Published
2024-04-30
Issue
Section
Review Article
License
Copyright (c) 2024 Ritu Rathi, Simrandeep Kaur, Hitesh Chopra, Manpreet Kaur, Sandeep Kumar, Inderbir Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Advancements in microsponges for the management of vaginal and colorectal diseases: A comprehensive review
Ritu Rathi
Chitkara College of Pharmacy, Chitkara University
Simrandeep Kaur
Chitkara College of Pharmacy, Chitkara University
Hitesh Chopra
Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences
Manpreet Kaur
ASBASJSM College of Pharmacy
Sandeep Kumar
ASBASJSM College of Pharmacy
Inderbir Singh
Chitkara College of Pharmacy, Chitkara University, Rajpura
DOI: https://doi.org/10.59429/ace.v7i2.2334
Keywords: microsponges; stability; colon; rectal diseases; vaginal diseases
Abstract
The controlled-release drug delivery systems have risen dramatically allowing various factors such as the prohibitive cost of developing new entities, the expiration of existing international patents, and the discovery of new polymeric materials suitable for prolonged drug release and improvement in therapeutic efficacy. Microsponges are the porous microspheres-based polymeric delivery system that allows controlled drug release at a specific site. Microsponges are developed for the efficient delivery of active ingredients at a low dose. They help in improving stability by modifying drug release kinetics, reducing side effects, and enhancing the retention of drug entities. Microsponge compositions are stable throughout a wide pH and temperature range, making them more compatible with numerous vehicles, and ingredients. Several studies have shown that microsponges are non-irritant, non-toxic, non-mutagenic, and non-allergic with self-sterilizing properties. They are typically used for topical administration but have lately been used for oral, vaginal, and colorectal administration as well. The current review contains basic information about microsponges, their method of preparation, and various characterization parameters. The review also discusses the application of microsponges in vaginal and colorectal diseases. The latter portion of the script includes various patents and preclinical trials.
References
[1]. Aloorkar NH, Kulkarni AS, Ingale DJ, Patil RA. Microsponges as innovative drug delivery systems. International Journal of Pharmaceutical Science and Nanotechnology. 2012; 5(1): 1597-1606.
[2]. Kaity S, Maiti S, Ghosh AK, Pal D, Ghosh A, Banerjee S. Microsponges: A novel strategy for drug delivery system. Journal of Advanced Pharmaceutical Technology &Research. 2010; 1(3): 283. doi:10.4103/0110-5558.72416.
[3]. Kumar L, Chadha M, Rana R, Kukreti G, Kaundal AK, Aggarwal V, and Vij M. Polymeric microsponges: an emerging prospect in topical delivery of therapeutic agents. International Journal of Polymeric Materials and Polymeric Biomaterials. 2023:1-17. Doi: https://doi.org/10.1080/00914037.2023.2235872
[4]. Ali AU, Abd-Elkareem M, Kamel A., Abou Khalil NS, Hamad D, Nasr NEH, Hassan MA, El Faham TH. Impact of porous microsponges in minimizing myotoxic side effects of simvastatin. Scientific Reports. 2023:13(1):5790. Doi: https://doi.org/10.1038/s41598-023-32545-0
[5]. Mahmoud DBE, Shukr MH, ElMeshad AN. Gastroretentive Microsponge as a Promising Tool for Prolonging the Release of Mitiglinide Calcium in Type-2 Diabetes Mellitus: Optimization and Pharmacokinetics Study. AAPS PharmSciTech. 2018; 19:2519–2532. Doi: https://doi.org/10.1208/s12249-018-1081-5.
[6]. Chadawar V, Shaji J. Microsponge delivery system. Current Drug Delivery. 2007;4(2):123-9.doi:10.2174/156720107780362320.
[7]. Abdellatif AA, Zayed GM, Kamel HH, et al. A novel controlled release microsponges containing Albendazole against Haemonchuscontortus in experimentally infected goats. Journal of Drug Delivery Science and Technology. 2018;43:469-76.doi:10.1016/j.jddst.2017.10.022.
[8]. Nokhodchi A, Jelvehgari M, Siahi MR, Mozafari MR. Factors affecting the morphology of benzoyl peroxide microsponges. Micron. 2007;38(8):834-40.doi:10.1016/j.micron.2007.06.012.
[9]. Abdalla KF, Osman MA, Nouh AT, El Maghraby GM. Microsponges for controlled release and enhanced oral bioavailability of carbamazepine. Journal of Drug Delivery Science and Technology;65:102683.doi:10.1016/j.jddst.2021.102683.
[10]. Yadav E, Rao R, Kumar S, Mahant S, Vohra P. Microsponge based gel of tea tree oil for dermatological microbial infections. The Natural Products Journal. 2020;10(3):286-97.doi:10.2174/2210315508666180605080426.
[11]. Gusai T, Dhavalkumar M, Soniwala M, Dudhat K, Vasoya J, Chavda J. Formulation and optimization of microsponge-loaded emulgel to improve the transdermal application of acyclovir—a DOE based approach. Drug Delivery and Translational Research. 2021;11:2009-29.doi:10.1007/s13346-020-00862-w.
[12]. Maheshwari R, Sharma P, Tekade M, Atneriya U, Dua K, Hansbro PM, Tekade RK. Microsponge embedded tablets for sustained delivery of nifedipine. Pharmaceutical nanotechnology. 2017 ;5(3):192-202.doi:10.2174/2211738505666170921125549.
[13]. Karmakar S, Poddar S, Khanam J. Understanding the Effects of Associated Factors in the Development of Microsponge-Based Drug Delivery: a Statistical Quality by Design (QbD) Approach Towards Optimization. AAPS PharmSciTech. 2022:23:256. https://doi.org/10.1208/s12249-022-02409-3.
[14]. Chindamo G, Sapino S, Peira E, Chirio D, Gallarate M. Recent advances in nanosystems and strategies for vaginal delivery of antimicrobials. Nanomaterials. 2021;11(2):311.doi: 10.3390/nano11020311
[15]. Mahant S, Sharma AK, Gandhi H, Wadhwa R, Dua K, Kapoor DN. Emerging trends and potential prospects in vaginal drug delivery. Current Drug Delivery. 2023; 20(6):730-751. Doi: https://doi.org/10.2174/1567201819666220413131243
[16]. Singh, P., Waghambare, P., Khan, T.A. and Omri, A., 2022. Colorectal cancer management: strategies in drug delivery. Expert Opinion on Drug Delivery. 2022;19(6):653-670. Doi: https://doi.org/10.1080/17425247.2022.2084531
[17]. Rajeswari S, Swapna V. Microsponges as a neoteric cornucopia for drug delivery systems. Int J Curr Pharm Res 2019; 11(3):4-12. Doi: https://doi.org/10.22159/ijcpr.2019v11i3.34099
[18]. Nishal S, Phaugat P, Tushir R, Dhall M. A concise literature review on study of microsponges from ancient to recent. Indian Drugs. 2022;59(9).doi: 10.53879/id.59.09.12328
[19]. Choudhary A, Akhtar MS. Microsponge Drug Delivery System: Emerging Technique in Novel Drug Delivery System and Recent Advances. Research Journal of Pharmacy and Technology. 2022 ;15(10):4835-40.doi:10.52711/0974-360X.2022.00812.
[20]. Jayasawal P, Rao NR, Jakhmola V. Microsponge as Novel Drug Delivery System: A Review. Indo Global Journal of Pharmaceutical Sciences. 2022;12:21-9.doi:10.35652/IGJPS.2022.12002.
[21]. Azad MA, Rahman MM, Halder S, Kabir ER. Recent Advances in Delivering Strategies of Domperidone: Challenges and Opportunities.Trends Drug Delivery. 2021; 8: 13-24.
[22]. Syed SM, Gaikwad SS, Wagh S. Formulation and Evaluation of Gel Containing Fluconazole Microsponges. Asian Journal of Pharmaceutical Research and Development. 2020 ;8(4):231-9.
[23]. Rathi R, Singh I. Multicomponent crystal compromising dasatinib and selected co-crystals formers: a patent evaluation of EP2861589B1. Pharmaceutical Patent Analyst. 2022;11(1):15-21.doi:10.4155/ppa-2021-0024.
[24]. Xu L, Li Y, Jing P, Xu G, Zhou Q, Cai Y, Deng X. Terahertz spectroscopic characterizations and DFT calculations of indomethacin cocrystals with nicotinamide and saccharin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021;249:119309.doi:10.1016/j.saa.2020.119309.
[25]. Talebi M, Minai-Tehrani D, Fazilati M, Minai-Tehrani A. Inhibitory action of dicyclomine on lipase activity, kinetics and molecular study. International Journal of biological macromolecules. 2018 ;107:2422-8.doi:10.1016/j.ijbiomac.2017.10.123.
[26]. Rathi R, Kushwaha R, Goyal A, Singh I. Oxaliplatin-flavone pharmaceutical co-crystal-CN111205332A: patent spotlight. Pharmaceutical Patent Analyst. 2022 Nov;11(5):147-54.doi:10.4155/ppa-2022-0011.
[27]. Kumar N, Kumar S, Singh SP, Rao R. Enhanced protective potential of novel citronella essential oil microsponge hydrogel against Anopheles stephensi mosquito. Journal of Asia-Pacific Entomology. 2021 Apr 1;24(1):61-9.doi:10.1016/j.aspen.2020.11.005.
[28]. Kumar L, Chadha M, Rana R, Kukreti G, Kaundal AK, Aggarwal V , Vij, M. Polymeric microsponges: an emerging prospect in topical delivery of therapeutic agents. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023; pp.1-17. https://doi.org/10.1080/00914037.2023.2235872
[29]. Khotimchenko M. Pectin polymers for colon-targeted antitumor drug delivery. International journal of biological macromolecules. 2020; 58:1110-1124. Doi: https://doi.org/10.1016/j.ijbiomac.2020.05.002
[30]. Vitthal JP, Rajasekaran S. Novel Approaches of Herbal Microsponges Design, Formulation and Characterization: An Overview.
[31]. Singh I, Birender K, Prateek J. Preparation and characterization of starch-metal silicate co-precipitates–Evaluation as tablet superdisintegrant. Polim. Med. 2014 Jul 1;44(3):157-66.
[32]. Cocke J, Maaß S. Cross linking between the baffling effect and phase inversion during liquid–liquid monomer mixing. Macromolecular Reaction Engineering. 2017 Aug;11(4):1700015.doi:10.1002/mren.201700015.
[33]. Raina, N., Rani, R., Thakur, V.K. and Gupta, M., 2023. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS omega. 2023,8,19145−19167. https://doi.org/10.1021/acsomega.2c08016
[34]. Chaudhary V, Sharma S. Suspension polymerization technique: parameters affecting polymer properties and application in oxidation reactions. Journal of Polymer Research. 2019 May;26(5):102.doi:10.1007/s10965-019-1767-8.
[35]. Potulwar A, Wadher SJ. A Review On Different Methods Development Approaches Of Micro Sponge’s Drug Delivery System. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2021 Oct 14;12(14):4353-61.
[36]. Salah S, Awad GE, Makhlouf AI. Improved vaginal retention and enhanced antifungal activity of miconazole microsponges gel: Formulation development and in vivo therapeutic efficacy in rats. European Journal of Pharmaceutical Sciences. 2018 Mar 1;114:255-66.doi:10.1016/j.ejps.2017.12.023.
[37]. Uddin R, Sansare V. Design, Fabrication and Evaluation of Ketorolac Tromethamine Loaded Microsponge Based Colon Targeted Tablet. International Journal of Advances in Pharmacy and Biotechnology. 2020; 6(2):09–13. doi.org/10.38111/ijapb.20200602002
[38]. Nidhi K, Verma S, Kumar S. Microsponge: An advanced drug delivery system. Journal of Clinical and Scientific Research| Volume. 2021 Apr 1;10(2):109.
[39]. Srivastava R, Pathak K. Microsponges: a futuristic approach for oral drug delivery. Expert opinion on drug delivery. 2012 Jul 1;9(7):863-78.doi:10.1517/17425247.2012.693072.
[40]. Ahmed A, Makram M, Sayed M, Louis D. An overview of microsponge as a novel tool in drug delivery. MADD. 2018;2(3):1-7.
[41]. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug design, development and therapy. 2018 Sep 24:3117-45.doi:10.2147/DDDT.S165440.
[42]. Moin A, Deb TK, Osmani RA, Bhosale RR, Hani U. Fabrication, characterization, and evaluation of microsponge delivery system for facilitated fungal therapy. Journal of basic and clinical pharmacy. 2016 Mar;7(2):39.doi:10.4103/0976-0105.177705.
[43]. Yehia RM, Attia DA, Elmazar MM, El-Nabarawi MA, Teaima MH. Screening of Adapalene Microsponges Fabrication Parameters with Insight on the In vitro Biological Effectiveness. Drug Design, Development and Therapy. 2022 Jan 1:3847-64.doi:10.2147/DDDT.S383051.
[44]. Shailaja P, Ashok KS. Entacapone microsponges in the treatment of acute Parkinson’s disease: Design, development and evaluation.International Journal of Health Sciences. 2022, 6, 4897-4910. doi:10.53730/ijhs.v6nS4.9194.
[45]. Kumar PM, Ghosh A. Development and evaluation of silver sulfadiazine loaded microsponge based gel for partial thickness (second degree) burn wounds. European journal of pharmaceutical sciences. 2017 Jan 1;96:243-54.doi:10.1016/j.ejps.2016.09.038.
[46]. Wu Y, Li H, Tan L, Lai Y, Li Z. Different clinico-pathological and prognostic features of vulvar, vaginal, and cervical melanomas. Human Pathology. 2023 Jan 1;131:87-97.
[47]. Jones KA, Moalli PA. Pathophysiology of pelvic organ prolapse. Urogynecology. 2010 Mar 1;16(2):79-89.
[48]. Kalia N, Singh J, Kaur M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Annals of clinical microbiology and antimicrobials. 2020 Dec;19(1):1-9.
[49]. Green KA, Zarek SM, Catherino WH. Gynecologic health and disease in relation to the microbiome of the female reproductive tract. Fertility and sterility. 2015 Dec 1;104(6):1351-7.doi:10.1016/j.fertnstert.2015.10.010.
[50]. de CássiaOrlandiSardi J, Silva DR, Anibal PC, de Campos Baldin JJ, Ramalho SR, Rosalen PL, Macedo ML, Hofling JF. Vulvovaginal candidiasis: epidemiology and risk factors, pathogenesis, resistance, and new therapeutic options. Current Fungal Infection Reports. 2021 Mar;15:32-40.doi:10.1007/s12281-021-00415-9.
[51]. Edwards T, Burke P, Smalley H, Hobbs G. Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Critical reviews in microbiology. 2016 May 3;42(3):406-17.doi:10.3109/1040841X.2014.958050.
[52]. Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends in microbiology. 2018 Feb 1;26(2):158-68.doi:10.1016/j.tim.2017.07.007.
[53]. Arrighi F, Granese A, Chimenti P, Guglielmi P. Novel therapeutic opportunities for Toxoplasma gondii, Trichomonas vaginalis, and Giardia intestinalis infections. Expert Opinion on Therapeutic Patents. 2023 Mar 4;33(3):211-45. DOI: 10.1080/13543776.2023.2206017
[54]. Acartürk F, Parlatan ZI, Saracoĝlu ÖF. Comparison of vaginal aminopeptidase enzymatic activities in various animals and in humans. Journal of Pharmacy and Pharmacology. 2001 Nov;53(11):1499-504.doi:10.1211/0022357011778034.
[55]. Sassi AB, Isaacs CE, Moncla BJ, Gupta P, Hillier SL, Rohan LC. Effects of physiological fluids on physical-chemical characteristics and activity of topical vaginal microbicide products. Journal of pharmaceutical sciences. 2008 Aug 1;97(8):3123-39.doi:10.1002/jps.21192.
[56]. Mirza MA, Panda AK, Asif S, Verma D, Talegaonkar S, Manzoor N, Khan A, Ahmed FJ, Dudeja M, Iqbal Z. A vaginal drug delivery model. Drug delivery. 2016 Oct 12;23(8):3123-34.doi:10.3109/10717544.2016.1153749.
[57]. Kumar PM, Ghosh A. Development and evaluation of metronidazole loaded microsponge based gel for superficial surgical wound infections. Journal of Drug Delivery Science and Technology. 2015 Dec 1;30:15-29.doi:10.1016/j.jddst.2015.09.006.
[58]. Shaker DS, Ismail S, Hamed S, El-Shishtawy EM. Butoconazole nitrate vaginal sponge: Drug release and antifungal efficacy. Journal of Drug Delivery Science and Technology. 2018 Dec 1;48:274-87.doi:10.1016/j.jddst.2018.09.011.
[59]. Amir AJ. Formulation and Characterization of Microsponges Gel from Metronidazole as a Vaginal Delivery System [dissertation]. University of Hasanuddin, Makassar, 30 November 2020.
[60]. Aboud HM, Hassan AH, Ali AA, Abdel-Razik AR. Novel in situ gelling vaginal sponges of sildenafil citrate-based cubosomes for uterine targeting. Drug delivery. 2018 Jan 1;25(1):1328-39.doi:10.1080/10717544.2018.1477858.
[61]. Usmanengsi U. Effect of Carbomer Concentration on Physical Characteristics and Release Profile of Itraconazole Microsponge in Vaginal Gel Preparations [dissertation]. University of Hasanuddin, Makassar, 2021.
[62]. Khattab A, Nattouf A. Optimization of entrapment efficiency and release of clindamycin in microsponge based gel. Scientific Reports. 2021 Dec 2;11(1):23345. doi:10.1038/s41598-021-02826-7.
[63]. Kaur C, Kaur N, Sharma D, Singh G, Singh N, Singh SK, Singh V, Kumar R. An updated review of what, when and how of sertaconazole: A potent antifungal agent. Research Journal of Pharmacy and Technology. 2021;14(6):3441-8. 10.52711/0974-360X.2021.00599
[64]. Yadav V, Jadhav P, Dombe S, Bodhe A, Salunkhe P. Formulation and evaluation of microsponge gel for topical delivery of antifungal drug. International Journal of Applied Pharmaceutics. 2017 Jul 13:30-7.doi:10.22159/ijap.2017v9i4.17760.
[65]. Hussien AA. Preparation and Evaluation of Oral Microsponge Drug Delivery System of Ketoconazole. Al Mustansiriyah Journal of Pharmaceutical Sciences. 2014 Jun 1;14(1):1-8.doi:10.32947/ajps.v14i1.119.
[66]. Kumar JR. Anticandidal activity of ethosomal gel containing miconazole nitrate in male Sprague Dawley rat. Journal of Pharmaceutical Sciences and Research. 2018 Dec 1;10(12):3400-5.
[67]. Mayur K, Ramesh K, Nitin J, Prashant P, Rajendra G, Jeevan N. Ethyl cellulose based microsponge delivery system for antifungal vaginal gels of tioconazole. Journal of Drug Delivery Therapeutics. 2013;3(6):14-20.
[68]. Gupta NV, Natasha S, Getyala A, Bhat RS. Bioadhesive vaginal tablets containing spray dried microspheres loaded with clotrimazole drug for treatment of vaginal Candidiasiss. Acta pharmaceutica. 2013 Sep 30;63(3):359-72.doi:10.2478/acph-2013-0027.
[69]. Maroni A, Zema L, Del Curto MD, Foppoli A, Gazzaniga A. Oral colon delivery of insulin with the aid of functional adjuvants. Advanced Drug Delivery Reviews. 2012 May 1;64(6):540-56.doi:10.1016/j.addr.2011.10.006.
[70]. Haupt SM, Rubinstein A. The colon as a possible target for orally administered peptide and protein drugs. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2002;19(6).doi:10.1615/critrevtherdrugcarriersyst.v19.i6.10.
[71]. A. A. Aljabali, A, A. Bakshi H, Hakkim, F, Haggag YA, M Al-Batanyeh K, S Al Zoubi M, Al-Trad B, M Nasef M, Satija S, Mehta M. Albumin Nano-Encapsulation of Piceatannol Enhances Its Anticancer Potential in Colon Cancer Via Downregulation of Nuclear p65 and HIF-1α. Cancers. 2020, 12, 113. https://doi.org/10.3390/cancers12010113
[72]. Jannin V, Lemagnen G, Gueroult P, Larrouture D, Tuleu C. Rectal route in the 21st Century to treat children. Advanced drug delivery reviews. 2014 Jun 30;73:34-49.doi:10.1016/j.addr.2014.05.012.
[73]. Rathi R, Sanshita, Kumar A, Vishvakarma V, Huanbutta K, Singh I, Sangnim T. Advancements in Rectal Drug Delivery Systems: Clinical Trials, and Patents Perspective. Pharmaceutics. 2022; 14(10):2210. https://doi.org/10.3390/pharmaceutics14102210
[74]. Hua S. Physiological and pharmaceutical considerations for rectal drug formulations. Frontiers in pharmacology. 2019 Oct 16;10:1196.doi:10.3389/fphar.2019.01196.
[75]. Hua S, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine: nanotechnology, biology and medicine. 2015 Jul 1;11(5):1117-32.doi:10.1016/j.nano.2015.02.018.
[76]. Guo Y, Zong S, Pu Y, Xu B, Zhang T, Wang B. Advances in pharmaceutical strategies enhancing the efficiencies of oral colon-targeted delivery systems in inflammatory bowel disease. Molecules. 2018 Jul 4;23(7):1622.doi:10.3390/molecules23071622.
[77]. Koziolek M, Grimm M, Becker D, Iordanov V, Zou H, Shimizu J, Wanke C, Garbacz G, Weitschies W. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap® system. Journal of pharmaceutical sciences. 2015 Sep 1;104(9):2855-63.doi:10.1002/jps.24274.
[78]. Patel M, Nagarkar R, Mohammed IA, Shah S, Kulal S. Colon targeted drug delivery system: Recent approaches. International Journal of Bioassays. 2021;10:5763-77. : http://dx.doi.org/10.14303/ijbio.2021.10.1.1
[79]. Johansson ME, Ambort D, Pelaseyed T, Schütte A, Gustafsson JK, Ermund A, Subramani DB, Holmén-Larsson JM, Thomsson KA, Bergström JH, van der Post S. Composition and functional role of the mucus layers in the intestine. Cellular and molecular life sciences. 2011 Nov;68:3635-41.doi:10.1007/s00018-011-0822-3.
[80]. McConnell EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. International journal of pharmaceutics. 2008 Dec 8;364(2):213-26.doi:10.1016/j.ijpharm.2008.05.012.
[81]. Rowe KM, Schiller LR. Ileostomy diarrhea: pathophysiology and management. InBaylor University Medical Center Proceedings 2020 Apr 2 (Vol. 33, No. 2, pp. 218-226). Taylor & Francis.doi:10.1080/08998280.2020.1712926.
[82]. Williams MD, Zhang X, Park JJ, Siems WF, Gang DR, Resar LM, Reeves R, Hill HH. Characterizing metabolic changes in human colorectal cancer. Analytical and bioanalytical chemistry. 2015 Jun;407:4581-95.doi:10.1007/s00216-015-8662-x.
[83]. Qiu Y, Cai G, Zhou B, Li D, Zhao A, Xie G, Li H, Cai S, Xie D, Huang C, Ge W. A Distinct Metabolic Signature of Human Colorectal Cancer with Prognostic PotentialMetabolic Signature of Human Colorectal Cancer. Clinical cancer research. 2014 Apr 15;20(8):2136-46.doi:10.1158/1078-0432.CCR-13-1939.
[84]. Noben M, Vanhove W, Arnauts K, Santo Ramalho A, Van Assche G, Vermeire S, Verfaillie C, Ferrante M. Human intestinal epithelium in a dish: Current models for research into gastrointestinal pathophysiology. United European gastroenterology journal. 2017 Dec;5(8):1073-81.doi:10.1177/2050640617722903.
[85]. Viscido A, Capannolo A, Latella G, Caprilli R, Frieri G. Nanotechnology in the treatment of inflammatory bowel diseases. Journal of Crohn's and Colitis. 2014 Sep 1;8(9):903-18.doi:10.1016/j.crohns.2014.02.024.
[86]. Gupta A, Tiwari G, Tiwari R, Srivastava R. Factorial designed 5-fluorouracil-loaded microsponges and calcium pectinate beads plugged in hydroxypropyl methylcellulose capsules for colorectal cancer. International journal of pharmaceutical investigation. 2015 Oct;5(4):234.doi:10.4103/2230-973X.167688.
[87]. Jain V, Jain D, Singh R. Factors effecting the morphology of eudragit S-100 based microsponges bearing dicyclomine for colonic delivery. Journal of pharmaceutical sciences. 2011 Apr 1;100(4):1545-52.doi:10.1002/jps.22360.
[88]. Orlu M, Cevher E, Araman A. Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. International journal of pharmaceutics. 2006 Aug 2;318(1-2):103-17.doi:10.1016/j.ijpharm.2006.03.025.
[89]. Jain V, Singh R. m shermine-loaded Eudragit®-based microsponge with potential for colonic delivery: preparation and characterization. Tropical Journal of Pharmaceutical Research. 2010;9(1).doi:10.4314/tjpr.v9i1.52039.
[90]. Jain V, Singh R. Development and characterization of eudragit RS 100 loaded microsponges and its colonic delivery using natural polysaccharides. Acta Pol Pharm. 2010 Jul 1;67(4):407-15.
[91]. Srivastava R, Kumar D, Pathak K. Colonic luminal surface retention of meloxicam microsponges delivered by erosion based colon-targeted matrix tablet. International journal of pharmaceutics. 2012 May 10;427(2):153-62.doi:10.1016/j.ijpharm.2012.01.036.
[92]. Kumari A, Jain A, Hurkat P, Tiwari A, Jain SK. Eudragit S100 coated microsponges for Colon targeting of prednisolone. Drug development and industrial pharmacy. 2018 Jun 3;44(6):902-13.doi:10.1080/03639045.2017.1420079.
[93]. Gandhi H, Rathore C, Dua K, Vihal S, Tambuwala MM, Negi P. Efficacy of resveratrol encapsulated microsponges delivered by pectin based matrix tablets in rats with acetic acid-induced ulcerative colitis. Drug development and industrial pharmacy. 2020 Mar 3;46(3):365-75.doi:10.1080/03639045.2020.1724127.
[94]. Sareen R, Nath K, Jain N, Dhar KL. Curcumin loaded microsponges for colon targeting in inflammatory bowel disease: fabrication, optimization, and in vitro and pharmacodynamic evaluation. BioMed research international. 2014 Jul 1;2014.doi:10.1155/2014/340701.
[95]. Ivanova NA, Trapani A, Di Franco C, Mandracchia D, Trapani G, Franchini C, Corbo F, Tripodo G, Kolev IN, Stoyanov GS, Bratoeva KZ. In vitro and ex vivo studies on diltiazem hydrochloride-loaded microsponges in rectal gels for chronic anal fissures treatment. International Journal of Pharmaceutics. 2019 Feb 25;557:53-65.doi:10.1016/j.ijpharm.2018.12.039.
[96]. Kardile SS, Shendge RS, Salunke KS, Wagh OV. Colon-specific Tablets Containing Naproxen Microsponges for Effective Treatment of Inflammatory Bowel Disease. International Journal of Health Sciences.(III):8419-41.doi:10.53730/ijhs.v6nS3.8001.
[97]. Janakidevi S, Ramanamurthy KV. Development of Colon-targeted Microsponges for the Treatment of Inflammatory Bowel Disease. Indian Journal of Pharmaceutical Sciences. 2018 Jul 31;80(4):604-9.doi:10.4172/pharmaceutical-sciences.1000399.
[98]. D’souza JI, More HN. Topical anti-inflammatory gels of fluocinolone acetonide entrapped in eudragit based microsponge delivery system. Research Journal of Pharmacy and Technology. 2008;1(4):502-6.
[99]. Özdemir S, Üner B, Baranauskaite J, Sümer E, Yıldırım E, Yaba A. 2023. Design and characterization of dexamethasone loaded microsponges for the management of ulcerative colitis. European Journal of Pharmaceutics and Biopharmaceutics, 2023; 187:34-45. doi: 10.1016/j.ejpb.2023.04.007
[100]. Dean RC, PhillipsPG, RunstadlerPW, SilverFH, Richard A. BergRA, CahnF. Weighted microsponges for immobilizing bioactive materials. WO Patent 1986005811A1, 09 October1986.
[101]. Embil, K. Analgetic cream comprising salicylate dispersed in silicone oil and microsponges for sustained delivery of counter-irritants like menthol. WO Patent 2004014397A1, 02 February 2004.
[102]. Wright S, Christensen T, Yeoh T, Rickey M, Hotz J, Kumar R, Costantino H. Polymer based sustained release devices. United States Patent US20050271702A1.8 December 2005.
[103]. Dean RC Jr, Silver FH, Berg RA, Phillips PG, Runstadler PW Jr, Gennaro J. Mafia; Verax Corp. weighted Collagen Microsponge for immobilizing Bioactive materials. US Patent US4863856A.1989; September 5.
[104]. Love FS, Taylor, T. S.; Meeks RG, Alexander JL, Stavrakas K H. Nonwoven towel with microsponges. US Patent US7426776B2, 23 September 2008.
[105]. Tamarkin D, Besonov A, Berman T, Schuz D. Gaza l E. Poloxamer foamable pharmaceutical compositions with active agent and/or therapeutic cells and uses. US Patent US8709385B2, 29 April 2014.
[106]. Tamarkin D, Friedman D, EiniM, Berman T, Schuz D. Foamable vehicle and vitamin and flavonoid pharmaceutical compositions thereof. US Patent US20080069779, 20 March 2008.
[107]. Bernick BA, Amadio, J M. Persicaner PH R. et al. Soluble estradiol capsule for Vaginal Insertion. US Patent 9180091B2. 10 November 2015.
[108]. Kharlampieva EP, Yancey B. Biodegradable photocatalytic nanocomposite microsponges of polylactic acid. WO Patent 2012177535A3, 27 December 2012.
[109]. Dean RC, Berg RA, Phillips P G, Runstadler PW, Silver FH. Weighted collagen microsponges. CA Patent 1288370C. 03 September 1985.
[110]. Ahn JW, Choi S. Microsponges have controlled solubility and improved redissolution property. KR Patent 101900387B1, 20 September 2018.
[111]. Dean RC, Cahn F, Phillips PG. Weighted Microsponge for Immobilizing Bioactive Material. US Patent 5100783A. 31 March 1992.