Published
2024-07-01
Issue
Section
Review Article
License
Copyright (c) 2024 Saleh Alkarri
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Investigation of novel organic-based anti-microbial agents with polyolefins
Saleh Alkarri
School of Packaging, Michigan State University
DOI: https://doi.org/10.59429/ace.v7i2.5506
Keywords: Anti-microbial activity; E. coli K-12 MG1655; S. aureus ATCC 6538P; non-leachable; ROS; compounding; dyes; Nouvex N950-9010 MB
Abstract
This study investigated the anti-microbial efficacy of Nouvex N950-9010 MB, an organic-based master batch, when integrated into polypropylene (PP) and high-density polyethylene (HDPE). The focus centers on its effectiveness against two common bacterial strains: E. coli K-12 MG1655 and S. aureus ATCC 6538P. The master batch was compounded at a 5 wt.% loading concentration with PP and HDPE, and was utilized to create monolayer and multilayer films. The findings reveal significant anti-microbial activity at both 4-hour and 24-hour intervals. SEM analysis confirmed homogeneous mixing and optimal adhesion within the films. Thermal stability, assessed via DSC and TGA, remained consistent, with variations within experimental error margins. Surprisingly, FTIR results indicated no substantial differences between modified and unmodified materials, suggesting that Nouvex N950-9010 MB. preserves material integrity. Mechanical properties, including Izod impact and tensile strengths, remained stable in the modified materials. Moreover, the modified PP and HDPE exhibited improved oxygen and water vapor barrier properties (OTR and WVTR) compared with their neat counterparts. UV spectra validated the non-leachability of Nouvex N950-9010 MB, aligning with the manufacturer’s claims. A groundbreaking revelation from the study is that this master batch functions via reactive oxygen species (ROS), marking a pioneering discovery in the field of novel anti-microbial agents. The research demonstrates Nouvex N950-9010 MB’s potential as a powerful and safe solution for antimicrobial applications, opening new avenues for further exploration and practical implementation.
References
[1]. Meadow, J. F.; Altrichter, A. E.; Kembel, S. W.; Moriyama, M.; O’Connor, T. K.; Womack, A. M.; Brown, G.; Green, J. L.; Bohannan, B. J. J. M. Bacterial communities on classroom surfaces vary with human contact. 2014, 2, 1-7.
[2]. Guglielmi, G. Bacteria navigate on surfaces using a 'sense of touch'. 2021, Research News. (acccessed December 2023).
[3]. Ahveninen, A. How germs spread from surfaces. (acccessed December 2023).
[4]. Microbiology, S. Routes of transmission.
[5]. Alkarri, S. Investigate the Effect of Coating Concentration and Coating Thickness on the Anti-microbial Properties of Polycarbonate Sheet. 2024.
[6]. Li, D.; Zhou, L.; Wang, X.; He, L.; Yang, X. J. M. Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. 2019, 12 (11), 1746.
[7]. Watson, R.; Oldfield, M.; Bryant, J. A.; Riordan, L.; Hill, H. J.; Watts, J. A.; Alexander, M. R.; Cox, M. J.; Stamataki, Z.; Scurr, D. J. J. S. R. Efficacy of antimicrobial and anti-viral coated air filters to prevent the spread of airborne pathogens. 2022, 12 (1), 2803.
[8]. Hammond, A.; Khalid, T.; Thornton, H. V.; Woodall, C. A.; Hay, A. D. J. P. O. Should homes and workplaces purchase portable air filters to reduce the transmission of SARS-CoV-2 and other respiratory infections? A systematic review. 2021, 16 (4), e0251049.
[9]. Alkarri, S.; Vachon, J. Relationship between Particle Size, Anti-Microbial Activity and Leachability of Copper Particles in Liquid Suspension and Compounded in Polypropylene. Annals of Biomedical Science and Engineering 2024, 8 (1), 021-031.
[10]. Grinberg, M.; Orevi, T.; Kashtan, N. Bacterial surface colonization, preferential attachment and fitness under periodic stress. PLOS Computational Biology 2019, 15 (3), e1006815. DOI: 10.1371/journal.pcbi.1006815.
[11]. Lo, L. S. H.; Liu, X.; Qian, P.-Y.; Häggblom, M. M.; Cheng, J. Microbial colonization and chemically influenced selective enrichment of bacterial pathogens on polycarbonate plastic. Environmental Science and Pollution Research 2024, 31 (5), 8061-8071. DOI: 10.1007/s11356-023-31752-6.
[12]. Klassert, T. E.; Leistner, R.; Zubiria-Barrera, C.; Stock, M.; López, M.; Neubert, R.; Driesch, D.; Gastmeier, P.; Slevogt, H. Bacterial colonization dynamics and antibiotic resistance gene dissemination in the hospital environment after first patient occupancy: a longitudinal metagenetic study. Microbiome 2021, 9 (1), 169. DOI: 10.1186/s40168-021-01109-7.
[13]. Kramer, A.; Assadian, O. J. U. o. b. s. f. r. o. h. a. i. Survival of microorganisms on inanimate surfaces. 2014, 7-26.
[14]. Contributors to Wikimedia, p. Antimicrobial surface.
[15]. The surfaces that kill bacteria and viruses. BBC, 2020. https://www.bbc.com/future/article/20200529-the-surfaces-that-kill-bacteria-and-viruses (accessed 2024/3/31/).
[16]. Birkett, M.; Dover, L.; Cherian Lukose, C.; Wasy Zia, A.; Tambuwala, M. M.; Serrano-Aroca, Á. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. 2022, 23 (3), 1162.
[17]. Luo, H.; Yin, X.-Q.; Tan, P.-F.; Gu, Z.-P.; Liu, Z.-M.; Tan, L. Polymeric antibacterial materials: design, platforms and applications. Journal of Materials Chemistry B 2021, 9 (12), 2802-2815, 10.1039/D1TB00109D. DOI: 10.1039/D1TB00109D.
[18]. Skwarczynski, M.; Bashiri, S.; Yuan, Y.; Ziora, Z. M.; Nabil, O.; Masuda, K.; Khongkow, M.; Rimsueb, N.; Cabral, H.; Ruktanonchai, U.; et al. Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. 2022, 11 (3), 412.
[19]. Alkarri, S. Developing Methods for Incorporating Antimicrobial Biocidal Nanoparticles in Thermoplastics. Michigan State University, 2023.
[20]. Poly, G. Poly Group LLC - Nouvex Antimicrobial.
[21]. Purdue News, S. Novel antimicrobial polymer receives EPA approval.
[22]. Programs, U. S. E. P. A. O. o. P. US EPA, pesticide product label, NOUVEX N950-9010 MASTER BATCH,03/22/2017. United states environmental protection agency Decision No. 526851 (EPA Reg. No. 91413-2). (acccessed 2024/3/31/).
[23]. Brandrup, J.; Immergut, E. H.; Grulke, E. A.; Abe, A.; Bloch, D. R. Polymer handbook; Wiley New York, 1999.
[24]. Li, D.; Zhou, L.; Wang, X.; He, L.; Yang, X. Effect of Crystallinity of Polyethylene with Different Densities on Breakdown Strength and Conductance Property. Materials (Basel, Switzerland) 2019, 12 (11). DOI: 10.3390/ma12111746 From NLM.
[25]. Alkarri, S.; Bin Saad, H.; Soliman, M. On Antimicrobial Polymers: Development, Mechanism of Action, International Testing Procedures, and Applications. Polymers 2024, 16 (6), 771.
[26]. Čapek, J.; Roušar, T. Detection of oxidative stress induced by nanomaterials in cells—the roles of reactive oxygen species and glutathione. Molecules 2021, 26 (16), 4710.
[27]. Saleh, A.; Melinda, F.; John, C.; Lee, M.; Jin H, K.; Jonathan O, R. Investigating anti-bacterial and anti-covid-19 virus properties and mode of action of pure mg(oh)2 and copper-infused mg(oh)2 nanoparticles and coated polypropylene surfaces. Int J Clin Virol 8 (1), 008-023. DOI: 10.29328/journal.ijcv.1001057 (acccessed 2024/6/18/).
[28]. Gu, J.; Xu, H.; Wu, C. J. A. i. p. t. Thermal and crystallization properties of HDPE and HDPE/PP blends modified with DCP. 2014, 33 (1).
[29]. Alkarri, S.; Sharma, D.; Bergholz, T. M.; Rabnawaz, M. J. J. o. A. P. S. Fabrication methodologies for antimicrobial polypropylene surfaces with leachable and nonleachable antimicrobial agents. 2024, 141 (1), e54757.