAB, Riwu AAP, Aigbe UO, et al. Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes. Results in Chemistry 2023; 5: 100711. doi: 10.1016/j.rechem.2022.10071
14. Khera RA, Iqbal M, Ahmad A, et al. Kinetics and equilibrium studies of copper, zinc, and nickel ions adsorptive removal on to Archontophoenix alexandrae: Conditions optimization by RSM. Desalin Water Treat 2020; 201: 289–300. doi: 10.5004/dwt.2020.25937
15. Rahaman H, Islam A, Islam M, et al. Biodegradable composite adsorbent of modified cellulose and chitosan to remove heavy metal ions from aqueous solution. Current Research in Green and Sustainable Chemistry 2021; 4: 100119. doi: 10.1016/j.crgsc.2021.100119
16. El Maghrabi AH, Marzouk MA, Elbably MA, Hassouna MEM. Biosorption of manganese by amended aspergillus versicolor from polluted water sources. Nature Environment and Pollution Technology 2020; 19(4): 1645–1656. doi: 10.46488/nept.2020.v19i04.032
17. Cichosz S, Masek A, Rylski A. Cellulose modification for improved compatibility with the polymer matrix: Mechanical characterization of the composite material. Materials 2020; 13(23): 5519. doi: 10.3390/ma13235519
18. Ali RM, Hamad HA, Hussein MM, Malash GF. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecological Engineering 2016; 91: 317–332. doi: 10.1016/j.ecoleng.2016.03.015
19. Kuncoro EP, Mitha Isnadina DR, Darmokoesoemo H, et al. Characterization and isotherm data for adsorption of Cd2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite. Data in Brief 2018; 16: 354–360. doi: 10.1016/j.dib.2017.11.060
20. Daneshfozoun S, Nazir M, Abdullah B, Abdullah M. Surface modification of celluloses extracted from oil palm empty fruit bunches for heavy metal sorption. Chemical Engineering Transactions 2014; 37: 679–684. doi: 10.3303/CET1437114
21. Mahalakshmi R, Preethi K, Kalaiselvi D, et al. Adsorption behaviour of chemically modified cellulose bearing benzothiazole chelating group towards lead ions from water bodies. RASĀYAN Journal of Chemistry 2019; 12(1): 245–250. doi: 10.31788/rjc.2019.1215001
22. Jalija DO, Yahaya MG. Removal of lead (II) ions from aqueous solution using calcium alginate beads. Science World Journal 2020; 15(4): 128–131.
23. Daochalermwong A, Chanka N, Songsrirote K, et al. Removal of heavy metal ions using modified celluloses prepared from pineapple leaf fiber. ACS Omega 2020; 5(10): 5285–5296. doi: 10.1021/acsomega.9b04326
24. Kuncoro EP, Isnadina DRM, Darmokoesoemo H, et al. Characterization, kinetic, and isotherm data for adsorption of Pb2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite. Data in Brief 2018; 16: 622–629. doi: 10.1016/j.dib.2017.11.098
25. Viscusi G, D’Amico F, Gorrasi G. In situ one‐step fabrication of layered double hydroxide deposited on cellulose: Effect of modified cellulose on physical properties of polyurethane composites. Polymers for Advanced Technologies 2022; 33(7): 2300–2312. doi: 10.1002/pat.5684
26. Zeng G, He Y, Liang D, et al. Adsorption of heavy metal ions copper, cadmium and nickel by Microcystis aeruginosa. International Journal of Environmental Research and Public Health 2022; 19(21): 13867. doi: 10.3390/ijerph192113867
27. Thirumavalavan M, Lai YL, Lin LC, Lee JF. Cellulose-based native and surface modified fruit peels for the adsorption of heavy metal ions from aqueous solution: Langmuir adsorption isotherms. Journal of Chemical & Engineering Data 2009; 55(3): 1186–1192. doi: 10.1021/je900585t
28. Kofa GP, Nkoue Ndongo GR, Kameni Ngounou MB, et al. Grewia spp. biopolymer as low-cost biosorbent for hexavalent chromium removal. Journal of Chemistry 2019; 2019: 6505731. doi: 10.1155/2019/6505731
29. Kurniawan TW, Sulistyarti H, Rumhayati B, Sabarudin A. Cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) as adsorbents of heavy metal ions. Journal of Chemistry 2023; 2023:5037027. doi: 10.1155/2023/5037027
30. Jamshaid A, Hamid A, Muhammad N, et al. Cellulose‐based materials for the removal of heavy metals from wastewater—An overview. ChemBioEng Reviews 2017; 4(4): 240–256. doi: 10.1002/cben.201700002
31. Tsade H, Anshebo ST, Sabir FK. Preparation and characterization of functionalized cellulose nanomaterials (CNMs) for Pb(II) ions removal from wastewater. Journal of Chemistry 2021; 2021: 5514853. doi: 10.1155/2021/5514853
32. Saravanan R, Ravikumar L. The use of new chemically modified cellulose for heavy metal ion adsorption and antimicrobial activities. Journal of Water Resource and Protection 2015; 7(6): 530–545. doi: 10.4236/jwarp.2015.76042
33. Miao J, Sun H, Yu Y, et al. Quaternary ammonium acetate: An efficient ionic liquid for the dissolution and regeneration of cellulose. RSC Advance 2014; 4(69): 36721. doi: 10.1039/c4ra06258b
34. Neolaka YAB, Supriyanto G, Kusuma HS. Adsorption performance of Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr(VI) removal from aqueous solution. Journal of Environmental Chemical Engineering 2018; 6(2): 3436–3443. doi: 10.1016/j.jece.2018.04.053
35. Villabona-Ortíz Á, Figueroa-Lopez KJ, Ortega-Toro R. Kinetics and adsorption equilibrium in the removal of azo-anionic dyes by modified cellulose. Sustainability 2022; 14(6): 3640. doi: 10.3390/su14063640
36. Yogeshwaran V, Priya AK. Biosorption of heavy metal ions from the aqueous solutions using porous Sargassum Wightii (SW)brown algae: batch adsorption, kinetic and thermodynamic studies. Research Square 2022; preprint.
37. Ibrahim LA, El-Sesy ME, ElSayed EE, et al. Simultaneous removal of metal ions from wastewater by a greener approach. Water 2022; 14(24): 4049. doi: 10.3390/w14244049
38. Jalali A, Mirnezami F, Lotfi M, et al. Biosorption of lead ion from aqueous environment using wheat stem biomass. Desalin Water Treat 2021; 233: 98–105. doi: 10.5004/dwt.2021.27518
39. Manzoor K, Ahmad M, Ahmad S, Ikram S. Synthesis, characterization, kinetics, and thermodynamics of edta-modified chitosan-carboxymethyl cellulose as Cu(II) ion adsorbent. ACS Omega 2019; 4(17): 17425–17437. doi: 10.1021/acsomega.9b02214
40. Rastuti U, Siswanta D, Pambudi W, et al. Synthesis, characterization and adsorption study of C-4-Phenacyloxy-phenylcalix [4]resorcinarene for Pb(II), Cd(II) and Cr(III) Ions. Sains Malaysiana 2018; 47(6): 1167–1179. doi: 10.17576/jsm-2018-4706-12
41. Neolaka YAB, Lawa Y, Naat J, et al. Evaluation of magnetic material IIP@GO-Fe3O4 based on Kesambi wood (Schleichera oleosa) as a potential adsorbent for the removal of Cr(VI) from aqueous solutions. Reactive and Functional Polymers 2021; 166: 105000. doi: 10.1016/j.reactfunctpolym.2021.105000
42. Jaihan W, Mohdee V, Sanongraj S, et al. Biosorption of lead (II) from aqueous solution using Cellulose-based Bio-adsorbents prepared from unripe papaya (Carica papaya) peel waste: Removal Efficiency, Thermodynamics, kinetics and isotherm analysis. Arabian Journal of Chemistry 2022; 15(7): 103883. doi: 10.1016/j.arabjc.2022.103883
43. Ali A. Removal of Mn(II) from water using chemically modified banana peels as efficient adsorbent. Environmental Nanotechnology, Monitoring & Management 2017; 7: 57–63. doi: 10.1016/j.enmm.2016.12.004
44. Neolaka YAB, Lawa Y, Naat J, et al. A Cr(VI)-imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(VI) ions from electroplating industrial wastewater. Reactive and Functional Polymers 2020; 147: 104451. doi: 10.1016/j.reactfunctpolym.2019.104451
45. Neolaka YAB, Lawa Y, Naat J, et al. Adsorption of methyl red from aqueous solution using Bali cow bones (Bos javanicus domesticus) hydrochar powder. Results in Engineering 2023; 17: 100824. doi: 10.1016/j.rineng.2022.100824
46. Sharma M, Singh J, Hazra S, Basu S. Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: Adsorption and kinetic studies. Microchemical Journal 2019; 145: 105–112. doi: 10.1016/j.microc.2018.10.026
47. Neolaka YAB, Lawa Y, Naat J, et al. Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr(VI) from wastewater. Journal of Materials Research and Technology 2022; 18: 2896–2909. doi: 10.1016/j.jmrt.2022.03.153
48. Zhang Y, Zhao J, Jiang Z, et al. Biosorption of Fe(II) and Mn(II) ions from aqueous solution by rice husk ash. BioMed Research International 2014; 2014: 973095. doi: 10.1155/2014/973095