Published
2024-04-15
Issue
Section
Review Article
License
Copyright (c) 2024 Aparna Das, Bimal Krishna Banik
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Microwave-induced ferrier rearrangement of hyroxy beta-lactams with glycals
Aparna Das
Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University
Ram Naresh Yadav
Veer Bahadur Singh Purvanchal University
Bimal Krishna Banik
Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University
DOI: https://doi.org/10.59429/ace.v7i2.1870
Keywords: beta-lactams; synthesis; microwave; iodine; bismuth nitrate
Abstract
Microwave-induced organic methods are extremely useful in synthetic organic chemistry for the preparation of molecules. A combination of irradiation and high temperature is probably responsible to obtain the final product in an accelerated process. This review focuses on a crucial nucleophilic reaction using hydroxy beta-lactams as the starting compounds. Specifically, the reaction of cis- and trans-hydroxy beta-lactams with different types of glycals under microwave irradiation using iodine as the catalyst is explored. This reaction produces unstaturated glycosides through Ferrier Rearrangement.
References
[1]. Banik BK. Heterocyclic Scaffolds I. Springer Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12845-5
[2]. Das A, Banik BK. Studies on Dipole Moment of Penicillin Isomers and Related Antibiotics. Journal of the Indian Chemical Society. 2020, 97: 911–915.
[3]. Bronson J, Barrett J. Quinolone, Everninomycin, Glycylcycline, Carbapenem, Lipopeptide and Cephem Antibacterials in Clinical Development. Current Medicinal Chemistry. 2001, 8(14): 1775–1793. doi: 10.2174/0929867013371653
[4]. Das A, Yadav R, Banik BK. 10 Conceptual design and cost-efficient environmentally Benign synthesis of betalactams. Synthesis of Bioactive Scaffolds. Published online August 8, 2022: 357–388. doi: 10.1515/9783110797428-010
[5]. Wilmouth RC, Kassamally S, Westwood NJ, et al. Mechanistic Insights into the Inhibition of Serine Proteases by Monocyclic Lactams,. Biochemistry. 1999, 38(25): 7989–7998. doi: 10.1021/bi990098y
[6]. Edwards PD, Bernstein PR. Synthetic Inhibitors of Elastase. Medicinal Research Reviews. 1994, 14(2): 127–194. doi: 10.1002/med.2610140202
[7]. Burnett D. β-Lactam Cholesterol Absorption Inhibitors. Current Medicinal Chemistry. 2004, 11(14): 1873–1887. doi: 10.2174/0929867043364865
[8]. Clader JW, Burnett DA, Caplen MA, et al. 2-Azetidinone Cholesterol Absorption Inhibitors: Structure−Activity Relationships on the Heterocyclic Nucleus. Journal of Medicinal Chemistry. 1996, 39(19): 3684–3693. doi: 10.1021/jm960405n
[9]. Troisi L, Granito C, Pindinelli E. Novel and Recent Synthesis and Applications of β-Lactams. Topics in Heterocyclic Chemistry. Published online 2010: 101–209. doi: 10.1007/7081_2009_12
[10]. Dal Peraro M, Vila AJ, Carloni P, et al. Role of Zinc Content on the Catalytic Efficiency of B1 Metallo β-Lactamases. Journal of the American Chemical Society. 2007, 129(10): 2808–2816. doi: 10.1021/ja0657556
[11]. Banik BK, Yadav RN, Shaikh AL, et al. Asymmetric Synthesis of 3-Pyrrole Substituted β-Lactams Through p-Toluene Sulphonic Acid-catalyzed Reaction of Azetidine-2,3-diones with Hydroxyprolines. Current Organocatalysis. 2022, 9(4): 337–345. doi: 10.2174/2213337209666220802105301
[12]. Ojima I. Recent Advances in the .beta.-Lactam Synthon Method. Accounts of Chemical Research. 1995, 28(9): 383–389. doi: 10.1021/ar00057a004
[13]. Suffness M. Taxol: Science and Applications. CRC Press; 1995.
[14]. Das A. Quantitative Structure-Property Relationships of Taxol, Taxotere and Their Epi-Isomers. Journal of the Indian Chemical Society. 2020, 97(11b): 2468–2476.
[15]. Finke PE, Shah SK, Fletcher DS, et al. Orally Active beta-lactam inhibitors of human leukocyte elastase. 3. stereospecific synthesis and structure-activity relationships for 3,3-dialkylazetidin-2-ones. Journal of Medicinal Chemistry. 1995, 38(13): 2449–2462. doi: 10.1021/jm00013a021
[16]. Konaklieva MI. β-Lactams as Inhibitors of Serine Enzymes. Current Medicinal Chemistry -Anti-Infective Agents. 2002, 1(3): 215–238. doi: 10.2174/1568012023354910
[17]. Banik. Asymmetric synthesis of anticancer β-lactams via Staudinger reaction. Molecular Medicine Reports. 2010, 3(2). doi: 10.3892/mmr_000000259
[18]. Das A, Bose AK. Banik BK. Stereoselective Synthesis of β-Lactams Under Diverse Conditions: Unprecedented Observations. Journal of Indian Chemical Society. 2020, 97(6): 917–925.
[19]. Das A, Banik BK. Dipole Moment Studies on α-Hydroxy β-Lactam Derivatives. Journal of Indian Chemical Society. 2020, 97(9b): 1567–1571.
[20]. Das A, Banik BK. β-Lactams: Geometry, Dipole Moment and Anticancer Activity. Journal of the Indian Chemical Society. 2020, 97(11b): 2461–2467.
[21]. Becker FF, Banik BK. Polycyclic aromatic compounds as anticancer agents: Synthesis and biological evaluation of some chrysene derivatives. Bioorganic & Medicinal Chemistry Letters. 1998, 8(20): 2877–2880. doi: 10.1016/s0960-894x(98)00520-4
[22]. Banik BK, Becker FF, Banik I. Synthesis of anticancer β-lactams: mechanism of action. Bioorganic & Medicinal Chemistry. 2004, 12(10): 2523–2528. doi: 10.1016/j.bmc.2004.03.033
[23]. Das A, Banik BK. Dipole Moment and Anticancer Activity of Beta Lactams. Indian Journal of Pharmaceutical Sciences. 2021, 83(5). doi: 10.36468/pharmaceutical-sciences.862
[24]. Banik BK, Das A, Yadav RN. A Novel Baker’s Yeast-Mediated Microwave-Induced Reduction of Racemic 3-Keto-2-Azetidinones: Facile Entry to Optically Active Hydroxy β-Lactam Derivatives. Current Organocatalysis. 2022, 9(2): 195–198. doi: 10.2174/2213337209666220126123630
[25]. Das A, Yadav RN, Banik BK. Conceptual design and cost-efficient environmentally Benign synthesis of beta-lactams. Physical Sciences Reviews. 2022, 8(11): 4053–4084. doi: 10.1515/psr-2021-0088
[26]. Ruf S, Neudert G, Gürtler S, et al. β-Lactam derivatives as potential anti-cancer compounds. Monatshefte für Chemie (Chemical Monthly). 2008, 139(7): 847–857. doi: 10.1007/s00706-007-0838-4
[27]. Meegan MJ, Carr M, Knox AJS, et al. β-Lactam type molecular scaffolds for antiproliferative activity: Synthesis and cytotoxic effects in breast cancer cells. Journal of Enzyme Inhibition and Medicinal Chemistry. 2008, 23(5): 668–685. doi: 10.1080/14756360802469127
[28]. Ma S, Wu B, Jiang X. PdCl2-Catalyzed Efficient Transformation of Propargylic Amines to (E)-α-Chloroalkylidene-β-lactams. The Journal of Organic Chemistry. 2005, 70(7): 2588–2593. doi: 10.1021/jo0480996
[29]. Banik BK, Banik I, Becker FF. Asymmetric synthesis of anticancer β-lactams via Staudinger reaction: Utilization of chiral ketene from carbohydrate. European Journal of Medicinal Chemistry. 2010, 45(2): 846–848. doi: 10.1016/j.ejmech.2009.11.024
[30]. Staudinger H. Zur Kenntniss der Ketene. Diphenylketen. Justus Liebigs Annalen der Chemie. 1907, 356(1-2): 51–123. doi: 10.1002/jlac.19073560106
[31]. Jarrahpour A, Zarei M. Efficient one-pot synthesis of 2-azetidinones from acetic acid derivatives and imines using methoxymethylene-N,N-dimethyliminium salt. Tetrahedron. 2010, 66(27-28): 5017–5023. doi: 10.1016/j.tet.2010.05.009
[32]. Hart DJ, Ha DC. The ester enolate-imine condensation route to .beta.-lactams. Chemical Reviews. 1989, 89(7): 1447–1465. doi: 10.1021/cr00097a003
[33]. Benaglia M, Cinquini M, Cozzi F. TheS-Thioester Enolate/Imine Condensation: A Shortcut to β-Lactams. European Journal of Organic Chemistry. 2000, 2000(4): 563–572. doi: 10.1002/(sici)1099-0690(200002)2000: 4<563: : aid-ejoc563>3.0.co, 2-m
[34]. Miller MJ. Hydroxamate approach to the synthesis of .beta.-lactam antibiotics. Accounts of Chemical Research. 1986, 19(2): 49–56. doi: 10.1021/ar00122a004
[35]. Chmielewski M, Kałuża Z, Furman B. Stereocontrolled synthesis of 1-oxabicyclic β-lactam antibiotics via[2 + 2]cycloaddition of isocyanates to sugar vinyl ethers. Chemical Communications. 1996, (24): 2689–2696. doi: 10.1039/cc9960002689
[36]. Ye MC, Zhou J, Tang Y. Trisoxazoline/Cu(II)-Promoted Kinugasa Reaction. Enantioselective Synthesis of β-Lactams. The Journal of Organic Chemistry. 2006, 71(9): 3576–3582. doi: 10.1021/jo0602874
[37]. Shintani R, Fu GC. Catalytic Enantioselective Synthesis of β‐Lactams: Intramolecular Kinugasa Reactions and Interception of an Intermediate in the Reaction Cascade. Angewandte Chemie. 2003, 115(34): 4216–4219. doi: 10.1002/ange.200352103
[38]. Lee EC, Hodous BL, Bergin E, et al. Catalytic Asymmetric Staudinger Reactions to Form β-Lactams: An Unanticipated Dependence of Diastereoselectivity on the Choice of the Nitrogen Substituent. Journal of the American Chemical Society. 2005, 127(33): 11586–11587. doi: 10.1021/ja052058p
[39]. France S, Shah MH, Weatherwax A, et al. Bifunctional Lewis Acid-Nucleophile-Based Asymmetric Catalysis: Mechanistic Evidence for Imine Activation Working in Tandem with Chiral Enolate Formation in the Synthesis of β-Lactams. Journal of the American Chemical Society. 2005, 127(4): 1206–1215. doi: 10.1021/ja044179f
[40]. Mandal B, Ghosh P, Basu B. Recent Approaches Toward Solid Phase Synthesis of β-Lactams. Topics in Heterocyclic Chemistry. Published online 2010: 261–311. doi: 10.1007/7081_2009_9
[41]. Donati D, Morelli C, Porcheddu A, et al. A New Polymer-Supported Reagent for the Synthesis of β-Lactams in Solution. The Journal of Organic Chemistry. 2004, 69(26): 9316–9318. doi: 10.1021/jo048400i
[42]. Ariëns EJ. Stereochemistry, a Basis for Sophisticated Nonsense in Pharmacokinetics and Clinical Pharmacology. European Journal of Clinical Pharmacology. 1984, 26(6): 663–668. doi: 10.1007/bf00541922
[43]. Banik BK. Preface [Hot Topic: β-Lactams: Synthesis, Stereochemistry, Synthons and Biological Evaluation (Guest Editor: Bimal K. Banik)]. Current Medicinal Chemistry. 2004, 11(14): i-i. doi: 10.2174/0929867043364892
[44]. Das A, Banik BK. Advances in heterocycles as DNA intercalating cancer drugs. Physical Sciences Reviews. 2022, 8(9): 2473–2521. doi: 10.1515/psr-2021-0065
[45]. Das A, Krishna Banik B. 4 Advances in heterocycles as DNA intercalating cancer drugs. Heterocyclic Anticancer Agents. Published online June 7, 2022: 111–160. doi: 10.1515/9783110735772-004
[46]. Das A, Ashraf MW, Banik BK. Thione Derivatives as Medicinally Important Compounds. ChemistrySelect. 2021, 6(34): 9069–9100. doi: 10.1002/slct.202102398
[47]. Das A, Banik BK. Combatting the Coronavirus Utilizing Natural Cinnamon and Its Derived Products. Asian Journal of Synthetic & Natural Product Chemistry. 2023, 1(1): 11–15.
[48]. Das A, Banik BK. Versatile thiosugars in medicinal chemistry. Green Approaches in Medicinal Chemistry for Sustainable Drug Design. Published online 2020: 549–574. doi: 10.1016/b978-0-12-817592-7.00015-0
[49]. Banik BK, Das A. Natural Products as Anticancer Agents. Elsevier; 2023: 1–444.
[50]. Banik BK, Das A. Anticancer Activity of Natural Compounds from Bacteria. In: Natural Products as Anticancer Agents. Elsevier; 2024: 287–328. doi: 10.1016/B978-0-323-99710-2.00011-1
[51]. Das A, Banik BK. Anticancer Activity of Natural Compounds from Fruits and Vegetables. In: Natural Products as Anticancer Agents; Elsevier; 2024: 133–178. doi: 10.1016/B978-0-323-99710-2.00001-9
[52]. Banik BK, Das A. Anticancer Activity of Natural Compounds from Fungi. In: Natural Products as Anticancer Agents. Elsevier; 2024: 329–366. doi: 10.1016/B978-0-323-99710-2.00004-4
[53]. Das A, Banik BK. Anticancer Activity of Natural Compounds from Leaves of the Plants. In: Natural Products as Anticancer Agents. Elsevier; 2024: 3–48. doi: 10.1016/B978-0-323-99710-2.00008-1
[54]. Das A, Banik BK. Anticancer Activity of Natural Compounds from Marine Animals. In: Natural Products as Anticancer Agents. Elsevier; 2024: 181–236. doi: 10.1016/B978-0-323-99710-2.00012-3
[55]. Banik BK, Das A. Anticancer Activity of Natural Compounds from Marine Plants. In: Natural Products as Anticancer Agents. Elsevier; 2024: 237–284. doi: 10.1016/B978-0-323-99710-2.00003-2
[56]. Das A, Banik BK. Anticancer Activity of Natural Compounds from Roots of the Plants. In: Natural Products as Anticancer Agents. Elsevier; 2024: 87–132. doi: 10.1016/B978-0-323-99710-2.00009-3
[57]. Das A, Banik BK. Anticancer Activity of Natural Compounds from Stems/Barks of the Plants. In: Natural Products as Anticancer Agents. Elsevier; 2024: 49–86. doi: 10.1016/B978-0-323-99710-2.00010-X
[58]. Banik BK, Das A. Anticancer Drugs from Hormones and Vitamins. In: Natural Products as Anticancer Agents. Elsevier; 2024: 369–414. doi: 10.1016/B978-0-323-99710-2.00006-8
[59]. Banik BK, Das A. Future Prospect in Anticancer Natural Products. In: Natural Products as Anticancer Agents. Elsevier; 2024: 415–426. doi: 10.1016/B978-0-323-99710-2.00002-0
[60]. Das A, Banik BK. Green Synthesis of Biologically Active N-Heterocyclic Compounds via C-H Functionalization. In: Green Approaches in Medicinal Chemistry for Sustainable Drug Design. Elsevier; 2023.
[61]. Das A, Banik BK. Versatile Synthesis of Organic Compounds Derived from Ascorbic Acid. Current Organocatalysis. 2022, 9(1): 14–33. doi: 10.2174/2213337208666210719102301
[62]. Das A, Yadav RN, Banik BK. Ascorbic Acid-mediated Reactions in Organic Synthesis. Current Organocatalysis. 2020, 7(3): 212–241. doi: 10.2174/2213337207999200726231300
[63]. Banik I, Becker FF, Banik BK. Stereoselective Synthesis of β-Lactams with Polyaromatic Imines: Entry to New and Novel Anticancer Agents. Journal of Medicinal Chemistry. 2002, 46(1): 12–15. doi: 10.1021/jm0255825
[64]. Bandyopadhyay D, Maldonado S, Banik BK. A Microwave-Assisted Bismuth Nitrate-Catalyzed Unique Route Toward 1,4-Dihydropyridines. Molecules. 2012, 17(3): 2643–2662. doi: 10.3390/molecules17032643
[65]. Das A, Banik BK. Microwaves in Chemistry Applications: Fundamentals, Methods and Future Trends, 1st ed. Elsevier: Cambridge; 2021.
[66]. Das A, Banik BK. Microwave-assisted synthesis of oxygen- and sulfur-containing organic compounds. Microwaves in Chemistry Applications. Published online 2021: 107–142. doi: 10.1016/b978-0-12-822895-1.00010-2
[67]. Das A, Banik BK. Microwave-assisted synthesis of N-heterocycles. Microwaves in Chemistry Applications. Published online 2021: 143–198. doi: 10.1016/b978-0-12-822895-1.00006-0
[68]. Das A, Banik BK. Microwave-assisted oxidation and reduction reactions. Microwaves in Chemistry Applications. Published online 2021: 199–244. doi: 10.1016/b978-0-12-822895-1.00001-1
[69]. Das A, Banik BK. Microwave-assisted enzymatic reactions. Microwaves in Chemistry Applications. Published online 2021: 245–281. doi: 10.1016/b978-0-12-822895-1.00009-6
[70]. Das A, Banik BK. Microwave-assisted sterilization. Microwaves in Chemistry Applications. Published online 2021: 285–328. doi: 10.1016/b978-0-12-822895-1.00011-4
[71]. Das A, Banik BK. 3 Microwave-induced biocatalytic reactions toward medicinally important compounds. Organocatalysis. Published online June 7, 2022: 57–88. doi: 10.1515/9783110732542-003
[72]. Das A, Yadav RN, Banik BK. Microwave-induced Conversion of Electromagnetic Energy into Heat Energy in Different Solvents: Synthesis of β-lactams. Chemistry Journal of Moldova. 2022, 17(1): 62–66. doi: 10.19261/cjm.2021.864
[73]. Das A, Yadav RN, Banik BK. Microwave-Induced Surface-Mediated Highly Efficient Regioselective Nitration of Aromatic Compounds: Effects of Penetration Depth. Asian Journal of Chemistry. 2021, 33(9): 2203–2206. doi: 10.14233/ajchem.2021.23131
[74]. Das A, Banik BK. Microwave-assisted CVD processes for diamond synthesis. Microwaves in Chemistry Applications. Published online 2021: 329–374. doi: 10.1016/b978-0-12-822895-1.00004-7
[75]. Das A, Banik BK. Future trends in microwave chemistry and biology. Microwaves in Chemistry Applications. Published online 2021: 375–384. doi: 10.1016/b978-0-12-822895-1.00003-5
[76]. Lawen A. Apoptosis—an introduction. BioEssays. 2003, 25(9): 888–896. doi: 10.1002/bies.10329
[77]. Quintela JoséM, Peinador C, Botana L, et al. Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido[2,3-d]-pyrimidines. Bioorganic & Medicinal Chemistry. 1997, 5(8): 1543–1553. doi: 10.1016/s0968-0896(97)00108-9
[78]. Choudhury A, Chen H, Nilsen CN, et al. A chemoselective aniline–chloropyrimidine coupling in a competing electrophilic environment. Tetrahedron Letters. 2008, 49(1): 102–105. doi: 10.1016/j.tetlet.2007.11.009
[79]. Acosta P, Insuasty B, Ortiz A, et al. Solvent-free microwave-assisted synthesis of novel pyrazolo[4′,3′: 5,6]pyrido[2,3-d]pyrimidines with potential antifungal activity. Arabian Journal of Chemistry. 2016, 9(3): 481–492. doi: 10.1016/j.arabjc.2015.03.002
[80]. Cagide F, Borges F, Gomes LR, et al. Synthesis and characterisation of new 4-oxo-N-(substituted-thiazol-2-yl)-4H-chromene-2-carboxamides as potential adenosine receptor ligands. Journal of Molecular Structure. 2015, 1089: 206–215. doi: 10.1016/j.molstruc.2015.02.009
[81]. Farshori NN, Rauf A, Siddiqui MA, et al. A facile one-pot synthesis of novel 2,5-disubstituted-1,3,4-oxadiazoles under conventional and microwave conditions and evaluation of their in vitro antimicrobial activities. Arabian Journal of Chemistry. 2017, 10: S2853–S2861. doi: 10.1016/j.arabjc.2013.11.010
[82]. Bose AK, Manhas MS, van der Veen JM, et al. Stereoregulated synthesis of β-lactams from schiff bases derived from threonine esters. Tetrahedron. 1992, 48(23): 4831–4844. doi: 10.1016/s0040-4020(01)81577-5
[83]. Bose AK, Banik BK, Mathur C, et al. Polyhydroxy Amino Acid Derivatives via β-Lactams Using Enantiospecific Approaches and Microwave Techniques. Tetrahedron. 2000, 56(31): 5603–5619. doi: 10.1016/s0040-4020(00)00410-5
[84]. Banik BK, Zegrocka O, Manhas MS, et al. Enantiomerically Pure β-Lactams with the Thienamycin Side Chain via Glycosylation. Heterocycles. 1997, 46(1): 173–176. doi: 10.3987/com-97-s66
[85]. Banik BK, Barakat KJ, Wagle DR, et al. Microwave-Assisted Rapid and Simplified Hydrogenation. The Journal of Organic Chemistry. 1999, 64(16): 5746–5753. doi: 10.1021/jo981516s
[86]. Bose AK, Manhas MS, Ganguly SN, et al. More Chemistry for Less Pollution: Applications for Process Development. Synthesis. 2002, (11): 1578–1591. doi: 10.1055/s-2002-33344
[87]. Ojima I, Suga S, Abe R. A new and convenient route to the amides of α-amino acids and α-hydroxy acids by means of the palladium catalyzed facile cleavage of 3-substituted-4-arylazetidin-2-ones. Chemistry Letters. 1980, 9(7): 853–856. doi: 10.1246/cl.1980.853
[88]. Ferrier RJ. Unsaturated Sugars. Advances in Carbohydrate Chemistry and Biochemistry. Published online 1969: 199–266. doi: 10.1016/s0065-2318(08)60351-0
[89]. Lundt I, Pedersen C, Olsen B, et al. Preparation of Tri-O-benzoyl-2-deoxy-alpha-D-ribo-hexopyranosyl Fluoride from Derivatives of D-Glucal and Anhydrous Hydrogen Fluoride. Acta Chemica Scandinavica. 1970, 24: 240–246. doi: 10.3891/acta.chem.scand.24-0240
[90]. Herscovici J, Muleka K, Boumaîza L, et al. C-Glycoside synthesis via glycal alkylation by olefinic derivatives. Journal of the Chemical Society, Perkin Transactions 1. 1990, (7): 1995–2009. doi: 10.1039/p19900001995
[91]. Borer BC, Balogh DW. An asymmetric synthesis of a 3-hydroxy-β-lactam by ketene-imine cycloaddition: utilization of chiral ketenes from carbohydrates. Tetrahedron Letters. 1991, 32(8): 1039–1040. doi: 10.1016/s0040-4039(00)74481-9
[92]. Banik BK, Fernandez M, Alvarez C. Iodine-catalyzed highly efficient Michael reaction of indoles under solvent-free condition. Tetrahedron Letters. 2005, 46(14): 2479–2482. doi: 10.1016/j.tetlet.2005.02.044
[93]. Banik BK, Samajdar S, Banik I. Simple Synthesis of Substituted Pyrroles. The Journal of Organic Chemistry. 2003, 69(1): 213–216. doi: 10.1021/jo035200i
[94]. Carpino LA, Tunga A. The ((.beta.-phenylethyl)oxy)carbonyl (“homobenzyloxycarbonyl”, hZ) amino-protecting group. The Journal of Organic Chemistry. 1986, 51(10): 1930–1932. doi: 10.1021/jo00360a062
[95]. Lemieux RU, Stevens JD. Substitutional and configurational effects on chemical shift in pyranoid carbohydrate derivatives. Canadian Journal of Chemistry. 1965, 43(7): 2059–2070. doi: 10.1139/v65-276
[96]. Brieva R, Crich JZ, Sih CJ. Chemoenzymic synthesis of the C-13 side chain of taxol: optically active 3-hydroxy-4-phenyl .beta.-lactam derivatives. The Journal of Organic Chemistry. 1993, 58(5): 1068–1075. doi: 10.1021/jo00057a018
[97]. Toshima K, Ishizuka T, Matsuo G, et al. ChemInform Abstract: Practical Glycosidation Method of Glycals Using Montmorillonite K‐10 as an Environmentally Acceptable and Inexpensive Industrial Catalyst. ChemInform. 1995, 26(38). doi: 10.1002/chin.199538258
[98]. Danishefsky SJ, McClure KF, Randolph JT, et al. A Strategy for the Solid-Phase Synthesis of Oligosaccharides. Science. 1993, 260(5112): 1307–1309. doi: 10.1126/science.8493573