Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 8 No. 3(Published) > Original Research Article
ACE-5570

Published

2025-09-26

Issue

Vol. 8 No. 3(Published)

Section

Original Research Article

License

Copyright (c) 2025 Mariya Banu Sri Rajasekaran, Manoj Kumar Karuppan Perumal, Remya Rajan Renuka, Muruganandam Nagarajan, Angeline Julius, Stalin Dhas Tharmathass, Antony Vincent Samrot

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Mariya Banu Sri Rajasekaran, Manoj Kumar Karuppan Perumal, Remya Rajan Renuka, Muruganandam Nagarajan, Angeline Julius, Stalin Dhas Tharmathass, & Antony Vincent Samrot. (2025). Green fabrication of silver nanoparticles from Cinnamomum zeylanicum bark extract and evaluation of their antimicrobial efficacy. Applied Chemical Engineering, 8(3). https://doi.org/10.59429/ace.v8i3.5570
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Green fabrication of silver nanoparticles from Cinnamomum zeylanicum bark extract and evaluation of their antimicrobial efficacy

Mariya Banu Sri Rajasekaran

Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, 173, Agaram Road, Selaiyur, Chennai. Tamil Nadu, 600073, India.

Manoj Kumar Karuppan Perumal

Centre for Stem Cell-Mediated Advanced Research Therapeutics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077

Remya Rajan Renuka

Centre for Stem Cell-Mediated Advanced Research Therapeutics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077

Muruganandam Nagarajan

Department of Microbiology, ICMR-Regional Medical Research Centre, Port Blair, Andaman and Nicobar Islands, 744101, India

Angeline Julius

Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, 173, Agaram Road, Selaiyur, Chennai. Tamil Nadu, 600073, India.

Stalin Dhas Tharmathass

National Facility for Coastal and Marine Research (NFCMR) & Centre for Ocean Research (DST, FIST Sponsored Centre), MoES–Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India

Antony Vincent Samrot

Department of Microbiology, Faculty of Medicine, Manipal University College Malaysia, Melaka, 75150, Malaysia.


DOI: https://doi.org/10.59429/ace.v8i3.5570


Keywords: Cinnamomum zeylanicum; AgNPs; green synthesis; antibacterial activity


Abstract

In response to environmental concerns surrounding traditional silver nanoparticle synthesis, this study demonstrates an eco-conscious approach using Cinnamomum zeylanicum (C. zeylanicum) bark extract as a dual-function biological agent. UV‒visible spectroscopy confirmed the successful formation of the AgNPs. The characteristic surface plasmon resonance signal was observed. FTIR spectroscopy identified key functional groups involved in the process. These groups include amines, alkanes, alkenes, and alkyl halides. They play crucial roles in the reduction and stabilization of nanoparticles. TEM revealed quasispherical nanoparticles with a uniform distribution, ranging from 5 to 20 nm in diameter. XRD analysis confirmed their crystalline structure. Zeta potential measurements demonstrated good colloidal stability, and the nanoparticles exhibited significant antimicrobial efficacy, with substantial zones of inhibition in antimicrobial assays. This sustainable synthesis method eliminates the need for harsh chemicals and hazardous reaction conditions, providing a green pathway for producing antimicrobial silver nanoparticles. The approach offers promising applications in pharmaceutical products, medical devices, and water treatment systems while addressing environmental and toxicity concerns associated with traditional synthesis methods.


References

[1]. Premkumar, J.; Sudhakar, T.; Dhakal, A.; Shrestha, J. B.; Krishnakumar, S.; Balashanmugam, P. Synthesis of Silver Nanoparticles (AgNPs) from Cinnamon against Bacterial Pathogens. Biocatal Agric Biotechnol 2018, 15, 311–316.

[2]. Meena, R. K.; Chouhan, N. Green Synthesis of Silver Nanoparticles using Acacia Concinna plant extract and their Antibacterial activity. https://www.researchgate.net/publication/325710541.

[3]. Foss, C. A.; Hornyak, G. L.; Stockert, J. A.; Martin, C. R. Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape. J Phys Chem 1994, 98 (11), 2963–2971.

[4]. Foss, C. A.; Tierney, M. J.; Martin, C. R. Template Synthesis of Infrared-Transparent Metal Microcylinders: Comparison of Optical Properties with the Predictions of Effective Medium Theory. J Phys Chem 1992, 96 (22), 9001–9007.

[5]. Lee, K. X.; Shameli, K.; Miyake, M.; Kuwano, N.; Nbba, K.; Seb, M.; others. Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Garcinia Mangostana Fruit Peels. J Nanomater 2016, 2016.

[6]. Gorka, D. E.; Osterberg, J. S.; Gwin, C. A.; Colman, B. P.; Meyer, J. N.; Bernhardt, E. S.; Gunsch, C. K.; DiGulio, R. T.; Liu, J. Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control. Environ. Sci. Technol. 2015, 49 (16), 10093–10098. https://doi.org/10.1021/acs.est.5b01711.

[7]. Sengul A. B., A. E. Toxicity of Metal and Metal Oxide Nanoparticles: A Review. In Vol; 18: Environmental Chemistry Letters. Springer, 2020; pp 1659–1683.

[8]. Esteban-Tejeda, L.; Malpartida, F.; Esteban-Cubillo, A.; Pecharromán, C.; Moya, J. S. The Antibacterial and Antifungal Activity of a Soda-Lime Glass Containing Silver Nanoparticles. Nanotechnology 2009, 20 (8), 085103. https://doi.org/10.1088/0957-4484/20/8/085103.

[9]. Ebrahiminezhad, A.; Zare-Hoseinabadi, A.; Sarmah, A. K.; Taghizadeh, S.; Ghasemi, Y.; Berenjian, A. Plant-Mediated Synthesis and Applications of Iron Nanoparticles. Mol Biotechnol 2018, 60 (2), 154–168. https://doi.org/10.1007/s12033-017-0053-4.

[10]. Paulkumar, K.; Gnanajobitha, G.; Vanaja, M.; Pavunraj, M.; Annadurai, G. Green Synthesis of Silver Nanoparticle and Silver Based Chitosan Bionanocomposite Using Stem Extract of Saccharum Officinarum and Assessment of Its Antibacterial Activity. Adv Nat Sci Nanosci Nanotechnol 2017, 8 (3), 035019.

[11]. Zubair, M.; Azeem, M.; Mumtaz, R.; Younas, M.; Adrees, M.; Zubair, E.; Khalid, A.; Hafeez, F.; Rizwan, M.; Ali, S. Green Synthesis and Characterization of Silver Nanoparticles from Acacia Nilotica and Their Anticancer, Antidiabetic and Antioxidant Efficacy. Environmental Pollution 2022, 304, 119249. https://doi.org/10.1016/j.envpol.2022.119249.

[12]. Amargo, M. M. S.; Bucoya, E. A. M.; Fundador, E. O. V.; Fundador, N. G. V. Plant-Mediated Synthesis of Silver Nanoparticles Using Mangosteen PericarpExtract and Their Antimicrobial Potential. NANOASIA 2023, 13 (2), e160423215828. https://doi.org/10.2174/2210681213666230416150715.

[13]. Malik, M.; Iqbal, M. A.; Malik, M.; Raza, M. A.; Shahid, W.; Choi, J. R.; Pham, P. V. Biosynthesis and Characterizations of Silver Nanoparticles from Annona Squamosa Leaf and Fruit Extracts for Size-Dependent Biomedical Applications. Nanomaterials 2022, 12 (4), 616. https://doi.org/10.3390/nano12040616.

[14]. Nandiyanto, A. B. D.; Nabila, A. M.; Nindya, F. S.; Berliana, N.; Oktaviani, N. S.; Khoiriah, S. F.; Kurniawan, T. Green Synthesis and Antibacterial Activity of Silver Nanoparticles: A Review. Walisongo J Chem 2022, 5 (2), 102–110. https://doi.org/10.21580/wjc.v5i2.10008.

[15]. Santiago, T. R.; Bonatto, C. C.; Rossato, M.; Cap, L.; Lopes, C. A.; G. Mizubuti, E. S.; others. Green Synthesis of Silver Nanoparticles Using Tomato Leaf Extract and Their Entrapment in Chitosan Nanoparticles to Control Bacterial Wilt. J Sci Food Agric 2019, 99 (9), 4248–4259.

[16]. Mohamed Arsath, N.; Karunagaran, M.; Rajeshkumar, S. Green Synthesis and Characterization of Silver Nanoparticle Using Phyllanthus Emblica and Cinnamomum Verum Extract. Plant Cell Biotechnol Mol Biol 2020, 21 (49–50), 120–126.

[17]. Saleh, R. F.; Gaidan, A. M. Biosynthesis and Characterization of Silver Nanoparticles Using Cinnamomum Zeylanicum Extract and a Study of Antibacterial Effect against Multidrug Resistance Gram-Negative Bacteria. Biomed. 2021, 41 (2), 249–255.

[18]. Reda, M.; Ashames, A.; Edis, Z.; Bloukh, S.; Bhandare, R.; Abu Sara, H. Green Synthesis of Potent Antimicrobial Silver Nanoparticles Using Different Plant Extracts and Their Mixtures. Processes 2019, 7 (8), 510. https://doi.org/10.3390/pr7080510.

[19]. Maruthamuthu, R.; Ramanathan, K. Phytochemical Analysis of Bark Extract of Cinnamomum Verum: A Medicinal Herb Used for the Treatment of Coronary Heart Disease in Malayali Tribes, Pachamalai Hills, Tamil Nadu, India. Int J Pharmacogn Phytochem Res 2016, 8 (7), 1218–1222.

[20]. Pettegrew, C.; Dong, Z.; Muhi, M. Z.; Pease, S.; Mottaleb, M. A.; Islam, M. R. Silver Nanoparticle Synthesis Using Monosaccharides and Their Growth Inhibitory Activity against Gram-Negative and Positive Bacteria. ISRN Nanotechnol. 2014, 2014, 1–8.

[21]. Deepa; Singh, M. B.; Thakur, G.; Raman, A. P. S.; Singh, P.; Kumar, P.; Singh, R.; Pandey, G.; Kumari, K. A Time and Temperature Dependent Biosynthesis of Silver Nanoparticles Using the Extract of Platycladus Orientalis’ Fruit. Next Research 2024, 1 (1), 100005. https://doi.org/10.1016/j.nexres.2024.100005.

[22]. Liu, Y.-S.; Chang, Y.-C.; Chen, H.-H. Silver Nanoparticle Biosynthesis by Using Phenolic Acids in Rice Husk Extract as Reducing Agents and Dispersants. Journal of Food and Drug Analysis 2018, 26 (2), 649–656. https://doi.org/10.1016/j.jfda.2017.07.005.

[23]. Alzubaidi, A. K.; Al-Kaabi, W. J.; Ali, A. A.; Albukhaty, S.; Al-Karagoly, H.; Sulaiman, G. M.; Asiri, M.; Khane, Y. Green Synthesis and Characterization of Silver Nanoparticles Using Flaxseed Extract and Evaluation of Their Antibacterial and Antioxidant Activities. Applied Sciences 2023, 13 (4), 2182. https://doi.org/10.3390/app13042182.

[24]. Alattar, A. M.; Al-tememee, N. A. Preparation and Analysis of Silver Nanoparticles (Ag Nps) by Plant Extract Techniques of Green Tea and Study Optical and Structural Properties. Nano. Med. Mater. 2023. https://doi.org/10.59400/nmm.v3i1.145.

[25]. Essghaier, B.; Hannachi, H.; Nouir, R.; Mottola, F.; Rocco, L. Green Synthesis and Characterization of Novel Silver Nanoparticles Using Achillea Maritima Subsp. Maritima Aqueous Extract: Antioxidant and Antidiabetic Potential and Effect on Virulence Mechanisms of Bacterial and Fungal Pathogens. Nanomaterials 2023, 13 (13), 1964. https://doi.org/10.3390/nano13131964.

[26]. Jameel, M. S.; Aziz, A. A.; Dheyab, M. A.; Khaniabadi, P. M.; Kareem, A. A.; Alrosan, M.; Ali, A. T.; Rabeea, M. A.; Mehrdel, B. Mycosynthesis of Ultrasonically Assisted Uniform Cubic Silver Nanoparticles by Isolated Phenols from Agaricus Bisporus and Its Antibacterial Activity. Surfaces and Interfaces 2022, 29, 101774. https://doi.org/10.1016/j.surfin.2022.101774.

[27]. Ajaykumar, A. P.; Mathew, A.; Chandni, A. P.; Varma, S. R.; Jayaraj, K. N.; Sabira, O.; Rasheed, V. A.; Binitha, V. S.; Swaminathan, T. R.; Basheer, V. S.; Giri, S.; Chatterjee, S. Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant, Uvaria Narum and Its Antibacterial, Antiangiogenic, Anticancer and Catalytic Properties. Antibiotics 2023, 12 (3), 564. https://doi.org/10.3390/antibiotics12030564.

[28]. Gorka, D. E.; Osterberg, J. S.; Gwin, C. A.; Colman, B. P.; Meyer, J. N.; Bernhardt, E. S.; Gunsch, C. K.; DiGulio, R. T.; Liu, J. Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control. Environ. Sci. Technol. 2015, 49 (16), 10093–10098. https://doi.org/10.1021/acs.est.5b01711.

[29]. Owaid, M. N.; Rabeea, M. A.; Abdul Aziz, A.; Jameel, M. S.; Dheyab, M. A. Mycogenic Fabrication of Silver Nanoparticles Using Picoa, Pezizales, Characterization and Their Antifungal Activity. Environmental Nanotechnology, Monitoring & Management 2022, 17, 100612. https://doi.org/10.1016/j.enmm.2021.100612.

[30]. Menichetti, A.; Mavridi-Printezi, A.; Mordini, D.; Montalti, M. Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles. Journal of Functional Biomaterials 2023, 14 (5), 244. https://doi.org/10.3390/jfb14050244.

[31]. Shumi, G.; Demissie, T. B.; Eswaramoorthy, R.; Bogale, R. F.; Kenasa, G.; Desalegn, T. Biosynthesis of Silver Nanoparticles Functionalized with Histidine and Phenylalanine Amino Acids for Potential Antioxidant and Antibacterial Activities. ACS Omega 2023, 8 (27), 24371–24386. https://doi.org/10.1021/acsomega.3c01910.

[32]. Yilmaz, M.; Turkdemir, H.; Kilic, M. A.; Bayram, E.; Cicek, A.; Mete, A.; others. Biosynthesis of Silver Nanoparticles Using Leaves of Stevia Rebaudiana. Mater Chem Phys 2011, 130 (3), 1195–1202. https://doi.org/10.1016/j.matchemphys.2011.08.068.

[33]. Mihailović, V.; Srećković, N.; Nedić, Z. P.; Dimitrijević, S.; Matić, M.; Obradović, A.; Selaković, D.; Rosić, G.; Katanić Stanković, J. S. Green Synthesis of Silver Nanoparticles Using Salvia Verticillata and Filipendula Ulmaria Extracts: Optimization of Synthesis, Biological Activities, and Catalytic Properties. Molecules 2023, 28 (2), 808. https://doi.org/10.3390/molecules28020808.

[34]. Trzcińska-Wencel, J.; Wypij, M.; Rai, M.; Golińska, P. Biogenic Nanosilver Bearing Antimicrobial and Antibiofilm Activities and Its Potential for Application in Agriculture and Industry. Front. Microbiol. 2023, 14, 1125685. https://doi.org/10.3389/fmicb.2023.1125685.

[35]. Biliuta, G.; Bostănaru-Iliescu, A.-C.; Mareș, M.; Pavlov-Enescu, C.; Năstasă, V.; Burduniuc, O.; Coseri, S. Antibacterial and Antifungal Silver Nanoparticles with Tunable Size Embedded in Various Cellulose-Based Matrices. Molecules 2022, 27 (19), 6680. https://doi.org/10.3390/molecules27196680.

[36]. Liaqat, N.; Jahan, N.; Khalil-ur-Rahman; Anwar, T.; Qureshi, H. Green Synthesized Silver Nanoparticles: Optimization, Characterization, Antimicrobial Activity, and Cytotoxicity Study by Hemolysis Assay. Front. Chem. 2022, 10, 952006. https://doi.org/10.3389/fchem.2022.952006.

[37]. Ribeiro, A. I.; Shvalya, V.; Cvelbar, U.; Silva, R.; Marques-Oliveira, R.; Remião, F.; Felgueiras, H. P.; Padrão, J.; Zille, A. Stabilization of Silver Nanoparticles on Polyester Fabric Using Organo-Matrices for Controlled Antimicrobial Performance. Polymers 2022, 14 (6), 1138. https://doi.org/10.3390/polym14061138.

[38]. Rehman, A.; Yaqub, S.; Ali, M.; Nazir, H.; Shahzad, N.; Shakir, S.; Liaquat, R.; Said, Z. Effect of Surfactants on the Stability and Thermophysical Properties of Al2O3+TiO2 Hybrid Nanofluids. Journal of Molecular Liquids 2023, 391, 123350. https://doi.org/10.1016/j.molliq.2023.123350.

[39]. Shameli, K.; Bin, A. M.; Jaffar Al-Mulla, E. A.; Ibrahim, N. A.; Shabanzadeh, P.; Rustaiyan, A.; others. Green Biosynthesis of Silver Nanoparticles Using Callicarpa Maingayi Stem Bark Extraction. Molecules 2012, 17 (7), 8506–8517.

[40]. Abdalla, K. H.; Al-Hannan, F.; Alghamdi, A.; Henari, F. Z. Green Synthesis of Silver Nanoparticles Using Cinnamon (Cinnamomum Cassia), Characterization and Antibacterial Activity. Int J Sci Res 2015, 6 . Available from: www.ijsr.net, 2319–7064.

[41]. Premkumar, J.; Sudhakar, T.; Dhakal, A.; Shrestha, J. B.; Krishnakumar, S.; Balashanmugam, P. Synthesis of Silver Nanoparticles (AgNPs) from Cinnamon against Bacterial Pathogens. Biocatal Agric Biotechnol 2018, 15, 311–316.

[42]. Ansari, M. A.; Murali, M.; Prasad, D.; Alzohairy, M. A.; Almatroudi, A.; Alomary, M. N.; others. Cinnamomum Verum Bark Extract Mediated Green Synthesis of ZnO Nanoparticles and Their Antibacterial Potentiality. Biomolecules 2020, 10 (2).

[43]. Aref, M. S.; Salem, S. S. Biocallus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. https://doi.org/10.1016/j.bcab.2020.101689.

[44]. Nasr, H. A.; Nassar, O. M.; El-Sayed, M. H.; Kobisi, A. A. Characterization and Antimicrobial Activity of Lemon Peel Mediated Green Synthesis of Silver Nanoparticles. Int J Biol Chem 2019, 12 (2), 56–63.



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com