Published
2024-05-15
Issue
Section
Original Research Article
License
Copyright (c) 2024 Andrei Filippov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
NMR study of nitrate ionic liquids confined between micrometer-spaced plates
Andrei Filippov
Luleå University of Technology
http://orcid.org/0000-0002-6810-1882
Oleg I Gnezdilov
Kazan Federal University
Maiia Rudakova
Luleå University of Technology
Rustam Gimatdinov
Kazan State Medical University
Victor P. Arkhipov
Kazan National Research Technological University
Oleg N. Antzutkin
Luleå University of Technology
DOI: https://doi.org/10.59429/ace.v7i2.5462
Keywords: diffusivity; ion dynamics; phase transformation; confined ionic liquid
Abstract
This review paper presents the results of a study conducted using nuclear magnetic resonance (NMR) methods to investigate the dynamic behaviour of ionic liquid-based compositions in micrometre-spaced confinement. Ethylammonium nitrate (EAN) and other ionic liquid (IL) systems with nitrate anion in glass or quartz spaced confinement demonstrate anomalous cation dynamics that differ from those observed in bulk and in nano-confinement. It was demonstrated that the principal axis of the nitrate anion exhibits preferential orientation to the surface, akin to that in liquid crystals. It was shown that the cation translational mobility reversibly changes during exposure to a static magnetic field. This phenomenon was interpreted as a result of intermolecular structure transformations occurring in the confined ILs. The mechanisms of these transformations were discussed.
References
[1]. Zhang Sh, Zhang J, Zhang Y, Deng Y. Nanoconfined ionic liquids. Chem. Rev. 2017; 117: 6755-6833.
[2]. Filippov A, Taher M, Shah FU, Glavatskih S, Antzutkin ON. The effect of the cation alkyl chain length on density and diffusion in dialkylpyrrolidinium bis(mandelato)borate ionic liquids. Phys. Chem. Chem. Phys. 2014; 16: 26798-26805.
[3]. Gebbie MA, Smith AM, Dobbs HA, Lee AA, Warr GG, Banquy X, Valtiner M, Rutland MW, Israelachvili JN, Perkin S, Atkin R. Long range electrostatic forces in ionic liquids. Chem. Commun. 2017; 53: 1214-1224.
[4]. Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem. Rev. 2015; 115: 6357-6426.
[5]. Wang YL, Li B, Sarman S, Mocci F, Lu ZhY, Yuan J, Laaksonen A, Fayer MD. Microstructural and dynamical heterogeneities in ionic liquids. Chem. Rev. 2020; 120: 5798-5877.
[6]. Hayes R, Imberti S, Warr GG, Atkin R. Amphiphilicity determines nanostructure in protic ionic liquids. Phys. Chem. Chem. Phys. 2011; 13: 3237-3247.
[7]. Sloutskin E, Lynden-Bell RM, Balasubramanian S. The surface structure of ionic liquids: Comparing simulations with x-ray measurements. J. Chem. Phys. 2006; 125: 174715.
[8]. Gil PS, Jorgenson SJ, Riet AR, Lacks DJ. Relationship between molecular structure, interfacial structure, and dynamics of ionic liquids near neutral and charged surfaces. J. Phys. Chem. C 2018; 122: 27462-27468.
[9]. Lexow M, Maier F, Steinrück HP. Ultrathin ionic liquid films on metal surfaces: adsorption, growth, stability and exchange phenomena. Adv. Phys. X 2020; 5: 1761266.
[10]. Elbourne A, Voïtchovsky K, Warr GG, Atkin R. Ion structure controls ionic liquid near-surface and interfacial nanostructure. Chem. Sci. 2015; 6: 527-536.
[11]. Singh MP, Singh RK, Chandra S. Ionic liquids confined in porous matrices: physicochemical properties and applications. Progr. Mater. Sci. 2014; 64: 73-120.
[12]. Filippov A, Gnezdilov OI, Hjalmarsson N, Antzutkin ON, Glavatskih S, Furó I, Rutland MW. Acceleration of diffusion in ethylammonium nitrate ionic liquid confined between parallel glass plates. Phys. Chem. Chem. Phys. 2017; 19: 25853-25858.
[13]. Seyedlar AO, Stapf S, Mattea C. Nuclear magnetic relaxation and diffusion study of the ionic liquids 1-ethyl- and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide confined in porous glass. Magn. Reson. Chem. 2019; 57: 818-828.
[14]. Iacob C, Sangoro JR, Papadopoulus P, Schubert T, Naumov S, Valiullin R, Kärger J, Kremer F. Charge transport and diffusion of ionic liquids in nanoporous silica membranes. Phys. Chem. Chem. Phys. 2010; 12: 13798-13803.
[15]. Iacob C, Sangoro JR, Kipnusu WK, Valiullin R, Kärger J, Kremer F, Enhanced charge transport in nano-confined ionic liquids. Soft Matter 2012; 8: 289-293.
[16]. Filippov A, Azancheev N, Shah FU, Glavatskih S, Antzutkin ON, Self-diffusion of phosphonium bis(salicilato)borate ionic liquid in pores of Vycor porous glass. Micropor. Mesopor. Mater. 2016; 230: 128-134.
[17]. Otero-Mato JM, Montes-Campos H, Cabeza O, Gallego LJ, Varela LM. Nanoconfined ionic liquids: A computational study. J. Molec. Liq. 2020; 320: 114446.
[18]. Filippov A, Antzutkin ON. Magnetic field effects dynamics of ethylammonium nitrate ionic liquid confined between glass plates. Phys. Chem. Chem. Phys. 2018; 20: 6316-6320.
[19]. Filippov A, Gnezdilov OI, Antzutkin ON. Dynamics of ethylammonium nitrate near PTFE surface. Magn. Reason. Imaging 2022; 85: 102-107.
[20]. Aslyamov T, Khlyupin A, Pletneva V, Akhatov I, Detailed characterization of rough surfaces for silica materials. arXiv:1908.01604v1 [cond-mat.mtr] 5 Aug 2019.
[21]. Ori G, Villemot F, Viau L, Vioux A, Coasne B. Ionic liquid confined in silica nanopores: molecular dynamics in the isobaric-isothermal ensemble. Molec. Phys. 2014; 112: 1350-1361.
[22]. Lahrar EH, Deroche I, Ghimbeu CM, Simon P, Merlet C. Simulations of ionic liquids confined in surface-functionalized nanoporous carbons: implications for energy storage. ACS Appl. Nano Mater. 2021; 4: 4007-4015.
[23]. Stephens NM, Masching HP, Walid MKI, Petrich JW, Anderson JL, Smith EA. Temperature-dependent constrained diffusion of micro-confined alkylimidazolium chloride ionic liquids. J. Phys. Chem. B 2022; 126: 4324-4333.
[24]. Atkin R, Warr GG. Structure in confined room-temperature ionic liquids. J. Phys. Chem. C 2007; 111: 5162-5168.
[25]. Anaredy RS, Shaw SK. Long-range ordering of ionic liquid fluid films. Langmuir 2016; 32: 5147-5154.
[26]. Pung H, Okada-Junior CY, Simoes M. Thermotropic ionic crystals (TILCs): Tunable-by-design self-assembling and stimuli-sensible electrolytic materials platform for energy applications, COIL-9 – 9th International Congress on Ionic Liquids, 24-28 April 2023. Lyon, France. https://www.coil-9.congres-scientifique.com/en/program/online-program/22
[27]. Pinilla C, Del Popolo MG, Lynden-Bell RM, Kohanoff J. Structure and dynamics of a confined ionic liquid. Topics of relevance to dye-sensitized solar cells. J. Phys. Chem. B 2005; 109: 17922-17927.
[28]. Berrod Q, Ferdeghini F, Judenstein P, Genevaz N, Ramos R, Fournier A, Dijon J, Olliver J, Rols S, Yu D, Moled RA, Zanotti JM. Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes. Nanoscale 2016; 8: 7845-7848.
[29]. Tasserit C, Koutsioubas A, Lairez D, Zalczer G, Clochard MC. Pink noise of ionic conductance through single artificial nanopores revisited. Phys. Rev. Lett. 2010; 105: 260602.
[30]. Greaves TL, Drummond C. Protic ionic liquids: properties and applications. Chem. Rev. 2008; 108: 206-237.
[31]. Walden P. Über die Moleculargröße und Elektrische Leitfähigkeit Einiger Geschmolzener Salze. Bull. Acad. Imp. Sci. St Petersburg 1914; 8: 405-422.
[32]. Belieres JP. Angell CA. Protic ionic liquids: Preparation, characterization, and proton free energy level representation. J. Phys. Chem. B 2007; 111: 4926-4937.
[33]. Garlitz JA, Summers CA, Flowers II RA, Borgstahl GEO. Ethylammonium nitrate: A protein crystallization reagent. Acta Cryst. D 1999; 55: 2037-2038.
[34]. Zhao C, Burrell GT, Torriero AAJ, Separovic F, Dunlop NF, MacFarlane DR, Bond AM. Electrochemistry of room temperature protic ionic liquids. J. Phys. Chem. B 2008; 113; 6923-6936.
[35]. Mohamed MS, Aboud FA, Shakir I. Molybdenum oxide nanowires based supercapacitors with enhanced capacitance and energy density in ethylammonium nitrate electrolyte. J. Alloys Compounds 2015; 650: 123-126.
[36]. Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008; 37: 123-150.
[37]. Atkin R, Warr GG. Structure in confined room-temperature ionic liquids. J. Phys. Chem. B 2008; 112: 4164-4166.
[38]. Kennedy DF, Drummond CJ. Large aggregated ions found in some protic ionic liquids. J. Phys. Chem. B 2009; 113: 5990-5993.
[39]. Levitt M. Spin Dynamics. Basics of Nuclear Magnetic Resonance (2nd Ed). Wiley & Sons; 2008.
[40]. Gnezdilov OI, Antzutkin ON, Gimatdinov R, Filippov A. Temperature dependence of 1H NMR chemical shifts and diffusivity of confined ethylammonium nitrate ionic liquid. Magn. Reson. Imag. 2020; 74: 84-89.
[41]. Hayamizu K, Tsuzuki S, Seki S, Umebayashi Y. Nuclear magnetic resonance studies on the rotational and translational motions of ionic liquids composed of 1-ethyl-3-methylimidazolium cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts. J. Chem. Phys. 2011; 135: 084505-1– 084505-11.
[42]. Filippov A, Alexandrov AS, Gimatdinov R, Shah FU. Unusual ion transport behaviour of ethylammonium nitrate mixed with lithium nitrate. J. Mol. Liq. 2021; 340: 116841.
[43]. Cohen MH, Turnbull D. Molecular transport in liquids and gases. J. Chem. Phys. 1959; 31: 1164-1169.
[44]. Janz GJ, James DW. Molten nitrates as electrolytes: Structure and physical properties. Electrochim. Acta 1962; 7: 427-434.
[45]. Filippov A, Antzutkin ON, Arkhipov VP, Gnezdilov OI. Diffusivity of ethylammonium nitrate protic ionic liquid confined in porous glasses. J. Mol. Liq. 2022; 356: 118998.
[46]. Linse P, Söderman O. The validity of the short-gradient-pulse approximation in NMR studies of restricted diffusion. Simulations of molecules diffusing between planes, in cylinders and spheres. J. Magn. Reson. A 1995; 116: 77-86.
[47]. Filippov A, Antzutkin ON, Gimatdinov R, Gnezdilov OI. Self-diffusion in ionic liquids with nitrate anion: effects of confinement between glass plates and static magnetic field. J. Mol. Liq. 2020; 312: 113404.
[48]. Filippov A, Gnezdilov OI, Luchkin AG, Antzutkin ON. Self-diffusion of ethylammonium nitrate ionic liquid confined between modified polar glasses. J. Mol. Liq. 2019; 284: 366-371.
[49]. Filippov A, Kurakin S, Gnezdilov OI, Antzutkin ON. Effect of magnetic field on diffusion of ethylammoniumnitrate – water mixtures confined between polar glass plates. J. Mol. Liq. 2019; 274: 45-51.
[50]. Filippov A, Gimatdinov R, Antzutkin ON, Kuzina NA, Gnezdilov OI. Effect of rotating magnetic field on diffusivity of ethylammonium nitrate ionic liquid confined between micrometer-spaced glass plates. J. Mol. Liq. 2021; 323: 115008.
[51]. Filippov A, Gnezdilov OI, Antzutkin ON. Static magnetic field alters properties of confined alkyammonium nitrate ionic liquids. J. Mol. Liq. 2018; 268: 49-54.
[52]. Hayes R, Imberti S, Warr GG, Atkin R. How water dissolves in protic ionic liquids. Angew. Chem. Int. Ed. 2012; 124: 7586-7589.
[53]. Fagerlund G. Determination of specific surface by the BET method. Mat. Constr. 1973; 6: 239-245.
[54]. Abe H, Nakama K, Hayashi R, Aono M, Takekiyo T, Yoshimura Y, Saihara K, Shimizu A. Electrochemical anomalies of protic ionic liquid – water systems: A case study using ethylammonium nitrate – water system. J. Chem. Phys. 2016; 475: 119-125.
[55]. Turov VV, Leboda R. Application of 1H NMR spectroscopy method for determination of characteristics of thin layers of water adsorbed on the surface of dispersed and porous adsorbents. Adv. Colloid Interface Sci. 1999; 79: 173-211.
[56]. Overloop K, Van Gerven L. NMR relaxation in adsorbed water. J. Magn. Res. 1992; 100: 303-315.
[57]. Aguilar JA, Kenwright SJ. Robust NMR water signal suppression for demanding analytical applications. Analyst 2016; 141: 236-242.
[58]. Yoshizava M, Xu W, Angell CA. Ionic liquids by proton transfer: Vapor pressure, conductivity, and the relevance of pK from aqueous solutions. J Am. Chem. Soc. 2003; 125: 15411-15419.
[59]. Zarrougui R, Dhahbi M, Lemordant D. Transport and Thermodynamic Properties of ethylammonium nitrate–water binary mixtures: Effect of temperature and composition. J. Solution Chem. 2015; 44: 686-702.
[60]. Huang Y, Wan Z, Yang Z, Ji Y, Li L, Yang D, Zhu M, Chen X. Concentration-dependent hydrogen bond behavior of ethylammonium nitrate protic ionic liquid–water mixtures explored by molecular dynamics simulations. J. Chem. Eng. Data 2017; 62: 2340-2349.
[61]. Docampo-Álvarez B, Gómez-González V, Méndez-Morales T, Carrete J, Rodriguez JR, Cabeza O, Gallego LJ, Varela LM. Mixtures of protic ionic liquids and molecular cosolvents: a molecular dynamics simulation. J. Chem. Phys. 2014; 140:214502.
[62]. Yaghini N, Nordstierna L, Martinelli A. Effect of water on the transport properties of protic and aprotic imidazolium ionic liquids – an analysis of self-diffusivity, conductivity, and proton exchange mechanism. Phys. Chem. Chem. Phys. 2014; 16: 9266-9275.
[63]. Avrami M. Kinetics of phase change. I general theory. J. Chem. Phys. 1939; 7: 1103-1112; Avrami M. Kinetics of phase change. II transformation—time relations for random distribution of nuclei. J. Chem. Phys. 1940; 8: 212-225.
[64]. Kolmogorov A. On the Statistical Theory of the Crystallization of Metals. Bull. Acad. Sci. URSS (Cl. Sci. Math. Nat.) 1937; 3: 355-359.
[65]. Johnson W, Mehl R. Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Engin. 1939; 135: 416-442.
[66]. Mehl R, Cahn R. in Physical Metallurgy. R. Cahn, P. Haasen (eds,), Vol. 1, North-Holland Physics Publishing. 1983.
[67]. Cahn JW. Transformation kinetics during continuous cooling. Acta Metallurgica 1956; 4: 572-575.
[68]. Yang J, McCoy J, Madras G. Distribution kinetics of polymer crystallization and the Avrami equation. J. Chem. Phys. 2005; 122: 064901.
[69]. Bodo E, Mangialardo S, Ramondo F, Ceccacci F, Postorino P. Unravelling the structure of protic ionic liquids with theoretical and experimental methods: Ethyl‑, propyl- and butylammonium nitrate explored by Raman spectroscopy and DFT calculations. J. Phys. Chem. B 2012; 116: 13878-13888.
[70]. Spiess H. W. Deuteron NMR — a new tool for studying chain mobility and orientation in polymers. Adv. Polym. Sci. 1985; 66: 23-58.
[71]. Hou X, Kirkpatrick RJ, Yu P, Moore D, Kim Y. 15N NMR study of nitrate ion structure and dynamics in hydrotalcite-like compounds. Amer. Mineralogist 2000; 85: 173-180.
[72]. Wiedemann C, Fushman D, Bordusa F. 15N NMR studies provide insights into physico-chemical properties of room-temperature ionic liquids. Phys. Chem. Chem. Phys. 2021; 23: 12395-12407.
[73]. Filippov A, Antzutkin ON. State of anion in ethylammonium nitrate enclosed between micrometer-spaced glass plates as studied by 17O and 15N NMR. Phys. Chem. Chem. Phys. 2023; 25: 14538-14545.
[74]. Hunt PA, Ashworth CR, Matthews RP. Hydrogen bonding in ionic liquids. Chem. Soc. Rev. 2015; 44: 1257-1288.
[75]. Zentel T, Kühn O. Properties of hydrogen bonds in the protic ionic liquid ethylammonium nitrate. Theor. Chem. Acc. 2017; 136: 87.
[76]. Kralj S, Zidansek A, Lahajnar G, Zimer S, Blinc R. Phase behavior of liquid crystals confined to controlled porous glass studied by deuteron NMR. Phys. Rev. E 1998; 57: 3021.
[77]. Tang X, Xu Y, Zhu X, Lu Y. Changes in microstructure of two ammonium-based protic ionic liquids proved by in situ variable-temperature 1H NMR spectroscopy: influence of anion. Magn. Reson. Chem. 2018; 56: 73-79.