Published
2024-04-15
Issue
Section
Review Article
License
Copyright (c) 2024 Chiam Chel-Ken, Zykamilia Kamin, Ng Chi Huey, Farhana Abd Lahin, Rosalam Sarbatly
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Cellulose and cellulose derivatives in sustainable membrane development for oil/water separation
Chel-Ken Chiam
Membrane and Nanofibre Research Group, Faculty of Engineering, Universiti Malaysia Sabah
http://orcid.org/0000-0001-9156-7368
Zykamilia Kamin
Membrane and Nanofibre Research Group, Faculty of Engineering, Universiti Malaysia Sabah
http://orcid.org/0000-0002-7746-1134
Chi Huey Ng
Membrane and Nanofibre Research Group, Faculty of Engineering, Universiti Malaysia Sabah
http://orcid.org/0000-0002-4988-4260
Farhana Abd Lahin
Membrane and Nanofibre Research Group, Faculty of Engineering, Universiti Malaysia Sabah
http://orcid.org/0000-0001-8120-0685
Rosalam Sarbatly
Membrane and Nanofibre Research Group, Faculty of Engineering, Universiti Malaysia Sabah
http://orcid.org/0000-0001-9012-1735
DOI: https://doi.org/10.59429/ace.v7i2.1867
Keywords: membrane; cellulose; cellulose derivatives; wettability; oil/water separation
Abstract
Cellulose is a natural polymer and most abundant organic substance on Earth. Inexhaustible hydroxyl groups on cellulose surface allow derivatives of cellulose produced. This article discusses the recent progress of cellulose and cellulose derivatives in membrane development for oil/water separation. Functional groups that are available on the cellulose and its derivatives provide modification features to improve membrane wettability. Membranes with super wetting properties possess remarkable self-cleaning ability which in turn can enhance permeation fluxes and extend membrane lifespan. However, the role of cellulose-based membranes in oily wastewater treatments are still an early stage. This review article emphasizes on the development and modification of cellulose-based membranes for improvement of wettability, flux and separation efficiency, and the future directions of research.
References
[1]. United Nations, Secretary General Assembly—Remarks at Launch of International Decade for Action “Water for Sustainable Development” 2018–2028. Available online: https://www.un.org/sg/en/content/sg/speeches/2018-03-22/decade-action-water-sustainable-development-remarks (accessed on 10AM, 30 June 2023 XX).
[2]. UNESCO and UNESCO i-WSSM. Water Reuse within a Circular Economy Context (Series II). Global Water Security Issues (GWSI) Series–No. 2. UNESCO Publishing; 2020.
[3]. Cui J, Zhou Z, Xie A, et al. Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towards effective oil-water emulsions separation. Separation and Purification Technology. 2019, 209: 434-442. doi: 10.1016/j.seppur.2018.03.054
[4]. Xu Z, Li L, Liu J, et al. Mussel-inspired superhydrophilic membrane constructed on a hydrophilic polymer network for highly efficient oil/water separation. Journal of Colloid and Interface Science. 2022, 608: 702-710. doi: 10.1016/j.jcis.2021.09.123
[5]. Sun F, Li TT, Zhang X, et al. In situ growth polydopamine decorated polypropylen melt-blown membrane for highly efficient oil/water separation. Chemosphere. 2020, 254: 126873. doi: 10.1016/j.chemosphere.2020.126873
[6]. Abdel-Aty AAR, Aziz YSA, Ahmed RMG, et al. High performance isotropic polyethersulfone membranes for heavy oil-in-water emulsion separation. Separation and Purification Technology. 2020, 253: 117467. doi: 10.1016/j.seppur.2020.117467
[7]. Kumar A, Nayak K, Münch AS, et al. Mussel primed grafted zwitterionic phosphorylcholine based superhydrophilic/underwater superoleophobic antifouling membranes for oil-water separation. Separation and Purification Technology. 2022, 290: 120887. doi: 10.1016/j.seppur.2022.120887
[8]. Fan T, Miao J, Li Z, et al. Bio-inspired robust superhydrophobic-superoleophilic polyphenylene sulfide membrane for efficient oil/water separation under highly acidic or alkaline conditions. Journal of Hazardous Materials. 2019, 373: 11-22. doi: 10.1016/j.jhazmat.2019.03.008
[9]. Lustenberger S, Castro-Muñoz R. Advanced biomaterials and alternatives tailored as membranes for water treatment and the latest innovative European water remediation projects: A review. Case Studies in Chemical and Environmental Engineering. 2022, 5: 100205. doi: 10.1016/j.cscee.2022.100205
[10]. Naziri Mehrabani SA, Vatanpour V, Koyuncu I. Green solvents in polymeric membrane fabrication: A review. Separation and Purification Technology. 2022, 298: 121691. doi: 10.1016/j.seppur.2022.121691
[11]. Galiano F, Briceño K, Marino T, et al. Advances in biopolymer-based membrane preparation and applications. Journal of Membrane Science. 2018, 564: 562-586. doi: 10.1016/j.memsci.2018.07.059
[12]. Guo P, Wang F, Duo T, et al. Facile Fabrication of Methylcellulose/PLA Membrane with Improved Properties. Coatings. 2020, 10(5): 499. doi: 10.3390/coatings10050499
[13]. Liu M, He Q, Guo Z, et al. Composite reverse osmosis membrane with a selective separation layer of double-layer structure for enhanced desalination, anti-fouling and durability properties. Desalination. 2021, 499: 114838. doi: 10.1016/j.desal.2020.114838
[14]. Jabbarvand Behrouz S, Khataee A, Safarpour M, et al. Carboxymethyl cellulose/polyethersulfone thin-film composite membranes for low-pressure desalination. Separation and Purification Technology. 2021, 269: 118720. doi: 10.1016/j.seppur.2021.118720
[15]. Mansor ES, Abdallah H, Shaban AM. Development of TiO2/polyvinyl alcohol-cellulose acetate nanocomposite reverse osmosis membrane for groundwater-surface water interfaces purification. Materials Science and Engineering: B. 2023, 289: 116222. doi: 10.1016/j.mseb.2022.116222
[16]. McNamara JT, Morgan JLW, Zimmer J. A Molecular Description of Cellulose Biosynthesis. Annual Review of Biochemistry. 2015, 84(1): 895-921. doi: 10.1146/annurev-biochem-060614-033930
[17]. Zuppolini S, Salama A, Cruz-Maya I, et al. Cellulose Amphiphilic Materials: Chemistry, Process and Applications. Pharmaceutics. 2022, 14(2): 386. doi: 10.3390/pharmaceutics14020386
[18]. Grundke K, Pöschel K, Synytska A, et al. Experimental studies of contact angle hysteresis phenomena on polymer surfaces—Toward the understanding and control of wettability for different applications. Advances in Colloid and Interface Science. 2015, 222: 350-376. doi: 10.1016/j.cis.2014.10.012
[19]. Xu X, Long Y, Li Q, et al. Modified cellulose membrane with good durability for effective oil-in-water emulsion treatment. Journal of Cleaner Production. 2019, 211: 1463-1470. doi: 10.1016/j.jclepro.2018.11.284
[20]. Yang J, Cui J, Xie A, et al. Facile preparation of superhydrophilic/underwater superoleophobic cellulose membrane with CaCO3 particles for oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021, 608: 125583. doi: 10.1016/j.colsurfa.2020.125583
[21]. Li Z, Qiu F, Yue X, et al. Eco-friendly self-crosslinking cellulose membrane with high mechanical properties from renewable resources for oil/water emulsion separation. Journal of Environmental Chemical Engineering. 2021, 9(5): 105857. doi: 10.1016/j.jece.2021.105857
[22]. Huang Y, Zhan H, Li D, et al. Tunicate cellulose nanocrystals modified commercial filter paper for efficient oil/water separation. Journal of Membrane Science. 2019, 591: 117362. doi: 10.1016/j.memsci.2019.117362
[23]. Halim A, Xu Y, Lin KH, et al. Fabrication of cellulose nanofiber-deposited cellulose sponge as an oil-water separation membrane. Separation and Purification Technology. 2019, 224: 322-331. doi: 10.1016/j.seppur.2019.05.005
[24]. Ao C, Zhao J, Xia T, et al. Multifunctional La(OH)3@cellulose nanofibrous membranes for efficient oil/water separation and selective removal of dyes. Separation and Purification Technology. 2021, 254: 117603. doi: 10.1016/j.seppur.2020.117603
[25]. Yin Z, Yuan F, Li M, et al. Self-cleaning, underwater writable, heat-insulated and photocatalytic cellulose membrane for high-efficient oil/water separation and removal of hazardous organic pollutants. Progress in Organic Coatings. 2021, 157: 106311. doi: 10.1016/j.porgcoat.2021.106311
[26]. Yin Z, Chen X, Zhou T, et al. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Separation and Purification Technology. 2022, 286: 120504. doi: 10.1016/j.seppur.2022.120504
[27]. Yin Z, Yuan F, Xue M, et al. A multifunctional and environmentally safe superhydrophobic membrane with superior oil/water separation, photocatalytic degradation and anti-biofouling performance. Journal of Colloid and Interface Science. 2022, 611: 93-104. doi: 10.1016/j.jcis.2021.12.070
[28]. Yin Z, Li M, Chen Z, et al. A superhydrophobic pulp/cellulose nanofiber (CNF) membrane via coating ZnO suspensions for multifunctional applications. Industrial Crops and Products. 2022, 187: 115526. doi: 10.1016/j.indcrop.2022.115526
[29]. Yin Z, Li Z, Deng Y, et al. Multifunctional CeO2-coated pulp/cellulose nanofibers (CNFs) membrane for wastewater treatment: Effective oil/water separation, organic contaminants photodegradation, and anti-bioadhesion activity. Industrial Crops and Products. 2023, 197: 116672. doi: 10.1016/j.indcrop.2023.116672
[30]. Orooji Y, Liang F, Razmjou A, et al. Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon. Separation and Purification Technology. 2018, 205: 273-283. doi: 10.1016/j.seppur.2018.05.006
[31]. Toh MJ, Oh PC, Ahmad AL, et al. Enhancing membrane wetting resistance through superhydrophobic modification by polydimethylsilane-grafted-SiO2 nanoparticles. Korean Journal of Chemical Engineering. 2019, 36(11): 1854-1858. doi: 10.1007/s11814-019-0362-3
[32]. Ryu JH, Messersmith PB, Lee H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS Applied Materials & Interfaces. 2018, 10(9): 7523-7540. doi: 10.1021/acsami.7b19865
[33]. Farzad E, Veisi H. Fe3O4/SiO2 nanoparticles coated with polydopamine as a novel magnetite reductant and stabilizer sorbent for palladium ions: Synthetic application of Fe3O4/SiO2 @PDA/Pd for reduction of 4-nitrophenol and Suzuki reactions. Journal of Industrial and Engineering Chemistry. 2018, 60: 114-124. doi: 10.1016/j.jiec.2017.10.017
[34]. Hong SH, Ryu JH, Lee H. Effect of charge on in vivo adhesion stability of catechol-conjugated polysaccharides. Journal of Industrial and Engineering Chemistry. 2019, 79: 425-430. doi: 10.1016/j.jiec.2019.07.017
[35]. Chen T, Yang M, Yang H, et al. Construction of DOPA-SAM multilayers with corrosion resistance via controlled molecular self-assembly. Journal of Industrial and Engineering Chemistry. 2019, 69: 179-186. doi: 10.1016/j.jiec.2018.09.018
[36]. Li H, Wu L, Zhang H, et al. Mussel-inspired fabrication of superhydrophobic cellulose-based paper for the integration of excellent antibacterial activity, effective oil/water separation and photocatalytic degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022, 640: 128490. doi: 10.1016/j.colsurfa.2022.128490
[37]. Xie A, Cui J, Liu Y, et al. Preparation of Janus membrane based on biomimetic polydopamine interface regulation and superhydrophobic attapulgite spraying for on-demand oil-water emulsion separation. Journal of Membrane Science. 2021, 627: 119242. doi: 10.1016/j.memsci.2021.119242
[38]. Zhang M, Yang Q, Gao M, et al. Fabrication of Janus cellulose nanocomposite membrane for various water/oil separation and selective one-way transmission. Journal of Environmental Chemical Engineering. 2021, 9(5): 106016. doi: 10.1016/j.jece.2021.106016
[39]. Xi J, Lou Y, Jiang S, et al. High flux composite membranes based on glass/cellulose fibers for efficient oil-water emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022, 647: 129016. doi: 10.1016/j.colsurfa.2022.129016
[40]. Huang F, Li Q, Ji G, et al. Oil/water separation using a lauric acid-modified, superhydrophobic cellulose composite membrane. Materials Chemistry and Physics. 2021, 266: 124493. doi: 10.1016/j.matchemphys.2021.124493
[41]. Cao C, Cheng J. A novel Cu(OH)2 coated filter paper with superhydrophobicity for the efficient separation of water-in-oil emulsions. Materials Letters. 2018, 217: 5-8. doi: 10.1016/j.matlet.2018.01.026
[42]. Yin Z, Li M, Li Z, et al. A harsh environment resistant robust Co(OH)2@stearic acid nanocellulose-based membrane for oil-water separation and wastewater purification. Journal of Environmental Management. 2023, 342: 118127. doi: 10.1016/j.jenvman.2023.118127
[43]. Ejeta DD, Tan FH, Mathivathanan A, et al. Preparation of fluorine- and nanoparticle-free superwetting polybenzoxazine/cellulose composites for efficient oil/water separations. Separation and Purification Technology. 2022, 288: 120675. doi: 10.1016/j.seppur.2022.120675
[44]. Xie A, Cui J, Chen Y, et al. One-step facile fabrication of sustainable cellulose membrane with superhydrophobicity via a sol-gel strategy for efficient oil/water separation. Surface and Coatings Technology. 2019, 361: 19-26. doi: 10.1016/j.surfcoat.2019.01.040
[45]. Wahid F, Zhao XJ, Duan YX, et al. Designing of bacterial cellulose-based superhydrophilic/underwater superoleophobic membrane for oil/water separation. Carbohydrate Polymers. 2021, 257: 117611. doi: 10.1016/j.carbpol.2020.117611
[46]. Shi Y, Chen X, Wu Q, et al. Enhance organic pollutants removal of wastewater by a PVDF/PDA-TiO2 composite membrane with photocatalytic property. Journal of Environmental Chemical Engineering. 2023, 11(5): 110389. doi: 10.1016/j.jece.2023.110389
[47]. Han L, Shen L, Lin H, et al. 3D printing titanium dioxide-acrylonitrile-butadiene-styrene (TiO2-ABS) composite membrane for efficient oil/water separation. Chemosphere. 2023, 315: 137791. doi: 10.1016/j.chemosphere.2023.137791
[48]. Cui Y, Zheng X, Xu T, et al. A Self-Cleaning TiO2 Bacterial Cellulose Super-Hydrophilic Underwater Super-Oleophobic Composite Membrane for Efficient Oil–Water Separation. Molecules. 2023, 28(8): 3396. doi: 10.3390/molecules28083396
[49]. Etacheri V, Di Valentin C, Schneider J, et al. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2015, 25: 1-29. doi: 10.1016/j.jphotochemrev.2015.08.003
[50]. Tian J, Chen L, Yin Y, et al. Photocatalyst of TiO2/ZnO nano composite film: Preparation, characterization, and photodegradation activity of methyl orange. Surface and Coatings Technology. 2009, 204(1-2): 205-214. doi: 10.1016/j.surfcoat.2009.07.008
[51]. Li N, Tian Y, Zhang J, et al. Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation. Journal of Membrane Science. 2017, 528: 359-368. doi: 10.1016/j.memsci.2017.01.048
[52]. Wahid F, Zhao XQ, Cui JX, et al. Fabrication of bacterial cellulose with TiO2-ZnO nanocomposites as a multifunctional membrane for water remediation. Journal of Colloid and Interface Science. 2022, 620: 1-13. doi: 10.1016/j.jcis.2022.03.108
[53]. Wang F ping, Zhao X jun, Wahid F, et al. Sustainable, superhydrophobic membranes based on bacterial cellulose for gravity-driven oil/water separation. Carbohydrate Polymers. 2021, 253: 117220. doi: 10.1016/j.carbpol.2020.117220
[54]. Lin N, Dufresne A. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale. 2014, 6(10): 5384-5393. doi: 10.1039/c3nr06761k
[55]. Islam MN, Rahman F. Production and modification of nanofibrillated cellulose composites and potential applications. Green Composites for Automotive Applications. Published online 2019: 115-141. doi: 10.1016/b978-0-08-102177-4.00006-9
[56]. Ratna AS, Ghosh A, Mukhopadhyay S. Advances and prospects of corn husk as a sustainable material in composites and other technical applications. Journal of Cleaner Production. 2022, 371: 133563. doi: 10.1016/j.jclepro.2022.133563
[57]. Sobolčiak P, Tanvir A, Popelka A, et al. The preparation, properties and applications of electrospun co-polyamide 6,12 membranes modified by cellulose nanocrystals. Materials & Design. 2017, 132: 314-323. doi: 10.1016/j.matdes.2017.06.056
[58]. Wang X, Cheng W, Wang D, et al. Electrospun polyvinylidene fluoride-based fibrous nanocomposite membranes reinforced by cellulose nanocrystals for efficient separation of water-in-oil emulsions. Journal of Membrane Science. 2019, 575: 71-79. doi: 10.1016/j.memsci.2018.12.057
[59]. Mousa HM, Fahmy HS, Abouzeid R, et al. Polyvinylidene fluoride-cellulose nanocrystals hybrid nanofiber membrane for energy harvesting and oil-water separation applications. Materials Letters. 2022, 306: 130965. doi: 10.1016/j.matlet.2021.130965
[60]. Sarbatly R, Chiam CK. An Overview of Recent Progress in Nanofiber Membranes for Oily Wastewater Treatment. Nanomaterials. 2022, 12(17): 2919. doi: 10.3390/nano12172919
[61]. Wang D, Yang H, Wang Q, et al. Composite membranes of polyacrylonitrile cross-linked with cellulose nanocrystals for emulsion separation and regeneration. Composites Part A: Applied Science and Manufacturing. 2023, 164: 107300. doi: 10.1016/j.compositesa.2022.107300
[62]. Wang D, Mhatre S, Chen J, et al. Composites based on electrospun fibers modified with cellulose nanocrystals and SiO2 for selective oil/water separation. Carbohydrate Polymers. 2023, 299: 120119. doi: 10.1016/j.carbpol.2022.120119
[63]. Wang Q, Wang D, Cheng W, et al. Spider-web-inspired membrane reinforced with sulfhydryl-functionalized cellulose nanocrystals for oil/water separation. Carbohydrate Polymers. 2022, 282: 119049. doi: 10.1016/j.carbpol.2021.119049
[64]. Wu J, Cui Z, Su Y, et al. Biomimetic cellulose-nanocrystalline-based composite membrane with high flux for efficient purification of oil-in-water emulsions. Journal of Hazardous Materials. 2023, 446: 130729. doi: 10.1016/j.jhazmat.2023.130729
[65]. Kaur G, Grewal J, Jyoti K, et al. Oral controlled and sustained drug delivery systems. Drug Targeting and Stimuli Sensitive Drug Delivery Systems. Published online 2018: 567-626. doi: 10.1016/b978-0-12-813689-8.00015-x
[66]. Holtzapple MT. CELLULOSE. Encyclopedia of Food Sciences and Nutrition. Published online 2003: 998-1007. doi: 10.1016/b0-12-227055-x/00185-1
[67]. Anggraeni VS, Sutrisna PD, Goh PS, et al. Development of antifouling membrane film for treatment of oil-rich industrial waste. Materials Today: Proceedings. Published online March 2023. doi: 10.1016/j.matpr.2023.02.151
[68]. Bose J, Dasgupta J, Adhikari U, et al. Tuning permeation characteristics of cellulose acetate membrane embedded with raw and amine-functionalized silicon carbide nanoparticle for oil-water separation. Journal of Water Process Engineering. 2021, 41: 102019. doi: 10.1016/j.jwpe.2021.102019
[69]. De Guzman MR, Andra CKA, Ang MBMY, et al. Increased performance and antifouling of mixed-matrix membranes of cellulose acetate with hydrophilic nanoparticles of polydopamine-sulfobetaine methacrylate for oil-water separation. Journal of Membrane Science. 2021, 620: 118881. doi: 10.1016/j.memsci.2020.118881
[70]. Li F, Gao R, Wu T, et al. Role of layered materials in emulsified oil/water separation and anti-fouling performance of modified cellulose acetate membranes with hierarchical structure. Journal of Membrane Science. 2017, 543: 163-171. doi: 10.1016/j.memsci.2017.08.053
[71]. Wang W, Lin J, Cheng J, et al. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. Journal of Hazardous Materials. 2020, 385: 121582. doi: 10.1016/j.jhazmat.2019.121582
[72]. Karki HP, Kafle L, Ojha DP, et al. Cellulose/polyacrylonitrile electrospun composite fiber for effective separation of the surfactant-free oil-in-water mixture under a versatile condition. Separation and Purification Technology. 2019, 210: 913-919. doi: 10.1016/j.seppur.2018.08.053
[73]. Wang W, Ma X, Si J, et al. Deacetylated Cellulose Acetate/Polyurethane Composite Nanofiber Membranes with Highly Efficient Oil/Water Separation and Excellent Mechanical Properties. Macromolecular Materials and Engineering. 2021, 306(10). doi: 10.1002/mame.202100270
[74]. Ma W, Zhang Q, Samal SK, et al. Core–sheath structured electrospun nanofibrous membranes for oil–water separation. RSC Advances. 2016, 6(48): 41861-41870. doi: 10.1039/c6ra06224e
[75]. Ma W, Guo Z, Zhao J, et al. Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Separation and Purification Technology. 2017, 177: 71-85. doi: 10.1016/j.seppur.2016.12.032
[76]. Guo Z, Guo F, Gao L, et al. A Janus Mesh with Robust Interface and Controllable Wettability for Water Transport. Parvinzadeh Gashti M, ed. Journal of Nanomaterials. 2022, 2022: 1-10. doi: 10.1155/2022/8020914
[77]. Si J, Zhao M, Marcelle S seukep alix, et al. Design and Modification of Janus Polyvinylidene Fluoride/Deacetylated Cellulose Acetate Nanofiber Membrane and its Multifunctionality. Advanced Materials Interfaces. 2023, 10(11). doi: 10.1002/admi.202201550
[78]. Zhang Y, Yang M, Zhou Y, et al. Transition sandwich Janus membrane of cellulose acetate and polyurethane nanofibers for oil–water separation. Cellulose. 2022, 29(3): 1841-1853. doi: 10.1007/s10570-021-04402-8
[79]. McDonald JE, Rooks DJ, McCarthy AJ. Methods for the Isolation of Cellulose-Degrading Microorganisms. Methods in Enzymology. Published online 2012: 349-374. doi: 10.1016/b978-0-12-415931-0.00019-7
[80]. Janmohammadi M, Nazemi Z, Salehi AOM, et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioactive Materials. 2023, 20: 137-163. doi: 10.1016/j.bioactmat.2022.05.018
[81]. Ergun R, Guo J, Huebner-Keese B. Cellulose. Encyclopedia of Food and Health. Published online 2016: 694-702. doi: 10.1016/b978-0-12-384947-2.00127-6
[82]. Dai J, Chang Z, Xie A, et al. One-step assembly of Fe(III)-CMC chelate hydrogel onto nanoneedle-like CuO@Cu membrane with superhydrophilicity for oil-water separation. Applied Surface Science. 2018, 440: 560-569. doi: 10.1016/j.apsusc.2018.01.213
[83]. Yang J, Lin L, Wang Q, et al. Engineering a superwetting membrane with spider-web structured carboxymethyl cellulose gel layer for efficient oil-water separation based on biomimetic concept. International Journal of Biological Macromolecules. 2022, 222: 2603-2614. doi: 10.1016/j.ijbiomac.2022.10.043
[84]. Zou D, Nunes SP, Vankelecom IFJ, et al. Recent advances in polymer membranes employing non-toxic solvents and materials. Green Chemistry. 2021, 23(24): 9815-9843. doi: 10.1039/d1gc03318b
[85]. Li L, Baig MI, de Vos WM, et al. Preparation of Sodium Carboxymethyl Cellulose–Chitosan Complex Membranes through Sustainable Aqueous Phase Separation. ACS Applied Polymer Materials. 2023, 5(3): 1810-1818. doi: 10.1021/acsapm.2c01901
[86]. Zhou L, Jiang J, Feng F, et al. Effects of carboxymethyl cellulose on the emulsifying, gel and digestive properties of myofibrillar protein-soybean oil emulsion. Carbohydrate Polymers. 2023, 309: 120679. doi: 10.1016/j.carbpol.2023.120679
[87]. Ramakrishnan R, Kulandhaivelu SV, Roy S, et al. Characterisation of ternary blend film of alginate/carboxymethyl cellulose/starch for packaging applications. Industrial Crops and Products. 2023, 193: 116114. doi: 10.1016/j.indcrop.2022.116114
[88]. Karimi T, Mottaghitalab F, Keshvari H, et al. Carboxymethyl chitosan/sodium carboxymethyl cellulose/agarose hydrogel dressings containing silk fibroin/polydopamine nanoparticles for antibiotic delivery. Journal of Drug Delivery Science and Technology. 2023, 80: 104134. doi: 10.1016/j.jddst.2022.104134
[89]. Shah SA, Sohail M, Karperien M, et al. Chitosan and carboxymethyl cellulose-based 3D multifunctional bioactive hydrogels loaded with nano-curcumin for synergistic diabetic wound repair. International Journal of Biological Macromolecules. 2023, 227: 1203-1220. doi: 10.1016/j.ijbiomac.2022.11.307
[90]. Tangthuam P, Kao-ian W, Sangsawang J, et al. Carboxymethyl cellulose as an artificial solid electrolyte interphase for stable zinc-based anodes in aqueous electrolytes. Materials Science for Energy Technologies. 2023, 6: 417-428. doi: 10.1016/j.mset.2023.04.003
[91]. Zhao M, Fang G, Zhang S, et al. Template-directed growth of sustainable carboxymethyl cellulose-based aerogels decorated with ZIF-67 for activation peroxymonosulfate degradation of organic dyes. International Journal of Biological Macromolecules. 2023, 230: 123276. doi: 10.1016/j.ijbiomac.2023.123276
[92]. Zhu H, Chen S, Duan H, et al. Removal of anionic and cationic dyes using porous chitosan/carboxymethyl cellulose-PEG hydrogels: Optimization, adsorption kinetics, isotherm and thermodynamics studies. International Journal of Biological Macromolecules. 2023, 231: 123213. doi: 10.1016/j.ijbiomac.2023.123213
[93]. Zhang H, Yang H, Shao J, et al. Multifunctional carboxymethyl cellulose sodium encapsulated phosphorus-enriched biochar composites: Multistage adsorption of heavy metals and controllable release of soil fertilization. Chemical Engineering Journal. 2023, 453: 139809. doi: 10.1016/j.cej.2022.139809