Published
2024-04-15
Issue
Section
Review Article
License
Copyright (c) 2024 Brindaban C Ranu, Tubai Ghosh, Sougata Santra, Grigory Zyryanov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Sigmatropic rearrangements in the synthesis of heterocyclic compounds and their functionalization
Tubai Ghosh
Indian Association for the Cultivation of Science
Sougata Santra
Ural Federal University
Grigory Zyryanov
Ural Federal University
Brindaban C. Ranu
Indian Association for the Cultivation of Science
DOI: https://doi.org/10.59429/ace.v7i2.1869
Keywords: sigmatropic rearrangement; heterocycles; functionalization; green strategy
Abstract
Sigmatropic rearrangements are well documented in the carbocyclic as well as heterocyclic chemistry. Various molecules have been obtained from easily accessible starting materials via involvement of sigmatropic rearrangements. This review presented a brief account of the synthesis of some important heterocyclic compounds and their functionalization involving sigmatropic rearrangements, particularly, [3,3]-, [2,3] and [1,5]-ones. The mechanism of some rearrangements has also been discussed.
Author Biography
Brindaban C. Ranu, Indian Association for the Cultivation of Science
School of Chemical Science, INSA Honorary Scientist
References
[1]. Hoffmann R, Woodward RB. Conservation of orbital symmetry. Accounts of Chemical Research. 1968, 1(1): 17-22. doi: 10.1021/ar50001a003
[2]. Rojas CM, ed. Molecular Rearrangements in Organic Synthesis. Published online October 2, 2015. doi: 10.1002/9781118939901
[3]. Jana S, Guo Y, Koenigs RM. Recent Perspectives on Rearrangement Reactions of Ylides via Carbene Transfer Reactions. Chemistry—A European Journal. 2020, 27(4): 1270-1281. doi: 10.1002/chem.202002556
[4]. Liu Y, Liu X, Feng X. Recent advances in metal-catalysed asymmetric sigmatropic rearrangements. Chemical Science. 2022, 13(42): 12290-12308. doi: 10.1039/d2sc03806d
[5]. Martín Castro AM. Claisen Rearrangement over the Past Nine Decades. Chemical Reviews. 2004, 104(6): 2939-3002. doi: 10.1021/cr020703u
[6]. Majumdar KC, Alam S, Chattopadhyay B. Catalysis of the Claisen rearrangement. Tetrahedron. 2008, 64(4): 597-643. doi: 10.1016/j.tet.2007.10.079
[7]. Ilardi EA, Stivala CE, Zakarian A. [3,3]-Sigmatropic rearrangements: recent applications in the total synthesis of natural products. Chemical Society Reviews. 2009, 38(11): 3133. doi: 10.1039/b901177n
[8]. Nakamura I, Terada M. Recent progress on catalytic [1,3]-oxygen rearrangement reactions from nitrogen to carbon atoms. Tetrahedron Letters. 2019, 60(10): 689-698. doi: 10.1016/j.tetlet.2019.01.057
[9]. Tejedor D, Méndez-Abt G, Cotos L, et al. Propargyl Claisen rearrangement: allene synthesis and beyond. Chem Soc Rev. 2013, 42(2): 458-471. doi: 10.1039/c2cs35311c
[10]. Nubbemeyer U. Recent Advances in Asymmetric [3,3]-SigmatropicRearrangements. Synthesis. 2003, 2003(07): 0961-1008. doi: 10.1055/s-2003-39171
[11]. Hiersemann M, Rehbein J. Claisen Rearrangement of Aliphatic Allyl Vinyl Ethers from 1912 to 2012: 100 Years of Electrophilic Catalysis. Synthesis. 2013, 45(09): 1121-1159. doi: 10.1055/s-0032-1316869
[12]. Zhang Y, Wang J. Catalytic [2,3]-sigmatropic rearrangement of sulfur ylide derived from metal carbene. Coordination Chemistry Reviews. 2010, 254(9-10): 941-953. doi: 10.1016/j.ccr.2009.12.005
[13]. Shi CY, Li L, Kang W, et al. Claisen rearrangement triggered by transition metal-catalyzed alkyne alkoxylation. Coordination Chemistry Reviews. 2021, 446: 214131. doi: 10.1016/j.ccr.2021.214131
[14]. Claisen L. Über Umlagerung von Phenol‐allyläthern in C‐Allyl‐phenole. Berichte der deutschen chemischen Gesellschaft. 1912, 45(3): 3157-3166. doi: 10.1002/cber.19120450348
[15]. Cope AC, Hardy EM. The Introduction of Substituted Vinyl Groups. V. A Rearrangement Involving the Migration of an Allyl Group in a Three-Carbon System1. Journal of the American Chemical Society. 1940, 62(2): 441-444. doi: 10.1021/ja01859a055
[16]. Chin YW, Balunas MJ, Chai HB, et al. Drug discovery from natural sources. The AAPS Journal. 2006, 8(2): E239-E253. doi: 10.1007/bf02854894
[17]. Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery. 2005, 4: 206-220. doi: 10.1038/nrd1657
[18]. Sapra R, Patel D, Meshram D. A mini review: Recent developments of heterocyclic chemistry in some drug discovery scaffolds synthesis. Journal of Medicinal and Chemical Sciences. 2020, 3: 71-78. doi: 10.26655/JMCHEMSCI.2020.1.9
[19]. Zhao B, Prabagar B, Shi Z. Modern strategies for C–H functionalization of heteroarenes with alternative coupling partners. Chem. 2021, 7(10): 2585-2634. doi: 10.1016/j.chempr.2021.08.001
[20]. Pandey G, Khamrai J, Mishra A. Generation of All-Carbon Quaternary Stereocenters at the C-3 Carbon of Lactams via [3,3]-Sigmatropic Rearrangement and Revision of Absolute Configuration: Total Synthesis of (−)-Physostigmine. Organic Letters. 2017, 20(1): 166-169. doi: 10.1021/acs.orglett.7b03537
[21]. Yang K, Pulis AP, Perry GJP, et al. Transition-Metal-Free Synthesis of C3-Arylated Benzofurans from Benzothiophenes and Phenols. Organic Letters. 2018, 20(23): 7498-7503. doi: 10.1021/acs.orglett.8b03267
[22]. Zheng H, Wang Y, Xu C, et al. Stereodivergent synthesis of vicinal quaternary-quaternary stereocenters and bioactive hyperolactones. Nature Communications. 2018, 9(1). doi: 10.1038/s41467-018-04123-w
[23]. Zhang C, Zhen L, Yao Z, et al. Iron(III)-Catalyzed Domino Claisen Rearrangement/Regio- and Chemoselective Aerobic Dehydrogenative Cyclization of β-Naphthyl-Substituted-Allenylmethyl Ether. Organic Letters. 2019, 21(4): 955-959. doi: 10.1021/acs.orglett.8b03941
[24]. Yan D, Jiang H, Sun W, et al. Synthesis of Benzofurans and Benzoxazoles through a [3,3]-Sigmatropic Rearrangement: O–NHAc as a Multitasking Functional Group. Organic Process Research & Development. 2019, 23(8): 1646-1653. doi: 10.1021/acs.oprd.9b00002
[25]. Liu F, Chen W, Zhu G, et al. Metal‐Free [3,3]‐Sigmatropic Rearrangement/[3+2] Annulation Cascade of N‐Phenoxy Amides with Terminal Alkynes for the Diastereoselective Synthesis of trans‐Dihydrobenzofurans. Advanced Synthesis & Catalysis. 2019, 361(17): 3980-3985. doi: 10.1002/adsc.201900527
[26]. Lovato K, Bhakta U, Ng YP, et al. O-Cyclopropyl hydroxylamines: gram-scale synthesis and utility as precursors for N-heterocycles. Organic & Biomolecular Chemistry. 2020, 18(17): 3281-3287. doi: 10.1039/d0ob00611d
[27]. Gerosa GG, Schwengers SA, Maji R, et al. Homologation of the Fischer Indolization: A Quinoline Synthesis via Homo‐Diaza‐Cope Rearrangement. Angewandte Chemie International Edition. 2020, 59(46): 20485-20488. doi: 10.1002/anie.202005798
[28]. Behera BK, Shit S, Biswas S, et al. Synthesis of Thiazole-2(3H)-ones via [3,3]-Sigmatropic Rearrangement/5-exo-dig Cyclization of N-Propargylamines. The Journal of Organic Chemistry. 2022, 87(14): 9259-9269. doi: 10.1021/acs.joc.2c00991
[29]. Huang LZ, Xuan Z, Park JU, et al. Dual Rh(II)/Pd(0) Relay Catalysis Involving Sigmatropic Rearrangement Using N-Sulfonyl Triazoles and 2-Hydroxymethylallyl Carbonates. Organic Letters. 2022, 24(38): 6951-6956. doi: 10.1021/acs.orglett.2c02752
[30]. Zhu G, Zhou J, Liu L, et al. Catalyst‐Dependent Stereospecific [3,3]‐Sigmatropic Rearrangement of Sulfoxide‐Ynamides: Divergent Synthesis of Chiral Medium‐Sized N,S‐Heterocycles. Angewandte Chemie International Edition. 2022, 61(28). doi: 10.1002/anie.202204603
[31]. Mackenroth AV, Antoni PW, Rominger F, et al. Gold-Catalyzed [3,3]-Sigmatropic Rearrangement of ortho-Alkynyl-S,S-diarylsulfilimines. Organic Letters. 2023, 25(16): 2907-2912. doi: 10.1021/acs.orglett.3c00953
[32]. Schumacher C, Fritz L, Hanek LM, et al. Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements. Molecules. 2023, 28(2): 807. doi: 10.3390/molecules28020807
[33]. Du Y, Yu A, Zhang Y, et al. Cs2CO3‐Promoted Michael Addition‐[2,3]‐Sigmatropic Rearrangement Domino Reaction: Facile Synthesis of a 3‐Substituted Indoles Bearing a Homoallyl Sulfide Moiety. Asian Journal of Organic Chemistry. 2016, 5(11): 1309-1313. doi: 10.1002/ajoc.201600343
[34]. Zhang L, Zhang ZJ, Xiao JY, et al. Asymmetric Synthesis of Allenyl α-Amino Amides by an Isothiourea Catalyzed Enantioselective [2,3]-Sigmatropic Rearrangement. Organic Letters. 2018, 20(17): 5519-5522. doi: 10.1021/acs.orglett.8b02521
[35]. Song L, Su Q, Lin X, et al. Cascade Claisen and Meinwald Rearrangement for One-Pot Divergent Synthesis of Benzofurans and 2H-Chromenes. Organic Letters. 2020, 22(8): 3004-3009. doi: 10.1021/acs.orglett.0c00770
[36]. Nair VN, Kojasoy V, Laconsay CJ, et al. Catalyst-Controlled Regiodivergence in Rearrangements of Indole-Based Onium Ylides. Journal of the American Chemical Society. 2021, 143(24): 9016-9025. doi: 10.1021/jacs.1c00283
[37]. Gaykar RN, Deswal S, Guin A, et al. Synthesis of Trisubstituted Oxazoles via Aryne Induced [2,3] Sigmatropic Rearrangement–Annulation Cascade. Organic Letters. 2022, 24(23): 4145-4150. doi: 10.1021/acs.orglett.2c01379
[38]. Xi S, Jiang Y, Yang J, et al. Generation and [2,3]-Sigmatropic Rearrangement of Ammonium Ylides from Cyclopropyl Ketones for Chiral Indolizidines with Bridgehead Quaternary Stereocenters. Organic Letters. 2022, 24(38): 6957-6961. doi: 10.1021/acs.orglett.2c02759
[39]. Gorgues A, Hudhomme P, Sallé M. Highly Functionalized Tetrathiafulvalenes: Riding along the Synthetic Trail from Electrophilic Alkynes. Chemical Reviews. 2004, 104(11): 5151-5184. doi: 10.1021/cr0306485
[40]. Ostrovskis P, Mikhaylov AA, Zard SZ. Sigmatropic Rearrangement-Based Synthesis of 4-Alkenyl-1,3-dithiol-2-ones. Organic Letters. 2019, 21(10): 3726-3729. doi: 10.1021/acs.orglett.9b01157
[41]. Dimirjian CA, Castiñeira Reis M, Balmond EI, et al. Synthesis of Spirobicyclic Pyrazoles by Intramolecular Dipolar Cycloadditions/[1s, 5s] Sigmatropic Rearrangements. Organic Letters. 2019, 21(18): 7209-7212. doi: 10.1021/acs.orglett.9b02124
[42]. Kielesiński Ł, Morawski OW, Barboza CA, et al. Polarized Helical Coumarins: [1,5] Sigmatropic Rearrangement and Excited-State Intramolecular Proton Transfer. The Journal of Organic Chemistry. 2021, 86(9): 6148-6159. doi: 10.1021/acs.joc.0c02978
[43]. Yu S, Zhou L, Ye S, et al. Domino Sequences Involving Stereoselective Hydrazone-Type Heck Reaction and Denitrogenative [1,5]-Sigmatropic Rearrangement. Journal of the American Chemical Society. 2023, 145(13): 7621-7627. doi: 10.1021/jacs.3c01075