Published
2024-12-06
Section
Original Research Article
License
Copyright (c) 2024 S. Raja, Rusho Maher Ali, K. Ch. Sekhar, Humam Muthana Jummaah, Rana Hussain, Ban Safir Khalaf Al-shammari, Zainab Nizar Jawad, Mohammed Ahmed Mustafa, Avvaru Praveen Kumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Optimization of sustainable polymer composites for surface metamorphosis in FDM processes
S. Raja
Center for Advanced Multidisciplinary Research and Innovation, Chennai Institute of Technology, Chennai, Tamilnadu, 600069, India
Rusho Maher Ali
Masters of Engineering in Engineering Management, Lockheed Matin Engineering Management, University of Colorado, Boulder, Colorado,80308,United States
K. Ch. Sekhar
Department of Mechanical Engineering, Lendi Institute of Engineering and Technology, Jonnada, Vizianagaram , Andhra Pradesh,535005,India
Humam Muthana Jummaah
Al-Mamoon University College, Baghdad, 10012, Iraq
Rana Hussain
College of Pharmacy, Al-Turath University, 10081, Baghdad, Iraq
Ban Safir Khalaf Al- shammari
College of Medical Technology, Department of Medical Equipment Engineering, Al-Farahidi University, Baghdad, 00965, Iraq
Zainab Nizar Jawad
Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, 56001, Iraq Department of Optics Techniques, Al-Zahrawi University College, Kerbala, 56001, Iraq
Mohammed Ahmed Mustafa
Department of Biology, College of Education, University of Samarra, Samarra, 34010, Iraq
Avvaru Praveen Kumar
Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama,1888, Ethiopia Department of Chemistry, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
DOI: https://doi.org/10.59429/ace.v7i4.5531
Abstract
The demand for the development of sustainable manufacturing processes is enhanced by the necessity to optimize polymer composites, particularly in the context of fused deposition modeling (FDM). This research aims to enhance sustainable polymer composites to improve the surface metamorphosis during FDM processes. Various eco-friendly polymer matrices were integrated with novel composite reinforcements to evaluate their impact on surface quality, structural integrity, and the performance of FDM-printed components. Key surface features, including roughness (Ra), texture, and function, were quantified through both experimental and computational methods. The optimized composites led to a significant reduction in surface roughness, with Ra values improving by up to 45% compared to standard filaments. In addition, tensile strength was increased by 30% and flexural strength by 20% relative to unmodified polymer composites. Optimization strategies, guided by green chemistry principles and materials science, successfully enhanced surface finishes and functional properties, aligning with sustainability goals. The results demonstrate that optimized sustainable polymer composites can significantly improve the quality and performance of FDM prints, supporting more efficient and environmentally friendly manufacturing practices. This study contributes to advancing materials and processes in line with sustainability principles and surface engineering.
References
[1]. Jafar, M. R., Tripathi, N. M., Yadav, M., & Nasato, D. S. Additive Manufacturing in the Age of Industry 4.0 and Beyond. In Advances in Pre-and Post-Additive Manufacturing Processes (pp. 213-230). CRC Press.
[2]. Raja, S., Agrawal, A. P., Patil, P. P., Thimothy, P., Capangpangan, R. Y., Singhal, P., & Wotango, M. T. (2022). Optimization of 3D Printing Process Parameters of Polylactic Acid Filament Based on the Mechanical Test. 2022.
[3]. Raja, S., Rajan, A. J., Kumar, V. P., Rajeswari, N., Girija, M., Modak, S., Kumar, R. V., & Mammo, W. D. (2022). Selection of Additive Manufacturing Machine Using Analytical Hierarchy Process. 2022.
[4]. Subramani, R., Kaliappan, S., Sekar, S., Patil, P. P., Usha, R., Manasa, N., & Esakkiraj, E. S. (2022). Polymer Filament Process Parameter Optimization with Mechanical Test and Morphology Analysis. 2022.
[5]. Kuperkar, K., Atanase, L. I., Bahadur, A., Crivei, I. C., & Bahadur, P. (2024). Degradable polymeric bio (nano) materials and their biomedical applications: A comprehensive overview and recent updates. Polymers, 16(2), 206.
[6]. Raja, S., & Rajan, A. J. (2022). A Decision-Making Model for Selection of the Suitable FDM Machine Using Fuzzy TOPSIS. 2022.
[7]. Jha, S., Akula, B., Enyioma, H., Novak, M., Amin, V., & Liang, H. (2024). Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions. Polymers, 16(16), 2262.
[8]. Barve, P., Bahrami, A., & Shah, S. (2024). A Comprehensive Review on Effects of Material Composition, Mix Design, and Mixing Regimes on Rheology of 3D-Printed Geopolymer Concrete. Open Construction & Building Technology Journal, 18.
[9]. Subramani, R., Kaliappan, S., Arul, P. V, Sekar, S., Poures, M. V. De, Patil, P. P., & Esakki, E. S. (2022). A Recent Trend on Additive Manufacturing Sustainability with Supply Chain Management Concept , Multicriteria Decision Making Techniques. 2022.
[10]. Raja, S., Logeshwaran, J., Venkatasubramanian, S., Jayalakshmi, M., Rajeswari, N., Olaiya, N. G., & Mammo, W. D. (2022). OCHSA : Designing Energy-Efficient Lifetime-Aware Leisure Degree Adaptive Routing Protocol with Optimal Cluster Head Selection for 5G Communication Network Disaster Management. 2022.
[11]. Zhou, L. (2024). A Review of Biomass-Derived Biochar and Its Potential in Asphalt Pavement Engineering. Materials Science-Poland, 42(2), 81-99.
[12]. S. Raja, A. John Rajan, "Challenges and Opportunities in Additive Manufacturing Polymer Technology: A Review Based on Optimization Perspective", Advances in Polymer Technology, vol. 2023, Article ID 8639185, 18 pages, 2023. https://doi.org/10.1155/2023/8639185
[13]. S., R., & A., J. R. (2023). Selection of Polymer Extrusion Parameters By Factorial Experimental Design – A Decision Making Model. Scientia Iranica, (), -. doi: 10.24200/sci.2023.60096.6591
[14]. Subramani, R., Kalidass, A. K., Muneeswaran, M. D., & Lakshmipathi, B. G. (2024). Effect of fused deposition modeling process parameter in influence of mechanical property of acrylonitrile butadiene styrene polymer. Applied Chemical Engineering, 7(1).
[15]. Raja, S., AhmedMustafa, M., KamilGhadir, G., MusaadAl-Tmimi, H., KhalidAlani, Z., AliRusho, M., & Rajeswari, N. (2024). An analysis of polymer material selection and design optimization to improve Structural Integrity in 3D printed aerospace components. Applied Chemical Engineering, 7(2), 1875-1875.
[16]. Subramani, R., Mustafa, M. A., Ghadir, G. K., Al-Tmimi, H. M., Alani, Z. K., Rusho, M. A., ... & Kumar, A. P. (2024). Exploring the use of Biodegradable Polymer Materials in Sustainable 3D Printing. Applied Chemical Engineering, 7(2), 3870-3870.
[17]. Raja, S., Mustafa, M. A., Ghadir, G. K., Al-Tmimi, H. M., Alani, Z. K., Rusho, M. A., & Rajeswari, N. (2024). Unlocking the potential of polymer 3D printed electronics: Challenges and solutions. Applied Chemical Engineering, 7(2), 3877-3877.
[18]. Venkatasubramanian, S., Raja, S., Sumanth, V., Dwivedi, J. N., Sathiaparkavi, J., Modak, S., & Kejela, M. L. (2022). Fault Diagnosis Using Data Fusion with Ensemble Deep Learning Technique in IIoT. 2022.
[19]. Mohammed Ahmed Mustafa, S. Raja, Layth Abdulrasool A. L. Asadi, Nashrah Hani Jamadon, N. Rajeswari, Avvaru Praveen Kumar, "A Decision-Making Carbon Reinforced Material Selection Model for Composite Polymers in Pipeline Applications", Advances in Polymer Technology, vol. 2023, Article ID 6344193, 9 pages, 2023. https://doi.org/10.1155/2023/6344193
[20]. Olaiya, N. G., Maraveas, C., Salem, M. A., Raja, S., Rashedi, A., Alzahrani, A. Y., El-Bahy, Z. M., & Olaiya, F. G. (2022). Viscoelastic and Properties of Amphiphilic Chitin in Plasticised Polylactic Acid/Starch Biocomposite. Polymers, 14(11), 2268. https://doi.org/10.3390/polym14112268
[21]. Mannan, K. T., Sivaprakash, V., Raja, S., Patil, P. P., Kaliappan, S., & Socrates, S. (2022). Effect of Roselle and biochar reinforced natural fiber composites for construction applications in cryogenic environment. Materials Today: Proceedings, 69, 1361-1368.
[22]. Kuo, C. C., Chen, J. Y., & Chang, Y. H. (2021). Optimization of process parameters for fabricating polylactic acid filaments using design of experiments approach. Polymers, 13(8), 1222.
[23]. Akgun, G., & Ulkir, O. (2024). Prediction surface roughness of 3D printed parts using genetic algorithm optimized hybrid learning model. Journal of Thermoplastic Composite Materials, 08927057241243364
[24]. Espino, M. T., Tuazon, B. J., Espera Jr, A. H., Nocheseda, C. J. C., Manalang, R. S., Dizon, J. R. C., & Advincula, R. C. (2023). Statistical methods for design and testing of 3D-printed polymers. MRS communications, 13(2), 193-211.
[25]. Kumar, S., Singh, R., Batish, A., & Singh, T. P. (2022). Additive manufacturing of smart materials exhibiting 4-D properties: A state of art review. Journal of Thermoplastic Composite Materials, 35(9), 1358-1381.
[26]. Thirugnanasamabandam, A., Prabhu, B., Mageswari, V., Murugan, V., Ramachandran, K., & Kadirgama, K. (2024). Wood flour/ceramic reinforced Polylactic Acid based 3D-printed functionally grade structural material for integrated engineering applications: A numerical and experimental characteristic investigation. International Journal of Lightweight Materials and Manufacture.
[27]. Ulkir, O., & Akgun, G. (2024). Prediction of Flexural Strength with Fuzzy Logic Approach for Fused Deposition Modeling of Polyethylene Terephthalate Glycol Components. Journal of Materials Engineering and Performance, 33(9), 4367-4376.
[28]. Shanmugam, V., Babu, K., Kannan, G., Mensah, R. A., Samantaray, S. K., & Das, O. (2024). The thermal properties of FDM printed polymeric materials: A review. Polymer Degradation and Stability, 110902.
[29]. Mannan, K. T., Sivaprakash, V., Raja, S., Kulandasamy, M., Patil, P. P., & Kaliappan, S. (2022). Significance of Si3N4/Lime powder addition on the mechanical properties of natural calotropis gigantea composites. Materials Today: Proceedings, 69, 1355-1360.
[30]. Karimi, A., Rahmatabadi, D., & Baghani, M. (2024). Various FDM mechanisms used in the fabrication of continuous-fiber reinforced composites: a review. Polymers, 16(6), 831.
[31]. Tran, M. H., Choi, T. R., Yang, Y. H., Lee, O. K., & Lee, E. Y. (2024). An efficient and eco-friendly approach for the sustainable recovery and properties characterization of polyhydroxyalkanoates produced by methanotrophs. International Journal of Biological Macromolecules, 257, 128687.
[32]. S. Venkatasubramanian, Jaiprakash Narain Dwivedi, S. Raja, N. Rajeswari, J. Logeshwaran, Avvaru Praveen Kumar, "Prediction of Alzheimer’s Disease Using DHO-Based Pretrained CNN Model", Mathematical Problems in Engineering, vol. 2023, Article ID 1110500, 11 pages, 2023. https://doi.org/10.1155/2023/1110500
[33]. Armghan, A., Logeshwaran, J., Raja, S., Aliqab, K., Alsharari, M., & Patel, S. K. (2024). Performance optimization of energy-efficient solar absorbers for thermal energy harvesting in modern industrial environments using a solar deep learning model. Heliyon.
[34]. Praveenkumar, V., Raja, S., Jamadon, N. H., & Yishak, S. (2023). Role of laser power and scan speed combination on the surface quality of additive manufactured nickel-based superalloy. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 14644207231212566.
[35]. Sekhar, K. C., Surakasi, R., Roy, P., Rosy, P. J., Sreeja, T. K., Raja, S., & Chowdary, V. L. (2022). Mechanical Behavior of Aluminum and Graphene Nanopowder-Based Composites. 2022.
[36]. Subramani, R., Ali, R. M., Surakasi, R., Sudha, D. R., Karthick, S., Karthikeyan, S., ... & Selvaraj, V. K. (2024). Surface metamorphosis techniques for sustainable polymers: Optimizing material performance and environmental impact. Applied Chemical Engineering, 7(3), 11-11.
[37]. Raja, S., Ali, R. M., Babar, Y. V., Surakasi, R., Karthikeyan, S., Panneerselvam, B., & Jagadheeswari, A. S. (2024). Integration of nanomaterials in FDM for enhanced surface properties: Optimized manufacturing approaches. Applied Chemical Engineering, 7(3).
[38]. Raja, S., Ali, R. M., Karthikeyan, S., Surakasi, R., Anand, R., Devarasu, N., & Sathish, T. (2024). Energy-efficient FDM printing of sustainable polymers: Optimization strategies for material and process performance. Applied Chemical Engineering, 7(3).
[39]. Vijayakumar, P., Raja, S., Rusho, M. A., & Balaji, G. L. (2024). Investigations on microstructure, crystallographic texture evolution, residual stress and mechanical properties of additive manufactured nickel-based superalloy for aerospace applications: role of industrial ageing heat treatment. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(6), 356.
[40]. Subramani, R., Vijayakumar, P., Rusho, M. A., Kumar, A., Shankar, K. V., & Thirugnanasambandam, A. K. (2024). Selection and Optimization of Carbon-Reinforced Polyether Ether Ketone Process Parameters in 3D Printing—A Rotating Component Application. Polymers, 16(10), 1443.