Published
2024-04-15
Issue
Section
Review Article
License
Copyright (c) 2024 Hosam M. Saleh, Amal I. Hassan
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
The challenges of sustainable energy transition: A focus on renewable energy
Hosam M. Saleh
Radioisotope Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Egypt
Amal I. Hassan
Radioisotope Department, Nuclear Research Center, Egyptian Atomic Energy Authority
DOI: https://doi.org/10.59429/ace.v7i2.2084
Keywords: sustainable energy; fuels; energy transition; fossil fuel; biomass; green industries; climate change; renewable energy
Abstract
Energy is both a fundamental necessity and a driving force behind human activities. Throughout history, energy consumption has steadily risen, evolving from basic needs like food and fire for early humans to complex industrial and technological requirements today. Transitioning to a sustainable energy system requires a policy framework that empowers developing nations to promote green industries, diversify their sectors, and accelerate growth while addressing climate change and related challenges. In response to the urgent need for a global transition towards sustainable energy sources, this research explores the pivotal roles of technology, research, and policy in advancing renewable energy solutions. Motivated by the growing environmental challenges associated with conventional energy sources, the primary goal of this study is to shed light on the multifaceted strategies that facilitate the widespread adoption of renewable energy and contribute to mitigating climate change. Through an extensive analysis of renewable energy technologies, research contributions, and policy frameworks, this research uncovers critical insights. Our findings reveal how technological innovations have revolutionized renewable energy sources, making them more efficient, affordable, and scalable. Furthermore, research efforts have identified new opportunities and addressed technical challenges, while also assessing the environmental and societal impacts of renewable energy adoption. Crucially, this study underscores the indispensable role of policy in driving renewable energy transitions. Governments worldwide play a pivotal role in incentivizing renewable energy development through financial incentives, regulatory mandates, and research and development support. Moreover, these policies aim to promote energy efficiency, conservation, and equitable access to sustainable solutions. The results of this research emphasize that the transition to renewable energy is not only a viable solution to climate change but also an opportunity to create green jobs, enhance energy security, and reduce greenhouse gas emissions. The potential for a sustainable future powered by renewable energy is within reach, and this study serves as a guidepost for realizing this transformative vision.
References
[1]. Ibrahim R, Shaari N, Mohd Aman AH. Bio‐fuel cell for medical device energy system: A review. Intl J of Energy Research. 2021;45(10):14245-14273. doi:10.1002/er.6741
[2]. Alam MdM, Aktar MostA, Idris NDM, Al-Amin AQ. World energy economics and geopolitics amid COVID-19 and post-COVID-19 policy direction. World Development Sustainability. 2023;2:100048. doi:10.1016/j.wds.2023.100048
[3]. Johansson B. Security aspects of future renewable energy systems–A short overview. Energy. 2013;61:598-605. doi:10.1016/j.energy.2013.09.023
[4]. Koch N. Greening oil money: The geopolitics of energy finance going green. Energy Research & Social Science. 2022;93:102833. doi:10.1016/j.erss.2022.102833
[5]. Janssens-Maenhout G, Crippa M, Guizzardi D, et al. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst Sci Data. 2019;11(3):959-1002. doi:10.5194/essd-11-959-2019
[6]. McMichael AJ, Lindgren E. Climate change: present and future risks to health, and necessary responses. Journal of Internal Medicine. 2011;270(5):401-413. doi:10.1111/j.1365-2796.2011.02415.x
[7]. Saleh HM, Bondouk II, Salama E, Esawii HA. Consistency and shielding efficiency of cement-bitumen composite for use as gamma-radiation shielding material. Progress in Nuclear Energy. 2021;137:103764. doi:10.1016/j.pnucene.2021.103764
[8]. Eskander SB, Saleh HM, Tawfik ME, Bayoumi TA. Towards potential applications of cement-polymer composites based on recycled polystyrene foam wastes on construction fields: Impact of exposure to water ecologies. Case Studies in Construction Materials. 2021;15:e00664. doi:10.1016/j.cscm.2021.e00664
[9]. Reda SM, Saleh HM. Calculation of the gamma radiation shielding efficiency of cement-bitumen portable container using MCNPX code. Progress in Nuclear Energy. 2021;142:104012. doi:10.1016/j.pnucene.2021.104012
[10]. Saleh HM, Salman AA, Faheim AA, El-Sayed AM. Influence of aggressive environmental impacts on clean, lightweight bricks made from cement kiln dust and grated polystyrene. Case Studies in Construction Materials. 2021;15:e00759. doi:10.1016/j.cscm.2021.e00759
[11]. Monasterolo I. Climate Change and the Financial System. Annu Rev Resour Econ. 2020;12(1):299-320. doi:10.1146/annurev-resource-110119-031134
[12]. Salam MA, Khan SA. Transition towards sustainable energy production – A review of the progress for solar energy in Saudi Arabia. Energy Exploration & Exploitation. 2017;36(1):3-27. doi:10.1177/0144598717737442
[13]. Nezhnikova E, Papelniuk O, Dudin M. DEVELOPING RENEWABLE AND ALTERNATIVE ENERGY SOURCES TO IMPROVE THE EFFICIENCY OF HOUSING CONSTRUCTION AND MANAGEMENT. IJEEP. 2019;9(3):172-178. doi:10.32479/ijeep.7732
[14]. Oncioiu I, Duca I, Postole MA, Georgescu (Crețan) GC, Gherghina R, Grecu RA. Transforming the COVID-19 Threat into an Opportunity: The Pandemic as a Stage to the Sustainable Economy. Sustainability. 2021;13(4):2088. doi:10.3390/su13042088
[15]. Meza LE, Rodríguez AG (2022) Nature-based solutions and the bioeconomy: Contributing to a sustainable and inclusive transformation of agriculture and to the post-COVID-19 recovery
[16]. Vaka M, Walvekar R, Rasheed AK, Khalid M. A review on Malaysia’s solar energy pathway towards carbon-neutral Malaysia beyond Covid’19 pandemic. Journal of Cleaner Production. 2020;273:122834. doi:10.1016/j.jclepro.2020.122834
[17]. Kylili A, Afxentiou N, Georgiou L, et al. The role of Remote Working in smart cities: lessons learnt from COVID-19 pandemic. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. Published online October 23, 2020:1-16. doi:10.1080/15567036.2020.1831108
[18]. Hoang AT, Sandro Nižetić, Olcer AI, et al. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy. 2021;154:112322. doi:10.1016/j.enpol.2021.112322
[19]. Wen W, Yang S, Zhou P, Gao SZ. Impacts of COVID-19 on the electric vehicle industry: Evidence from China. Renewable and Sustainable Energy Reviews. 2021;144:111024. doi:10.1016/j.rser.2021.111024
[20]. Zhang W, Valencia A, Gu L, Zheng QP, Chang NB. Integrating emerging and existing renewable energy technologies into a community-scale microgrid in an energy-water nexus for resilience improvement. Applied Energy. 2020;279:115716. doi:10.1016/j.apenergy.2020.115716
[21]. Asadi S, Mohammadi-Ivatloo B, eds. Food-Energy-Water Nexus Resilience and Sustainable Development. Springer International Publishing; 2020. doi:10.1007/978-3-030-40052-1
[22]. Gielen D, Gorini R, Wagner N, et al. Global energy transformation: a roadmap to 2050. 2019.
[23]. Papadis E, Tsatsaronis G. Challenges in the decarbonization of the energy sector. Energy. 2020;205:118025. doi:10.1016/j.energy.2020.118025
[24]. Oliveira JFG de, Trindade TCG. Sustainability Performance Evaluation of Renewable Energy Sources: The Case of Brazil. Springer International Publishing; 2018. doi:10.1007/978-3-319-77607-1
[25]. Edelenbosch OY, van Vuuren DP, Blok K, Calvin K, Fujimori S. Mitigating energy demand sector emissions: The integrated modelling perspective. Applied Energy. 2020;261:114347. doi:10.1016/j.apenergy.2019.114347
[26]. Abreu M, Reis A, Moura P, et al. Evaluation of the Potential of Biomass to Energy in Portugal—Conclusions from the CONVERTE Project. Energies. 2020;13(4):937. doi:10.3390/en13040937
[27]. Wang M, Dewil Raf, Maniatis K, et al. Biomass-derived aviation fuels: Challenges and perspective. Progress in Energy and Combustion Science. 2019;74:31-49. doi:10.1016/j.pecs.2019.04.004
[28]. Celiktas MS, Alptekin FM. Conversion of model biomass to carbon-based material with high conductivity by using carbonization. Energy. 2019;188:116089. doi:10.1016/j.energy.2019.116089
[29]. Hassan SN, Sani YM, Abdul Aziz AR, Sulaiman NMN, Daud WMAW. Biogasoline: An out-of-the-box solution to the food-for-fuel and land-use competitions. Energy Conversion and Management. 2015;89:349-367. doi:10.1016/j.enconman.2014.09.050
[30]. Chinnasamy P, Srivastava A. Revival of Traditional Cascade Tanks for Achieving Climate Resilience in Drylands of South India. Front Water. 2021;3. doi:10.3389/frwa.2021.639637
[31]. Saleh HM, Aglan RF, Mahmoud HH. Qualification of corroborated real phytoremediated radioactive wastes under leaching and other weathering parameters. Progress in Nuclear Energy. 2020;119:103178. doi:10.1016/j.pnucene.2019.103178
[32]. Cushman JC, Davis SC, Yang X, Borland AM. Development and use of bioenergy feedstocks for semi-arid and arid lands. EXBOTJ. 2015;66(14):4177-4193. doi:10.1093/jxb/erv087
[33]. Ashokkumar V, Venkatkarthick R, Jayashree S, et al. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review. Bioresource Technology. 2022;344:126195. doi:10.1016/j.biortech.2021.126195
[34]. Mulugetta Y, Agbemabiese L. Sustainable energy systems in Africa. Transformational Infrastructure for Development of a Wellbeing Economy in Africa. Published online November 11, 2019:73-114. doi:10.18820/9781928480419/03
[35]. Gan PY, Li Z. Quantitative study on long term global solar photovoltaic market. Renewable and Sustainable Energy Reviews. 2015;46:88-99. doi:10.1016/j.rser.2015.02.041
[36]. Bhatt AH, Tao L. Economic Perspectives of Biogas Production via Anaerobic Digestion. Bioengineering. 2020;7(3):74. doi:10.3390/bioengineering7030074
[37]. Abdelkareem MA, Tanveer WH, Sayed ET, Assad MEH, Allagui A, Cha SW. On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells. Renewable and Sustainable Energy Reviews. 2019;101:361-375. doi:10.1016/j.rser.2018.10.025
[38]. Van der Hoeven M (2013) World energy outlook 2012. Int Energy Agency Tokyo, Japan.
[39]. Vanegas Cantarero MM. Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries. Energy Research & Social Science. 2020;70:101716. doi:10.1016/j.erss.2020.101716
[40]. Chenic A Ștefania, Cretu AI, Burlacu A, et al. Logical Analysis on the Strategy for a Sustainable Transition of the World to Green Energy—2050. Smart Cities and Villages Coupled to Renewable Energy Sources with Low Carbon Footprint. Sustainability. 2022;14(14):8622. doi:10.3390/su14148622
[41]. Henckens MLCM. The Energy Transition and Energy Equity: A Compatible Combination? Sustainability. 2022;14(8):4781. doi:10.3390/su14084781
[42]. Vakulchuk R, Overland I, Scholten D. Renewable energy and geopolitics: A review. Renewable and Sustainable Energy Reviews. 2020;122:109547. doi:10.1016/j.rser.2019.109547
[43]. Raihan A, Muhtasim DA, Farhana S, et al. Nexus between carbon emissions, economic growth, renewable energy use, urbanization, industrialization, technological innovation, and forest area towards achieving environmental sustainability in Bangladesh. Energy and Climate Change. 2022;3:100080. doi:10.1016/j.egycc.2022.100080
[44]. Adebayo TS, Adedoyin FF, Kirikkaleli D. Toward a sustainable environment: nexus between consumption-based carbon emissions, economic growth, renewable energy and technological innovation in Brazil. Environ Sci Pollut Res. 2021;28(37):52272-52282. doi:10.1007/s11356-021-14425-0
[45]. Caglar AE, Zafar MW, Bekun FV, Mert M. Determinants of CO2 emissions in the BRICS economies: The role of partnerships investment in energy and economic complexity. Sustainable Energy Technologies and Assessments. 2022;51:101907. doi:10.1016/j.seta.2021.101907
[46]. Shrestha S, Kotani K, Kakinaka M. The relationship between trade openness and government resource revenue in resource-dependent countries. Resources Policy. 2021;74:102332. doi:10.1016/j.resourpol.2021.102332
[47]. Kose N, Bekun FV, Alola AA. Criticality of sustainable research and development-led growth in EU: the role of renewable and non-renewable energy. Environ Sci Pollut Res. 2020;27(11):12683-12691. doi:10.1007/s11356-020-07860-y
[48]. Banga C, Deka A, Kilic H, Ozturen A, Ozdeser H. The role of clean energy in the development of sustainable tourism: does renewable energy use help mitigate environmental pollution? A panel data analysis. Environ Sci Pollut Res. 2022;29(39):59363-59373. doi:10.1007/s11356-022-19991-5
[49]. Xiao Y, Ma D, Zhang F, et al. Spatiotemporal differentiation of carbon emission efficiency and influencing factors: From the perspective of 136 countries. Science of The Total Environment. 2023;879:163032. doi:10.1016/j.scitotenv.2023.163032
[50]. 1. Amin A, Liu XH, Abbas Q, Hanif I, Vo XV. Globalization, sustainable development, and variation in cost of power plant technologies: A perspective of developing economies. Environ Sci Pollut Res. 2020;28(9):11158-11169. doi:10.1007/s11356-020-10816-x
[51]. Child M, Kemfert C, Bogdanov D, Breyer C. Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe. Renewable Energy. 2019;139:80-101. doi:10.1016/j.renene.2019.02.077
[52]. Basit MA, Dilshad S, Badar R, Sami ur Rehman SM. Limitations, challenges, and solution approaches in grid‐connected renewable energy systems. Int J Energy Res. 2020;44(6):4132-4162. doi:10.1002/er.5033
[53]. Sahoo M, Sethi N. The intermittent effects of renewable energy on ecological footprint: evidence from developing countries. Environ Sci Pollut Res. 2021;28(40):56401-56417. doi:10.1007/s11356-021-14600-3
[54]. Chen Z, Zhang Y, Wang H, Ouyang X, Xie Y. Can green credit policy promote low-carbon technology innovation? Journal of Cleaner Production. 2022;359:132061. doi:10.1016/j.jclepro.2022.132061
[55]. Hsu CC, Zhang YQ, Ch P, Aqdas R, Chupradit S, Nawaz A. A step towards sustainable environment in China: The role of eco-innovation renewable energy and environmental taxes. Journal of Environmental Management. 2021;299:113609. doi:10.1016/j.jenvman.2021.113609
[56]. Li F, Zhang J, Li X. Research on supporting developing countries to achieve green development transition: Based on the perspective of renewable energy and foreign direct investment. Journal of Cleaner Production. 2022;372:133726. doi:10.1016/j.jclepro.2022.133726
[57]. Aliyu AK, Modu B, Tan CW. A review of renewable energy development in Africa: A focus in South Africa, Egypt and Nigeria. Renewable and Sustainable Energy Reviews. 2018;81:2502-2518. doi:10.1016/j.rser.2017.06.055
[58]. Wang C, Zhan J, Xin Z. Comparative analysis of urban ecological management models incorporating low-carbon transformation. Technological Forecasting and Social Change. 2020;159:120190. doi:10.1016/j.techfore.2020.120190
[59]. Geiger SM, Fischer D, Schrader U. Measuring What Matters in Sustainable Consumption: An Integrative Framework for the Selection of Relevant Behaviors. Sustainable Development. 2017;26(1):18-33. doi:10.1002/sd.1688
[60]. Vila-Lopez N, Küster-Boluda I. A bibliometric analysis on packaging research: towards sustainable and healthy packages. BFJ. 2020;123(2):684-701. doi:10.1108/bfj-03-2020-0245
[61]. Kontokosta CE, Hong B. Bias in smart city governance: How socio-spatial disparities in 311 complaint behavior impact the fairness of data-driven decisions. Sustainable Cities and Society. 2021;64:102503. doi:10.1016/j.scs.2020.102503
[62]. Wang H, Chen H, Tran TT, Qin S. An Analysis of the Spatiotemporal Characteristics and Diversity of Grain Production Resource Utilization Efficiency under the Constraint of Carbon Emissions: Evidence from Major Grain-Producing Areas in China. IJERPH. 2022;19(13):7746. doi:10.3390/ijerph19137746
[63]. Huang S. The comprehensive environmental efficiency analysis based on a new data envelopment analysis: The super slack based measure network three-stage data envelopment analysis approach. Journal of Cleaner Production. 2023;400:136689. doi:10.1016/j.jclepro.2023.136689
[64]. Matsumoto K, Makridou G, Doumpos M. Evaluating environmental performance using data envelopment analysis: The case of European countries. Journal of Cleaner Production. 2020;272:122637. doi:10.1016/j.jclepro.2020.122637
[65]. Yu Z, Khan SAR, Ponce P, Lopes de Sousa Jabbour AB, Chiappetta Jabbour CJ. Factors affecting carbon emissions in emerging economies in the context of a green recovery: Implications for sustainable development goals. Technological Forecasting and Social Change. 2022;176:121417. doi:10.1016/j.techfore.2021.121417
[66]. Zhang J, Chang Y, Zhang L, Li D. Do technological innovations promote urban green development?—A spatial econometric analysis of 105 cities in China. Journal of Cleaner Production. 2018;182:395-403. doi:10.1016/j.jclepro.2018.02.067
[67]. Zhuo C, Xie Y, Mao Y, Chen P, Li Y. Can cross-regional environmental protection promote urban green development: Zero-sum game or win-win choice? Energy Economics. 2022;106:105803. doi:10.1016/j.eneco.2021.105803
[68]. Mišík M, Oravcová V, eds. From Economic to Energy Transition. Springer International Publishing; 2021. doi:10.1007/978-3-030-55085-1
[69]. Sovacool BK, Axsen J, Sorrell S. Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design. Energy Research & Social Science. 2018;45:12-42. doi:10.1016/j.erss.2018.07.007
[70]. Akinosho TD, Oyedele LO, Bilal M, et al. Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering. 2020;32:101827. doi:10.1016/j.jobe.2020.101827
[71]. Bouzarovski S, Tirado Herrero S. The energy divide: Integrating energy transitions, regional inequalities and poverty trends in the European Union. European Urban and Regional Studies. 2016;24(1):69-86. doi:10.1177/0969776415596449
[72]. Linser S, Wolfslehner B, Bridge S, et al. 25 Years of Criteria and Indicators for Sustainable Forest Management: How Intergovernmental C&I Processes Have Made a Difference. Forests. 2018;9(9):578. doi:10.3390/f9090578
[73]. Poudyal BH, Maraseni T, Cockfield G. An assessment of the policies and practices of selective logging and timber utilisation: A case study from natural forests of Tarai Nepal and Queensland Australia. Land Use Policy. 2020;91:104422. doi:10.1016/j.landusepol.2019.104422
[74]. Ram M, Child M, Aghahosseini A, Bogdanov D, Lohrmann A, Breyer C. A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015-2030. Journal of Cleaner Production. 2018;199:687-704. doi:10.1016/j.jclepro.2018.07.159
[75]. Gaustad G, Krystofik M, Bustamante M, Badami K. Circular economy strategies for mitigating critical material supply issues. Resources, Conservation and Recycling. 2018;135:24-33. doi:10.1016/j.resconrec.2017.08.002
[76]. Kougias I, Taylor N, Kakoulaki G, Jäger-Waldau A. The role of photovoltaics for the European Green Deal and the recovery plan. Renewable and Sustainable Energy Reviews. 2021;144:111017. doi:10.1016/j.rser.2021.111017
[77]. IRENA GET. A Roadmap to 2050. Abu Dhabi, 2018. Renew Energy Benefits Meas Econ; 2016.
[78]. Kpodar K, Fabrizio S, Eklou K. Export Competitiveness - Fuel Price Nexus in Developing Countries. IMF Working Papers. 2019;19(25):1. doi:10.5089/9781484387771.001
[79]. Nguyen PA, Abbott M, Nguyen TLT. The development and cost of renewable energy resources in Vietnam. Utilities Policy. 2019;57:59-66. doi:10.1016/j.jup.2019.01.009
[80]. Couto A, Estanqueiro A. (2020) Exploring Wind and Solar PV Generation complementarity to meet electricity demand. Energies 13:4132
[81]. Mutezo G, Mulopo J. A review of Africa’s transition from fossil fuels to renewable energy using circular economy principles. Renewable and Sustainable Energy Reviews. 2021;137:110609. doi:10.1016/j.rser.2020.110609
[82]. Baruya P, House P Coal reserves in a carbon constrained future.
[83]. Jiang L, Chen X, Xue B. Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review. Sustainability. 2019;11(4):1186. doi:10.3390/su11041186
[84]. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R. The role of renewable energy in the global energy transformation. Energy Strategy Reviews. 2019;24:38-50. doi:10.1016/j.esr.2019.01.006
[85]. Khan I. Greenhouse gas emission accounting approaches in electricity generation systems: A review. Atmospheric Environment. 2019;200:131-141. doi:10.1016/j.atmosenv.2018.12.005
[86]. Yue X, Patankar N, Decarolis J, et al. Least cost energy system pathways towards 100% renewable energy in Ireland by 2050. Energy. 2020;207:118264. doi:10.1016/j.energy.2020.118264
[87]. Scheffran J, Felkers M, Froese R. Economic Growth and the Global Energy Demand. Green Energy to Sustainability. Published online April 3, 2020:1-44. doi:10.1002/9781119152057.ch1
[88]. Batini N. Transforming Agri-Food Sectors to Mitigate Climate Change: The Role of Green Finance. Vierteljahrshefte zur Wirtschaftsforschung. 2019;88(3):7-42. doi:10.3790/vjh.88.3.7
[89]. Watari T, Nansai K, Giurco D, Nakajima K, McLellan B, Helbig C. Global Metal Use Targets in Line with Climate Goals. Environ Sci Technol. 2020;54(19):12476-12483. doi:10.1021/acs.est.0c02471
[90]. Marke A, Sylvester B. Decoding the Current Global Climate Finance Architecture. Transforming Climate Finance and Green Investment with Blockchains. Published online 2018:35-59. doi:10.1016/b978-0-12-814447-3.00004-5
[91]. Breyer C, Fasihi M, Aghahosseini A. Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling. Mitig Adapt Strateg Glob Change. 2019;25(1):43-65. doi:10.1007/s11027-019-9847-y
[92]. Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Abd. Majid MZ. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and Sustainable Energy Reviews. 2015;43:843-862. doi:10.1016/j.rser.2014.11.066
[93]. Khan I, Hou F, Zakari A, Tawiah VK. The dynamic links among energy transitions, energy consumption, and sustainable economic growth: A novel framework for IEA countries. Energy. 2021;222:119935. doi:10.1016/j.energy.2021.119935
[94]. Necoechea-Porras PD, López A, Salazar-Elena JC. Deregulation in the Energy Sector and Its Economic Effects on the Power Sector: A Literature Review. Sustainability. 2021;13(6):3429. doi:10.3390/su13063429
[95]. Santos FD, Ferreira PL, Pedersen JST. The Climate Change Challenge: A Review of the Barriers and Solutions to Deliver a Paris Solution. Climate. 2022;10(5):75. doi:10.3390/cli10050075
[96]. Price J, Keppo I, Dodds PE. The role of new nuclear power in the UK’s net-zero emissions energy system. Energy. 2023;262:125450. doi:10.1016/j.energy.2022.125450
[97]. Gürağaç Dereli FT, Ilhan M, Belwal T, eds. Novel Drug Targets With Traditional Herbal Medicines. Springer International Publishing; 2022. doi:10.1007/978-3-031-07753-1
[98]. Lee J, Bazilian M, Sovacool B, et al. Reviewing the material and metal security of low-carbon energy transitions. Renewable and Sustainable Energy Reviews. 2020;124:109789. doi:10.1016/j.rser.2020.109789
[99]. He J, Li Z, Zhang X, et al. Towards carbon neutrality: A study on China’s long-term low-carbon transition pathways and strategies. Environmental Science and Ecotechnology. 2022;9:100134. doi:10.1016/j.ese.2021.100134
[100]. Zhao N, Zhang H, Yang X, Yan J, You F. Emerging information and communication technologies for smart energy systems and renewable transition. Advances in Applied Energy. 2023;9:100125. doi:10.1016/j.adapen.2023.100125
[101]. Elavarasan RM, Shafiullah GM, Padmanaban S, et al. A Comprehensive Review on Renewable Energy Development, Challenges, and Policies of Leading Indian States With an International Perspective. IEEE Access. 2020;8:74432-74457.
[102]. doi:10.1109/access.2020.2988011
[103]. Zhou S, Wang Y, Zhou Y, Clarke LE, Edmonds JA. Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints. Applied Energy. 2018;213:22-30. doi:10.1016/j.apenergy.2018.01.025
[104]. Heerma van Voss B, Rafaty R. Sensitive intervention points in China’s coal phaseout. Energy Policy. 2022;163:112797. doi:10.1016/j.enpol.2022.112797
[105]. Qiu S, Lei T, Wu J, Bi S. Energy demand and supply planning of China through 2060. Energy. 2021;234:121193. doi:10.1016/j.energy.2021.121193
[106]. Kumar. J CR, Majid MA. Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. Energ Sustain Soc. 2020;10(1). doi:10.1186/s13705-019-0232-1
[107]. Pandey AK, Singh PK, Nawaz M, Kushwaha AK. Forecasting of non-renewable and renewable energy production in India using optimized discrete grey model. Environ Sci Pollut Res. 2022;30(3):8188-8206. doi:10.1007/s11356-022-22739-w
[108]. Booth A. The Political Economy of Southeast Asia: Politics and Uneven Development under Hyperglobalisation (Fourth Edition)-edited by TobyCarroll, ShaharHameiri and LeeJones (eds), Cham: Palgrave Macmillan, Springer Nature Switzerland A.G., Pp. xxvi + 412, ISBN 978‐3‐030‐28254‐7, 978‐3‐030‐28255‐4 (ebook). Asian-Pac Economic Lit. 2021;35(1):153-157. doi:10.1111/apel.12322
[109]. Liu PR, Raftery AE. Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 °C target. Commun Earth Environ. 2021;2(1). doi:10.1038/s43247-021-00097-8
[110]. Oskarsson P, Nielsen KB, Lahiri-Dutt K, Roy B. India’s new coal geography: Coastal transformations, imported fuel and state-business collaboration in the transition to more fossil fuel energy. Energy Research & Social Science. 2021;73:101903. doi:10.1016/j.erss.2020.101903
[111]. Vishwanathan SS, Garg A. Energy system transformation to meet NDC, 2 °C, and well below 2 °C targets for India. Climatic Change. 2020;162(4):1877-1891. doi:10.1007/s10584-019-02616-1
[112]. Alnaser NW, Albuflasa HM, Alnaser WE. The Transition in Solar and Wind Energy Use in Gulf Cooperation Council Countries (GCCC). Kazem H, Szabo M, Darwish ASK, eds. Renew Energy Environ Sustain. 2022;7:4. doi:10.1051/rees/2021034
[113]. Estudillo AJ, Lee JKW, Mennie N, Burns E. No evidence of other‐race effect for Chinese faces in Malaysian non‐Chinese population. Applied Cognitive Psychology. 2019;34(1):270-276. doi:10.1002/acp.3609
[114]. Zhu D, Mortazavi SM, Maleki A, Aslani A, Yousefi H. Analysis of the robustness of energy supply in Japan: Role of renewable energy. Energy Reports. 2020;6:378-391. doi:10.1016/j.egyr.2020.01.011
[115]. Aktar MostA, Alam MdM, Harun M. Energy Efficiency Policies in Malaysia: A Critical Evaluation from the Sustainable Development Perspective. Environ Sci Pollut Res. 2022;29(13):18365-18384. doi:10.1007/s11356-021-18257-w
[116]. Zame KK, Brehm CA, Nitica AT, Richard CL, Schweitzer III GD. Smart grid and energy storage: Policy recommendations. Renewable and Sustainable Energy Reviews. 2018;82:1646-1654. doi:10.1016/j.rser.2017.07.011
[117]. Monie SW, Nilsson AM, Åberg M. Comparing electricity balancing capacity, emissions, and cost for three different storage‐based local energy systems. IET Renewable Power Generation. 2020;14(19):3936-3945. doi:10.1049/iet-rpg.2020.0574
[118]. Salimijazi F, Parra E, Barstow B. Electrical energy storage with engineered biological systems. J Biol Eng. 2019;13(1). doi:10.1186/s13036-019-0162-7
[119]. Azzuni A. (2020) Energy security evaluation for the present and the future on a global level.
[120]. Solaun K, Cerdá E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renewable and Sustainable Energy Reviews. 2019;116:109415. doi:10.1016/j.rser.2019.109415
[121]. Tagliapietra S. The impact of the global energy transition on MENA oil and gas producers. Energy Strategy Reviews. 2019;26:100397. doi:10.1016/j.esr.2019.100397
[122]. Judge MA, Khan A, Manzoor A, Khattak HA. Overview of smart grid implementation: Frameworks, impact, performance and challenges. Journal of Energy Storage. 2022;49:104056. doi:10.1016/j.est.2022.104056
[123]. Burke PJ, Widnyana J, Anjum Z, Aisbett E, Resosudarmo B, Baldwin KGH. Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia. Energy Policy. 2019;132:1216-1228. doi:10.1016/j.enpol.2019.05.055
[124]. Sánchez A, Zhang Q, Martín M, Vega P. Towards a new renewable power system using energy storage: An economic and social analysis. Energy Conversion and Management. 2022;252:115056. doi:10.1016/j.enconman.2021.115056
[125]. Sovacool BK. Who are the victims of low-carbon transitions? Towards a political ecology of climate change mitigation. Energy Research & Social Science. 2021;73:101916. doi:10.1016/j.erss.2021.101916
[126]. Olawuyi DS. Can MENA extractive industries support the global energy transition? Current opportunities and future directions. The Extractive Industries and Society. 2021;8(2):100685. doi:10.1016/j.exis.2020.02.003
[127]. Arent DJ, Green P, Abdullah Z, et al. Challenges and opportunities in decarbonizing the U.S. energy system. Renewable and Sustainable Energy Reviews. 2022;169:112939. doi:10.1016/j.rser.2022.112939
[128]. Al-Shetwi AQ. Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Science of The Total Environment. 2022;822:153645. doi:10.1016/j.scitotenv.2022.153645
[129]. Diahovchenko I, Kolcun M, Čonka Z, Savkiv V, Mykhailyshyn R. Progress and Challenges in Smart Grids: Distributed Generation, Smart Metering, Energy Storage and Smart Loads. Iran J Sci Technol Trans Electr Eng. 2020;44(4):1319-1333. doi:10.1007/s40998-020-00322-8
[130]. Stokes LC, Breetz HL. Politics in the U.S. energy transition: Case studies of solar, wind, biofuels and electric vehicles policy. Energy Policy. 2018;113:76-86. doi:10.1016/j.enpol.2017.10.057
[131]. Tzankova Z. Public policy spillovers from private energy governance: New opportunities for the political acceleration of renewable energy transitions. Energy Research & Social Science. 2020;67:101504. doi:10.1016/j.erss.2020.101504
[132]. Ghasemian S, Faridzad A, Abbaszadeh P, Taklif A, Ghasemi A, Hafezi R. An overview of global energy scenarios by 2040: identifying the driving forces using cross-impact analysis method. Int J Environ Sci Technol. Published online April 25, 2020. doi:10.1007/s13762-020-02738-5
[133]. Makarov AA, Mitrova TA, Kulagin VA. Long-term development of the global energy sector under the influence of energy policies and technological progress. RUJEC. 2020; 6(4):347-357. doi:10.32609/j.ruje.6.55196
[134]. Mercure JF, Knobloch F, Pollitt H, Paroussos L, Scrieciu SS, Lewney R. Modelling innovation and the macroeconomics of low-carbon transitions: theory, perspectives and practical use. Climate Policy. 2019;19(8):1019-1037. doi:10.1080/14693062.2019.1617665
[135]. Ahmad T, Madonski R, Zhang D, Huang C, Mujeeb A. Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews. 2022;160:112128. doi:10.1016/j.rser.2022.112128
[136]. Ahmad T, Zhang D, Huang C, et al. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production. 2021;289:125834. doi:10.1016/j.jclepro.2021.125834
[137]. Liang X, Zhang S, Wu Y, et al. Air quality and health benefits from fleet electrification in China. Nat Sustain. 2019;2(10):962-971. doi:10.1038/s41893-019-0398-8
[138]. Jia M, Komeily A, Wang Y, Srinivasan RS. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Automation in Construction. 2019;101:111-126. doi:10.1016/j.autcon.2019.01.023
[139]. Angelopoulos D, Doukas H, Psarras J, Stamtsis G. Risk-based analysis and policy implications for renewable energy investments in Greece. Energy Policy. 2017;105:512-523. doi:10.1016/j.enpol.2017.02.048
[140]. Alam MM, Murad MW. The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic co-operation and development countries. Renewable Energy. 2020;145:382-390. doi:10.1016/j.renene.2019.06.054
[141]. Rehman FU, Islam MdM, Raza SA. Does disaggregate energy consumption matter to export sophistication and diversification in OECD countries? A robust panel model analysis. Renewable Energy. 2023;206:274-284. doi:10.1016/j.renene.2023.02.035
[142]. Zhang L, Berk Saydaliev H, Ma X. Does green finance investment and technological innovation improve renewable energy efficiency and sustainable development goals. Renewable Energy. 2022;193:991-1000. doi:10.1016/j.renene.2022.04.161
[143]. Bach H, Mäkitie T, Hansen T, Steen M. Blending new and old in sustainability transitions: Technological alignment between fossil fuels and biofuels in Norwegian coastal shipping. Energy Research & Social Science. 2021;74:101957. doi:10.1016/j.erss.2021.101957
[144]. Qadir SA, Al-Motairi H, Tahir F, Al-Fagih L. Incentives and strategies for financing the renewable energy transition: A review. Energy Reports. 2021;7:3590-3606. doi:10.1016/j.egyr.2021.06.041
[145]. He ZX, Xu SC, Li QB, Zhao B. Factors That Influence Renewable Energy Technological Innovation in China: A Dynamic Panel Approach. Sustainability. 2018;10(2):124. doi:10.3390/su10010124
[146]. Shahzad U, Radulescu M, Rahim S, Isik C, Yousaf Z, Ionescu S. Do Environment-Related Policy Instruments and Technologies Facilitate Renewable Energy Generation? Exploring the Contextual Evidence from Developed Economies. Energies. 2021;14(3):690. doi:10.3390/en14030690