Published
2021-05-06
Issue
Section
Original Research Article
License
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Optimization of oscillated gas-liquid separator for simultaneous heavy metals determination in water sample
Wameath S. Abdul-Majeed
University of Nizwa
DOI: https://doi.org/10.24294/ace.v4i1.516
Keywords: Gas-Liquid Separation, Heavy Metals Detection and Determination, Species Derivatization, DBD Plasma Atomizer
Abstract
A technique has been developed to detect and determine multi heavy metals simultaneously in a water sample. Hydride generating technique was implemented to convert the analyte which present in the water sample (liquid phase) into another form with an improved separation coefficient, called “derivative”. This process occurred without changing the original chemical structure. Derivatives were separated from the liquid phase by applying custom made gas-liquid separator (GLS), operated with oscillation. Separated species then transferred into a die-electric barrier discharge (DBD) plasma atomizer where a fragmentation of the analyte into free atoms is occurred. The generated atoms were detected by emission spectroscopy. The presented technique was applied for detection of individual and multi heavy metals simultaneously in water sample and proved useful in terms of reducing the effect of the hydrogen generated, through the process, on suppressing the atoms signal in the DBD atomizer.
Author Biography
Wameath S. Abdul-Majeed, University of Nizwa
Department of Chemical and Petrochemical Engineering, University of Nizwa
References
[1] Abdul-Majeed WS, Parada JHL, Zimmerman WB. Optimization of a miniaturized DBD plasma chip for mercury detection in water samples. Analytical and Bioanalytical Chemistry 2011; 401(9): 2713–2722.[2] Dedina J. Hydride generation atomic absorption spectrometry. Chichester: John Wiley &Sons Ltd; 1995.
[3] Agterdenbos J, Bax D. Mechanisms in hydride generation AAS. Fresenius’ Journal of Analytical Chemistry 1986; 323: 783–787.
[4] Chaudhary K, Inomata K, Yoshimoto M, Koinuma H. Open-air silicon etching by H2–He–CH4 flowing cold plasma. Materials Letters 2003; 57: 3406–341.
[5] Karadjova IB, Lampugnani L, Onor M, et al. Continuous flow hydride generation-atomic fluorescence spectrometric determination and speciation of arsenic in wine. Spectrochimica Acta Part B: Atomic Spectroscopy 2005; 60: 816–823.
[6] Zhu Z, Chan GCY, Ray SJ, et al. Microplasma source based on a dielectric barrier discharge for the determination of mercury by atomic emission spectrometry. Analytical chemistry 2008; 80: 8622–8627.