Published
2024-12-24
Section
Original Research Article
License
Copyright (c) 2024 Raja S., Maher Ali Rusho, Pandi Thimothy, Mohammed Ahmed Bahar, Mustafa Egla Kadhim, Shahad Abdullah Shwan, Zainab Nizar Jawad, Mohammed Ahmed Mustafa, Avvaru Praveen Kumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Minimizing environmental footprint in FDM additive manufacturing: Analyzing process efficiency through advanced optimization techniques
Raja S.
Center for Advanced Multidisciplinary Research and Innovation, Chennai Institute of Technology, Chennai, Tamilnadu, 600069, India
Maher Ali Rusho
Masters of Engineering in Engineering Management, Lockheed Matin Engineering Management, University of Colorado, Boulder, Colorado,80308, United States
Pandi Thimothy
Department of Mechanical Engineering, Lendi Institute of Engineering and Technology, Jonnada, Vizianagaram , Andhra Pradesh, 535005, India
Mohammed Ahmed Bahar
Al-Mamoon University College, Baghdad, 10012, Iraq
Mustafa Egla Kadhim
College of Pharmacy, Al-Turath University, 10081, Baghdad, Iraq
Shahad Abdullah Shwan
Medical Laboratories Techniques, Al-Farahidi University, Baghdad, 00965, Iraq
Zainab Nizar Jawad
Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, 56001, Iraq Department of Optics Techniques, Al-Zahrawi University College, Kerbala, 56001, Iraq
Mohammed Ahmed Mustafa
Department of Biology, College of Education, University of Samarra, Samarra, 34010, Iraq
Avvaru Praveen Kumar
Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama,1888, Ethiopia Department of Chemistry, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
DOI: https://doi.org/10.59429/ace.v7i4.5533
Abstract
Considering the high energy and material consumption, the environmental impact of additive manufacturing through FDM has faced significant criticism. For a more sustainable production process, industries require efficient optimization of the FDM process to lower environmental impact while retaining process efficiency. This study utilizes advanced multi-criteria decision-making (MCDM) methodologies, specifically the fuzzy analytic hierarchy process (AHP) and technique for order of preference by similarity to ideal solution (TOPSIS), to evaluate and enhance the environmental performance of FDM. Focusing on standard thermoplastic materials (e.g., PLA and PETG) and applications such as functional prototyping, we optimize key parameters layer height, print speed, and infill density to achieve reductions in energy usage (20%) and material waste (15%) compared to baseline FDM practices. These findings not only highlight a pathway toward greener FDM processes but also lay the groundwork for future research in sustainable optimization frameworks, applicable to other additive manufacturing methods and materials.
References
[1]. Samykano, M., Kumaresan, R., Kananathan, J., Kadirgama, K., & Pandey, A. K. (2024). An overview of fused filament fabrication technology and the advancement in PLA-biocomposites. The International Journal of Advanced Manufacturing Technology, 132(1), 27-62.
[2]. Raja, S., Rajan, A. J., Kumar, V. P., Rajeswari, N., Girija, M., Modak, S., Kumar, R. V., & Mammo, W. D. (2022). Selection of Additive Manufacturing Machine Using Analytical Hierarchy Process. 2022.
[3]. Zhou, L. (2024). A Review of Biomass-Derived Biochar and Its Potential in Asphalt Pavement Engineering. Materials Science-Poland, 42(2), 81-99.
[4]. Raja, S., & Rajan, A. J. (2022). A Decision-Making Model for Selection of the Suitable FDM Machine Using Fuzzy TOPSIS. 2022.
[5]. Jha, S., Akula, B., Enyioma, H., Novak, M., Amin, V., & Liang, H. (2024). Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions. Polymers, 16(16), 2262.
[6]. Subramani, R., Kaliappan, S., Sekar, S., Patil, P. P., Usha, R., Manasa, N., & Esakkiraj, E. S. (2022). Polymer Filament Process Parameter Optimization with Mechanical Test and Morphology Analysis. 2022.
[7]. Raja, S., Agrawal, A. P., Patil, P. P., Thimothy, P., Capangpangan, R. Y., Singhal, P., & Wotango, M. T. (2022). Optimization of 3D Printing Process Parameters of Polylactic Acid Filament Based on the Mechanical Test. 2022.
[8]. Barve, P., Bahrami, A., & Shah, S. (2024). A Comprehensive Review on Effects of Material Composition, Mix Design, and Mixing Regimes on Rheology of 3D-Printed Geopolymer Concrete. Open Construction & Building Technology Journal, 18.
[9]. Subramani, R., Kaliappan, S., Arul, P. V, Sekar, S., Poures, M. V. De, Patil, P. P., & Esakki, E. S. (2022). A Recent Trend on Additive Manufacturing Sustainability with Supply Chain Management Concept , Multicriteria Decision Making Techniques. 2022.
[10]. Raja, S., Logeshwaran, J., Venkatasubramanian, S., Jayalakshmi, M., Rajeswari, N., Olaiya, N. G., & Mammo, W. D. (2022). OCHSA : Designing Energy-Efficient Lifetime-Aware Leisure Degree Adaptive Routing Protocol with Optimal Cluster Head Selection for 5G Communication Network Disaster Management. 2022.
[11]. Asrafali, S. P., Periyasamy, T., Kim, S. C., & Lee, J. W. (2024). Enhanced Wettability and Adhesive Property of PTFE through Surface Modification with Fluorinated Compounds. Materials, 17(13), 3051.
[12]. S. Raja, A. John Rajan, "Challenges and Opportunities in Additive Manufacturing Polymer Technology: A Review Based on Optimization Perspective", Advances in Polymer Technology, vol. 2023, Article ID 8639185, 18 pages, 2023. https://doi.org/10.1155/2023/8639185
[13]. S., R., & A., J. R. (2023). Selection of Polymer Extrusion Parameters By Factorial Experimental Design – A Decision Making Model. Scientia Iranica, (), -. doi: 10.24200/sci.2023.60096.6591
[14]. Subramani, R., Kalidass, A. K., Muneeswaran, M. D., & Lakshmipathi, B. G. (2024). Effect of fused deposition modeling process parameter in influence of mechanical property of acrylonitrile butadiene styrene polymer. Applied Chemical Engineering, 7(1).
[15]. Raja, S., AhmedMustafa, M., KamilGhadir, G., MusaadAl-Tmimi, H., KhalidAlani, Z., AliRusho, M., & Rajeswari, N. (2024). An analysis of polymer material selection and design optimization to improve Structural Integrity in 3D printed aerospace components. Applied Chemical Engineering, 7(2), 1875-1875.
[16]. Subramani, R., Mustafa, M. A., Ghadir, G. K., Al-Tmimi, H. M., Alani, Z. K., Rusho, M. A., ... & Kumar, A. P. (2024). Exploring the use of Biodegradable Polymer Materials in Sustainable 3D Printing. Applied Chemical Engineering, 7(2), 3870-3870.
[17]. Raja, S., Mustafa, M. A., Ghadir, G. K., Al-Tmimi, H. M., Alani, Z. K., Rusho, M. A., & Rajeswari, N. (2024). Unlocking the potential of polymer 3D printed electronics: Challenges and solutions. Applied Chemical Engineering, 7(2), 3877-3877.
[18]. Venkatasubramanian, S., Raja, S., Sumanth, V., Dwivedi, J. N., Sathiaparkavi, J., Modak, S., & Kejela, M. L. (2022). Fault Diagnosis Using Data Fusion with Ensemble Deep Learning Technique in IIoT. 2022.
[19]. Mohammed Ahmed Mustafa, S. Raja, Layth Abdulrasool A. L. Asadi, Nashrah Hani Jamadon, N. Rajeswari, Avvaru Praveen Kumar, "A Decision-Making Carbon Reinforced Material Selection Model for Composite Polymers in Pipeline Applications", Advances in Polymer Technology, vol. 2023, Article ID 6344193, 9 pages, 2023. https://doi.org/10.1155/2023/6344193
[20]. Olaiya, N. G., Maraveas, C., Salem, M. A., Raja, S., Rashedi, A., Alzahrani, A. Y., El-Bahy, Z. M., & Olaiya, F. G. (2022). Viscoelastic and Properties of Amphiphilic Chitin in Plasticised Polylactic Acid/Starch Biocomposite. Polymers, 14(11), 2268. https://doi.org/10.3390/polym14112268
[21]. Mannan, K. T., Sivaprakash, V., Raja, S., Patil, P. P., Kaliappan, S., & Socrates, S. (2022). Effect of Roselle and biochar reinforced natural fiber composites for construction applications in cryogenic environment. Materials Today: Proceedings, 69, 1361-1368.
[22]. Mannan, K. T., Sivaprakash, V., Raja, S., Kulandasamy, M., Patil, P. P., & Kaliappan, S. (2022). Significance of Si3N4/Lime powder addition on the mechanical properties of natural calotropis gigantea composites. Materials Today: Proceedings, 69, 1355-1360.
[23]. Tran, M. H., Choi, T. R., Yang, Y. H., Lee, O. K., & Lee, E. Y. (2024). An efficient and eco-friendly approach for the sustainable recovery and properties characterization of polyhydroxyalkanoates produced by methanotrophs. International Journal of Biological Macromolecules, 257, 128687.
[24]. S. Venkatasubramanian, Jaiprakash Narain Dwivedi, S. Raja, N. Rajeswari, J. Logeshwaran, Avvaru Praveen Kumar, "Prediction of Alzheimer’s Disease Using DHO-Based Pretrained CNN Model", Mathematical Problems in Engineering, vol. 2023, Article ID 1110500, 11 pages, 2023. https://doi.org/10.1155/2023/1110500
[25]. Armghan, A., Logeshwaran, J., Raja, S., Aliqab, K., Alsharari, M., & Patel, S. K. (2024). Performance optimization of energy-efficient solar absorbers for thermal energy harvesting in modern industrial environments using a solar deep learning model. Heliyon.
[26]. Praveenkumar, V., Raja, S., Jamadon, N. H., & Yishak, S. (2023). Role of laser power and scan speed combination on the surface quality of additive manufactured nickel-based superalloy. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 14644207231212566.
[27]. Sekhar, K. C., Surakasi, R., Roy, P., Rosy, P. J., Sreeja, T. K., Raja, S., & Chowdary, V. L. (2022). Mechanical Behavior of Aluminum and Graphene Nanopowder-Based Composites. 2022.
[28]. Subramani, R., Ali, R. M., Surakasi, R., Sudha, D. R., Karthick, S., Karthikeyan, S., ... & Selvaraj, V. K. (2024). Surface metamorphosis techniques for sustainable polymers: Optimizing material performance and environmental impact. Applied Chemical Engineering, 7(3), 11-11.
[29]. Raja, S., Ali, R. M., Babar, Y. V., Surakasi, R., Karthikeyan, S., Panneerselvam, B., & Jagadheeswari, A. S. (2024). Integration of nanomaterials in FDM for enhanced surface properties: Optimized manufacturing approaches. Applied Chemical Engineering, 7(3).
[30]. Raja, S., Ali, R. M., Karthikeyan, S., Surakasi, R., Anand, R., Devarasu, N., & Sathish, T. (2024). Energy-efficient FDM printing of sustainable polymers: Optimization strategies for material and process performance. Applied Chemical Engineering, 7(3).
[31]. Vijayakumar, P., Raja, S., Rusho, M. A., & Balaji, G. L. (2024). Investigations on microstructure, crystallographic texture evolution, residual stress and mechanical properties of additive manufactured nickel-based superalloy for aerospace applications: role of industrial ageing heat treatment. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(6), 356.
[32]. Subramani, R., Vijayakumar, P., Rusho, M. A., Kumar, A., Shankar, K. V., & Thirugnanasambandam, A. K. (2024). Selection and Optimization of Carbon-Reinforced Polyether Ether Ketone Process Parameters in 3D Printing—A Rotating Component Application. Polymers, 16(10), 1443.
[33]. Noorbeh, P., Stepanian, R., Noorbeh, M., Movahedinia, M., & Hashemy Shahdany, S. M. (2024). Reducing Carbon Emission, Groundwater Over-Exploitation and Energy Consumption on Agricultural Lands by Off-Farm Water Management Practices: Modernization of Surface Water Distribution Systems. Journal of Environmental Informatics, 44(1).
[34]. Raja, S., Praveenkumar, V., Rusho, M. A., & Yishak, S. (2024). Optimizing additive manufacturing parameters for graphene-reinforced PETG impeller production: A fuzzy AHP-TOPSIS approach. Results in Engineering, 24, 103018.