Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 8 No. 4(Publishing) > Review Article
ACE-5582

Published

2025-12-11

Issue

Vol. 8 No. 4(Publishing)

Section

Review Article

License

Copyright (c) 2025 Antony V. Samrot, Wilson S, Subramanian Saigeetha, Remya Rajan Renuka , Sivarao Subramonian

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Antony V. Samrot, Wilson S, Subramanian Saigeetha, Remya Rajan Renuka, & Sivarao Subramonian. (2025). In vitro cell-based assays to test drugs – A Review. Applied Chemical Engineering, 8(4), ACE-5582. https://doi.org/10.59429/ace.v8i4.5582
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

In vitro cell-based assays to test drugs – A Review

Antony V. Samrot

Department of Microbiology, Faculty of Medicine, Manipal University College Malaysia, Persimpangan Batu Hampar, Bukit Baru, 75150 Melaka, Malaysia

Wilson S

Department of Botany, St.John's College, Palayamkottai, Tirunelveli, Tamil Nadu, India - 627 002.

Subramanian Saigeetha

Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Road, Vellore, Tamil Nadu 632014, India

Remya Rajan Renuka

Centre for Stem Cell Mediated Advanced Research Therapeutics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600 077, IndiaIndia

Sivarao Subramonian

Faculty of Industrial and Manufacturing Technology and Engineering, Universiti Teknikal Malaysia Melaka, 76100, Melaka, Malaysia


DOI: https://doi.org/10.59429/ace.v8i4.5582


Keywords: In vitro assays; Tetrazolium salts; Resazurin; DNA based assays


Abstract

Cell viability is an important indicator of healthy cells. Cell viability plays a prominent role in order to determining various parameters including toxicity, as the cells may be damaged due to some physical and chemical agents. In vitro assays are efficient, sensitive, time-saving and were designed to replace the problems and ethical issues faced by animal models for testing the efficiency of a drug molecule. There are various assays used for determining the cell viability in eukaryotes. Assays, including Dye exclusion assays, colorimetric assays, luminometric assays, fluorometric assays and DNA-based assays involved in determining the cell viability, proliferation and cytotoxicity are discussed in this review.


References

[1]. Mushtaq S et al. Alternative methods to animal experiments. Türkiye Klinikleri. Tip Bilimleri Dergisi. 2018 Mar 1;38(2):161-70. doi: 10.5336/medsci.2018-59993

[2]. Doke SK and Dhawale SC. Alternatives to animal testing: A review. Saudi Pharmaceutical Journal. 2015 Jul 1;23(3):223-9. doi:10.1016/j.jsps.2013.11.002

[3]. Shobana, N et al. Nanotoxicity studies of Azadirachta indica mediated silver nanoparticles against Eudrilus eugeniae, Danio rerio and its embryos. Biocatalysis and Agricultural Biotechnology, 47, p.102561. doi:10.1016/j.bcab.2022.102561

[4]. Shobana, N et al. Evaluation of the Toxic Effect of Bauhinia purpurea Mediated Synthesized Silver Nanoparticles against In-vitro and In-vivo Models. Toxics, 11(1), p.9. doi: 10.3390/toxics11010009

[5]. Samrot, A.V. et al. Toxicity evaluation of SPIONs on Danio rerio embryonic development. Materials Today: Proceedings, 59, pp.1555-1560. doi:10.1016/j.matpr.2022.02.236

[6]. Samrot, A.V et al. Evaluation of Heavy Metal Removal of Nanoparticles Based Adsorbent Using Danio rerio as Model. Toxics, 10(12), p.742. doi:10.3390/toxics10120742

[7]. Justin, C et al. Assessment on the Toxic Effects of Chemically Synthesized SPIONs against Model Organisms. Journal of Nanomaterials, 2023. doi:10.1155/2023/4235308

[8]. Sami DG et al. Wound healing models: a systematic review of animal and non-animal models. Wound Medicine. 2019 Mar 1;24(1):8-17. doi:10.1016/j.wndm.2018.12.001

[9]. Giacomotto J and Ségalat L. High‐throughput screening and small animal models, where are we? British Journal of Pharmacology. 2010 May; 160(2):204-16. doi:10.1111/j.1476-5381.2010.00725.x

[10]. Badyal DK, Desai C. Animal use in pharmacology education and research: The changing scenario. Indian journal of pharmacology. 2014 May;46(3):257. doi:10.4103/0253-7613.132153

[11]. Freires IA et al. Sardi JD, de Castro RD, Rosalen PL. Alternative animal and non-animal models for drug discovery and development: bonus or burden? Pharmaceutical Research. 2017 Apr 1;34(4):681-6. doi:10.1007/s11095-016-2069-z

[12]. Movia D and Prina-Mello A. Preclinical development of orally inhaled drugs (OIDs)—are animal models predictive or shall we move towards in-vitro non-animal models? Animals. 2020 Aug;10(8):1259. doi:10.3390/ani10081259

[13]. Barile FA. Introduction to in-vitro cytotoxicology: mechanisms and methods. CRC Press; 2019 Jun 4.

[14]. Ud‐Din S and Bayat A. Non‐animal models of wound healing in cutaneous repair: In silico, in vitro, ex vivo, and in vivo models of wounds and scars in human skin. Wound Repair and Regeneration. 2017 Apr;25(2):164-76. doi:10.1111/wrr.12513

[15]. Elliott NT and Yuan FA. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. Journal of Pharmaceutical Sciences. 2011 Jan 1;100(1):59-74. doi:10.1002/jps.22257

[16]. Zhang D et al. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharmaceutica Sinica B. 2012 Dec 1;2(6):549-61. doi:10.1016/j.apsb.2012.10.004

[17]. Katt ME et al. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Frontiers in Bioengineering and Biotechnology. 2016 Feb 12;4:12. doi:10.3389/fbioe.2016.00012

[18]. Strober W. Trypan blue exclusion test of cell viability. Current protocols in immunology. 2015 Nov;111(1):A3-B. doi:10.1002/0471142735.ima03bs111

[19]. Aslantürk ÖS. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. Genotoxicity-A predictable risk to our actual world. 2018 Jul 11;2:64-80. doi:10.5772/intechopen.71923

[20]. Kim SI et al. Application of a non-hazardous vital dye for cell counting with automated cell counters. Analytical biochemistry. 2016 Jan 1;492:8-12. doi:10.1016/j.ab.2015.09.010

[21]. Altman SA et al. Comparison of trypan blue dye exclusion and fluorometric assays for mammalian cell viability determinations. Biotechnology Progress. 1993 Nov;9(6):671-4. doi:10.1021/bp00024a017

[22]. Crissman, H.; Stevenson, A.; Kissane, R.; Tobey, R. In Flow Cytometry clnd Sorting; Melamed, M., Mullaney, P., Mendelsohn, M., Eds.; John Wiley and Sons: New York, 1979; pp 243- 261.

[23]. Chan LL et al. Morphological observation and analysis using automated image cytometry for the comparison of trypan blue and fluorescence-based viability detection method. Cytotechnology. 2015 May;67(3):461-73. doi:10.1007/s10616-014-9704-5

[24]. Chan LL et al. Observation and quantification of the morphological effect of trypan blue rupturing dead or dying cells. Plos one. 2020 Jan 24;15(1):e0227950. doi:10.1371/journal.pone.0227950

[25]. Piccinini F et al. Cell counting and viability assessment of 2D and 3D cell cultures: expected reliability of the trypan blue assay. Biological Procedures Online. 2017 Dec;19(1):1-2. doi:10.1186/s12575-017-0056-3

[26]. Stoddart MJ. Cell viability assays: Introduction. Mammalian cell viability. 2011:1-6. doi:10.1007/978-1-61779-108-6_1

[27]. Song K, et al. Investigation of coculture of human adipose-derived stem cells and mature adipocytes. Applied Biochemistry And Biotechnology. 2012 Aug;167(8):2381-7. doi:10.1007/s12010-012-9764-y

[28]. Kim JS et al. Comparison of the automated fluorescence microscopic viability test with the conventional and flow cytometry methods. Journal of Clinical Laboratory Analysis. 2011;25(2):90-4. doi:10.1002/jcla.20438

[29]. Avelar-Freitas BA et al. Trypan blue exclusion assay by flow cytometry. Brazilian Journal Of Medical and Biological Research. 2014 Mar 18;47:307-15. doi:10.1590/1414-431X20143437

[30]. Grandiosa R et al. Innovative application of classic and newer techniques for the characterization of haemocytes in the New Zealand black-footed abalone (Haliotis iris). Fish & shellfish Immunology. 2016 Jan 1;48:175-84. doi:10.1016/j.fsi.2015.11.039

[31]. Mansoor S et al. Effects of light on retinal pigment epithelial cells, neurosensory retinal cells and Müller cells treated with Brilliant Blue G. Clinical & experimental ophthalmology. 2015 Dec;43(9):820-9. doi:10.1111/ceo.12568

[32]. Leme DM et al. Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system). Journal of Toxicology and Environmental Health, Part A. 2015 Apr 3;78(7):466-80. doi:10.1080/15287394.2014.999296

[33]. Leisser C et al. Intraoperative optical coherence tomography-guided membrane peeling for surgery of macular pucker: advantages and limitations. Ophthalmologica. 2019;241(4):234-40. doi:10.1159/000493279

[34]. De La Rosa JR et al. Colorectal tumor 3D in vitro models: advantages of biofabrication for the recapitulation of early stages of tumour development. Biomedical Physics & Engineering Express. 2018 May 17;4(4):045010. doi:10.1088/2057-1976/aac1c9

[35]. Shilova ON et al. The effect of trypan blue treatment on autofluorescence of fixed cells. Cytometry Part A. 2017 Sep;91(9):917-25. doi:10.1002/cyto.a.23199

[36]. Nowak E et al. ATP-based cell viability assay is superior to trypan blue exclusion and XTT assay in measuring cytotoxicity of anticancer drugs Taxol and Imatinib, and proteasome inhibitor MG-132 on human hepatoma cell line HepG2. Clinical hemorheology and microcirculation. 2018 Jan 1;69(1-2):327-36. doi:10.3233/CH-189120

[37]. Bellamakondi PK et al. In vitro cytotoxicity of caralluma species by MTT and trypan blue dye exclusion. Asian J Pharm Clin Res. 2014;7(2):17-9.

[38]. Singh A et al. Comparative evaluation of cytotoxic effects of MTAD and sodium hypochlorite using lactate dehydrogenase and trypan blue assays: An in vitro study. Saudi Endodontic Journal. 2018 Sep 1;8(3):189. doi:10.4103/sej.sej_75_17

[39]. Tsaousis KT et al. Time‐dependent morphological alterations and viability of cultured human trabecular cells after exposure to Trypan blue. Clinical & experimental ophthalmology. 2013 Jul;41(5):484-90. doi:10.1111/ceo.12018

[40]. Kwok AK et al. Effects of trypan blue on cell viability and gene expression in human retinal pigment epithelial cells. British Journal of Ophthalmology. 2004 Dec 1;88(12):1590-4. doi:10.1136/bjo.2004.044537

[41]. Priya K et al. Chitosan-mediated synthesis of biogenic silver nanoparticles (AgNPs), nanoparticle characterisation and in vitro assessment of anticancer activity in human hepatocellular carcinoma HepG2 cells. International Journal of Biological Macromolecules. 2020 Apr 15;149:844-52. doi:10.1016/j.ijbiomac.2020.02.007

[42]. Franke JD et al. Erythrosin B: a versatile colorimetric and fluorescent vital dye for bacteria. BioTechniques. 2020 Jan;68(1):7-13. doi:10.2144/btn-2019-0066

[43]. Li Z, et al. Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Research. 2018 Feb 1;150:217-25. doi:10.1016/j.antiviral.2017.12.018

[44]. Bastarrachea LJ et al. Enhanced antimicrobial effect of ultrasound by the food colorant Erythrosin B. Food Research International. 2017 Oct 1;100:344-51. doi:10.1016/j.foodres.2017.07.012

[45]. Karlsson JK et al. Effects of temperature and concentration on the rate of photobleaching of Erythrosine in water. The Journal of Physical Chemistry A. 2017 Nov 16;121(45):8569-76. doi:10.1021/acs.jpca.7b06440

[46]. Yamashita K et al. Non invasive and safe cell viability assay for breast cancer MCF-7 cells using natural food pigment. Biology. 2020 Aug;9(8):227. doi:10.3390/biology9080227

[47]. Stewart GG. Yeast viability and vitality. In Brewing and Distilling Yeasts 2017 (pp. 147-165). Springer, Cham. doi:10.1007/978-3-319-69126-8

[48]. Silva AF et al. Antimicrobial photodynamic inactivation mediated by Rose Bengal and erythrosine is effective in the control of food-related bacteria in planktonic and biofilm states. Molecules. 2018 Sep;23(9):2288. doi:10.3390/molecules23092288

[49]. Tihauan BM et al. Experimental in vitro cytotoxicity evaluation of plant bioactive compounds and phytoagents: A review. Romanian Biotechnological Letters. 2020 Jul 1;25(4):1832-42. doi:10.25083/rbl/25.4/1832.1842

[50]. Occhi-Alexandre IG et al. Evaluation of photosensitizer penetration into sound and decayed dentin: A photoacoustic spectroscopy study. Photodiagnosis and Photodynamic Therapy. 2018 Mar 1; 21:108-14. doi:10.1016/j.pdpdt.2017.11.008

[51]. Yamashita K et al. Non invasive and safe cell viability assay for Euglena gracilis using natural food pigment. PeerJ. 2019 Apr 4; 7:e6636. doi:10.7717/peerj.6636

[52]. Bonnier F et al. Cell viability assessment using the Alamar blue assay: a comparison of 2D and 3D cell culture models. Toxicology in vitro. 2015 Feb 1;29(1):124-31. doi:10.1016/j.tiv.2014.09.014

[53]. O'Neill TE et al. Optimisation of the Microplate Resazurin Assay for Screening and Bioassay‐guided Fractionation of Phytochemical Extracts against Mycobacterium tuberculosis. Phytochemical Analysis. 2014 Sep;25(5):461-7. doi:10.1002/pca.2516

[54]. Lescat M et al. A Resazurin reduction-based assay for rapid detection of polymyxin resistance in Acinetobacter baumannii and Pseudomonas aeruginosa. Journal of clinical microbiology. 2019 Feb 27;57(3):e01563-18. doi:10.1128/jcm.01563-18

[55]. Breznan D et al. Non-specific interaction of carbon nanotubes with the resazurin assay reagent: Impact on in vitro assessment of nanoparticle cytotoxicity. Toxicology in vitro. 2015 Feb 1;29(1):142-7. doi:10.1016/j.tiv.2014.09.009

[56]. Rampersad SN. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors. 2012 Sep;12(9):12347-60. doi:10.3390/s120912347

[57]. Zare MR et al. Simplification and sensitivity study of Alamar Blue bioassay for toxicity assessment in liquid media. Desalination and Water Treatment. 2016 May 14;57(23):10934-40. doi:10.1080/19443994.2015.1040853

[58]. Czekanska EM. Assessment of cell proliferation with resazurin-based fluorescent dye. InMammalian cell viability 2011 (pp. 27-32). Humana Press. doi:10.1007/978-1-61779-108-6_5

[59]. Pace RT and Burg KJ. Toxic effects of resazurin on cell cultures. Cytotechnology. 2015 Jan;67(1):13-7. doi:10.1007/s10616-013-9664-1

[60]. Riss T et al. Evaluation of real time cell viability assays multiplexed with other methods. Toxicol Lett. 2015 Sep 14;238(2):S179-80.

[61]. Kumar P et al. Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harbor Protocols. 2018 Jun 1;2018(6):pdb-rot095497. doi:10.1101/pdb.prot095497

[62]. Al-Nasiry S et al. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Human reproduction. 2007 May 1;22(5):1304-9. doi:10.1093/humrep/dem011

[63]. Voytik-Harbin SL et al. Application and evaluation of the Alamar Blue assay for cell growth and survival of fibroblasts. In Vitro Cellular & Developmental Biology-Animal. 1998 Mar;34(3):239-46. doi:10.1007/s11626-998-0130-x

[64]. Mikus J and Steverding D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue®. Parasitology international. 2000 Jan 1;48(3):265-9. doi:10.1016/S1383-5769(99)00020-3

[65]. Jafari A et al. Evaluation of the accuracy of the microplate alamar blue assay and the proportion method for the prompt detection of Mycobacterium tuberculosis and susceptibility of multidrug-resistant Mycobacterium tuberculosis clinical isolates. International Journal of Mycobacteriology. 2021 Jan 1;10(5):67. doi:10.5812/jjm.111212

[66]. Habib A et al. DNA Cleavage and Trypanosomes Death by a Combination of Alamar Blue and Au (III). Journal of the Chemical Society of Pakistan. 2020 Feb 1;42(1):141-8.

[67]. Bopp SK and Lettieri T. Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC pharmacology. 2008 Dec;8(1):1-1. doi:10.1186/1471-2210-8-8

[68]. Flampouri E et al. Spheroid-3D and monolayer-2D intestinal electrochemical biosensor for toxicity/viability testing: Applications in drug screening, food safety, and environmental pollutant analysis. ACS sensors. 2019 Jan 30;4(3):660-9. doi:10.1021/acssensors.8b01490

[69]. Calado T et al. Gamma irradiation effects on Ochratoxin A: Degradation, cytotoxicity and application in food. Food chemistry. 2018 Feb 1; 240:463-71. doi:10.1021/acssensors.8b01490

[70]. Haugland, R., 2006. Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Section 15.2, 10th ed. http://probes.invitrogen.com/handbook/

[71]. Demir V, et al. Comparative study of cytotoxicity by platinum nanoparticles and ions in vitro systems based on fish cell lines. Toxicology in vitro. 2020 Aug 1;66:104859. doi:10.1016/j.tiv.2020.104859

[72]. García-Herranz V et al. Cytotoxicity against fish and mammalian cell lines and endocrine activity of the mycotoxins beauvericin, deoxynivalenol and ochratoxin-A. Food and Chemical Toxicology. 2019 May 1;127:288-97. doi:10.1016/j.fct.2019.01.036

[73]. Brown AS et al. The indigoidine synthetase BpsA provides a colorimetric ATP assay that can be adapted to quantify the substrate preferences of other NRPS enzymes. Biotechnology Letters. 2020 Dec;42(12):2665-71. doi:10.1007/s10529-020-02972-4

[74]. Zhang K et al. Highly selective cerebral ATP assay based on micrometer scale ion current rectification at polyimidazolium-modified micropipettes. Analytical chemistry. 2017 Jun 20;89(12):6794-9. doi:10.1021/acs.analchem.7b01218

[75]. Tian S et al. Detection of viable bacteria during sludge ozonation by the combination of ATP assay with PMA-Miseq sequencing. Water. 2017 Mar;9(3):166. doi:10.3390/w9030166

[76]. Tahara H et al. High-content image analysis (HCIA) assay has the highest correlation with direct counting cell suspension compared to the ATP, WST-8 and Alamar blue assays for measurement of cytotoxicity. Journal of Pharmacological and Toxicological Methods. 2017 Nov 1;88:92-9. doi:10.1016/j.vascn.2017.08.003

[77]. Ikonen J et al. Suitability of optical, physical and chemical measurements for detection of changes in bacterial drinking water quality. International journal of environmental research and public health. 2013 Nov;10(11):5349-63. doi:10.3390/ijerph10115349

[78]. Santangelo MF et al. Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection. Biosensors and Bioelectronics. 2018 Jan 15;99:464-70. doi:10.1016/j.bios.2017.07.055

[79]. Paloque L et al. A new, rapid and sensitive bioluminescence assay for drug screening on Leishmania. Journal of Microbiological Methods. 2013 Dec 1;95(3):320-3. doi:10.1016/j.mimet.2013.09.006

[80]. Lee J et al. Signal enhancement in ATP bioluminescence to detect bacterial pathogens via heat treatment. BioChip Journal. 2017 Dec;11(4):287-93. doi:10.1007/s13206-017-1404-8

[81]. Zhang K et al. Real-time and in-situ intracellular ATP assay with polyimidazolium brush-modified nanopipette. Science China Chemistry. 2020 Apr 7;63(7):1004-11. doi:10.1007/s11426-020-9715-x

[82]. Ngamsom B et al. Rapid detection of Group B Streptococcus (GBS) from artificial urine samples based on IFAST and ATP bioluminescence assay: from development to practical challenges during protocol testing in Kenya. Analyst. 2019;144(23):6889-97. doi:10.1039/C9AN01808E

[83]. Duellman SJ et al. Bioluminescent, nonlytic, real-time cell viability assay and use in inhibitor screening. Assay and Drug Development Technologies. 2015 Oct 1;13(8):456-65. doi:10.1089/adt.2015.669

[84]. Takenaka Y et al. Two forms of secreted and thermostable luciferases from the marine copepod crustacean, Metridia pacifica. Gene. 2008 Dec 1;425(1-2):28-35. doi:10.1016/j.gene.2008.07.041

[85]. Lupold SE et al. A real time Metridia luciferase based non-invasive reporter assay of mammalian cell viability and cytotoxicity via the β-actin promoter and enhancer. PloS one. 2012 May 9;7(5):e36535. doi:10.1371/journal.pone.0036535

[86]. Van Meerloo J et al. Cell sensitivity assays: the MTT assay. InCancer cell culture 2011 (pp. 237-245). Humana Press. doi:10.1007/978-1-61779-080-5_20

[87]. Kumar P et al. Analysis of cell viability by the MTT assay. Cold Spring Harbor protocols. 2018 Jun 1;2018(6):pdb-rot095505. doi:10.1101/pdb.prot095505

[88]. Majumdar S et al. MTT assay for cytotoxicity assessment in Oryza sativa root tissue. Bio-Protocol. 2017; 7:2. doi:10.21769/BioProtoc.2620

[89]. Präbst K et al. Basic colorimetric proliferation assays: MTT, WST, and resazurin. InCell viability assays 2017 (pp. 1-17). Humana Press, New York, NY. doi:10.1007/978-1-4939-6960-9_1

[90]. Pascua-Maestro R et al. The MTT-formazan assay: Complementary technical approaches and in vivo validation in Drosophila larvae. Acta Histochemica. 2018 Apr 1;120(3):179-86. doi:10.1016/j.acthis.2018.01.006

[91]. Grela E et al. Current methodology of MTT assay in bacteria–A review. Acta Histochemica. 2018 May 1;120(4):303-11. doi:10.1016/j.acthis.2018.03.007

[92]. Bahuguna A et al. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh Journal of Pharmacology. 2017 Apr 8;12(2):115-8. doi:10.3329/bjp.v12i2.30892

[93]. Van Tonder A et al. Limitations of the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC research notes. 2015 Dec;8(1):1-0. doi:10.1186/s13104-015-1000-8

[94]. Plumb JA. Cell sensitivity assays: the MTT assay. InCancer cell culture 2004 (pp. 165-169). Humana Press. doi:10.1385/1-59259-406-9:165

[95]. Samrot, A.V et al. Utilization of Carica papaya latex on coating of SPIONs for dye removal and drug delivery. Sci Rep 11, 24511 (2021). doi:10.1038/s41598-021-03328-2

[96]. Malich G et al. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology. 1997 Dec 31;124(3):179-92. doi:10.1016/S0300-483X(97)00151-0

[97]. Wang Y et al. A Modified MTS Proliferation Assay for Suspended Cells to Avoid the Interference by Hydralazine and β-Mercaptoethanol. ASSAY and Drug Development Technologies. 2021 Apr 1;19(3):184-90. doi:10.1089/adt.2020.1027

[98]. Altunbek M and Culha M. Influence of plasmonic nanoparticles on the performance of colorimetric cell viability assays. Plasmonics. 2017 Dec;12(6):1749-60.

[99]. Collier AC and Pritsos CA. The mitochondrial uncoupler dicumarol disrupts the MTT assay. Biochemical pharmacology. 2003 Jul 15;66(2):281-7. doi:10.1016/S0006-2952(03)00240-5

[100]. Cory AH et al. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer communications. 1991 Jul 1;3(7):207-12. doi:10.3727/095535491820873191

[101]. Scudiero DA et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer research. 1988 Sep 1;48(17):4827-33.

[102]. Moffa EB et al. Interaction between XTT assay and Candida albicans or Streptococcus mutans viability. Journal of International Oral Health. 2016;8(1):12.

[103]. Mirzayans R et al. Do multiwell plate high throughput assays measure loss of cell viability following exposure to genotoxic agents? International Journal of Molecular Sciences. 2017 Aug;18(8):1679. doi:10.3390/ijms18081679

[104]. Pintor AV et al. MTT versus other cell viability assays to evaluate the biocompatibility of root canal filling materials: A systematic review. International Endodontic Journal. 2020 Oct;53(10):1348-73. doi:10.1111/iej.13353

[105]. Gerlier D and Thomasset N. Use of MTT colorimetric assay to measure cell activation. Journal of Immunological Methods. 1986 Nov 20;94(1-2):57-63. doi:10.1016/0022-1759(86)90215-2

[106]. Chiyomaru T et al. Functional role of LASP1 in cell viability and its regulation by microRNAs in bladder cancer. InUrologic Oncology: Seminars and Original Investigations 2012 Jul 1 (Vol. 30, No. 4, pp. 434-443). Elsevier. doi:10.1016/j.urolonc.2010.05.008

[107]. Gaucher S and Jarraya M. Comparison of the PrestoBlue and LDH release assays with the MTT assay for skin viability assessment. Cell and Tissue Banking. 2015 Sep;16(3):325-9.

[108]. Fotakis G and Timbrell JA. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in Hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters. 2006 Jan 5;160(2):171-7. doi:10.1016/j.toxlet.2005.07.001

[109]. Mozes E et al. A novel method for the rapid determination of beta-amyloid toxicity on acute hippocampal slices using MTT and LDH assays. Brain Research Bulletin. 2012 Apr 10;87(6):521-5. doi:10.1016/j.brainresbull.2012.02.005

[110]. Specian AF et al. LDH, proliferation curves and cell cycle analysis are the most suitable assays to identify and characterize new phytotherapeutic compounds. Cytotechnology. 2016; 68(6):2729-44.

[111]. Holder AL et al. Particle-induced artifacts in the MTT and LDH viability assays. Chemical Research in Toxicology. 2012; 25(9):1885-92. doi:10.1021/tx3001708

[112]. Kaja S et al. An optimized lactate dehydrogenase release assay for screening of drug candidates in neuroscience. Journal of Pharmacological and Toxicological Methods. 2015, 73, 1-6. doi:10.1016/j.vascn.2015.02.001

[113]. Forest V et al. Adsorption of lactate dehydrogenase enzyme on carbon nanotubes: How to get accurate results for the cytotoxicity of these nanomaterials. Langmuir. 2015 Mar 31;31(12):3635-43. doi:10.1021/acs.langmuir.5b00631

[114]. Vajrabhaya LO and Korsuwannawong S. Cytotoxicity evaluation of a Thai herb using tetrazolium (MTT) and sulforhodamine B (SRB) assays. Journal of Analytical Science and Technology. 2018 Dec;9(1):1-6. doi:10.1186/s40543-018-0146-0

[115]. Orellana EA and Kasinski AL. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio-protocol. 2016 Nov 5;6(21). doi:10.21769/BioProtoc.1984

[116]. Abel SD and Baird SK. Honey is cytotoxic towards prostate cancer cells but interacts with the MTT reagent: Considerations for the choice of cell viability assay. Food chemistry. 2018 Feb 15;241:70-8. doi:0.1016/j.foodchem.2017.08.083

[117]. Houghton P et al. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods. 2007 Aug 1;42(4):377-87. doi:10.1016/j.ymeth.2007.01.003

[118]. Wang G et al. Understanding and correcting for carbon nanotube interferences with a commercial LDH cytotoxicity assay. Toxicology. 2012 Sep 28;299(2-3):99-111. doi:10.1016/j.tox.2012.05.012

[119]. Ates G et al. Assaying cellular viability using the neutral red uptake assay. InCell Viability Assays 2017 (pp. 19-26). Humana Press, New York, NY.

[120]. Chan SM et al. Interactions between plant extracts and cell viability indicators during cytotoxicity testing: implications for ethnopharmacological studies. Tropical Journal of Pharmaceutical Research. 2015 Nov 8;14(11):1991-8. doi:10.4314/tjpr.v14i11.6

[121]. Cudazzo G, et al. Lysosomotropic-related limitations of the BALB/c 3T3 cell-based neutral red uptake assay and an alternative testing approach for assessing e-liquid cytotoxicity. Toxicology In Vitro. 2019 Dec 1;61:104647. doi:10.1016/j.tiv.2019.104647

[122]. Kustermann S, et al. A label-free, impedance-based real time assay to identify drug-induced toxicities and differentiate cytostatic from cytotoxic effects. Toxicology in Vitro. 2013 Aug 1;27(5):1589-95. doi:10.1016/j.tiv.2012.08.019

[123]. Irizar A et al. Optimization of NRU assay in primary cultures of Eisenia fetida for metal toxicity assessment. Ecotoxicology. 2014 Sep;23(7):1326-35.

[124]. de Sousa Vieira M et al. In vitro basal cytotoxicity assay applied to estimate acute oral systemic toxicity of Grandisin and its major metabolite. Experimental and Toxicologic Pathology. 2011 Jul 1;63(5):505-10 doi:10.1016/j.etp.2010.03.012

[125]. Vega-Avila E and Pugsley MK. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. InProc West Pharmacol Soc. 2011 Mar (Vol. 54, No. 54, pp. 10-4).

[126]. Śliwka L et al. The comparison of MTT and CVS assays for the assessment of anticancer agent interactions. PloS one. 2016 May 19;11(5):e0155772. doi:10.1371/journal.pone.0155772

[127]. Feoktistova M et al. Crystal violet assay for determining viability of cultured cells. Cold Spring Harbor Protocols. 2016 Apr 1;2016(4):pdb-rot087379. doi:10.1101/pdb.prot087379

[128]. Chiba K et al. Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicology in vitro. 1998 Jun 1;12(3):251-8. doi:10.1016/S0887-2333(97)00107-0

[129]. Xu Z et al.Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification. Current microbiology. 2016 Oct;73(4):474-82. doi:10.1007/s00284-016-1081-1

[130]. Burton E et al. A microplate spectrofluorometric assay for bacterial biofilms. Journal of Industrial Microbiology and Biotechnology. 2007 Jan 1;34(1):1-4. doi:10.1007/s10295-006-0086-3

[131]. Vivek R et al. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochemistry. 2012 Dec 1;47(12):2405-10. doi:10.1016/j.procbio.2012.09.025

[132]. Elumalai P et al. Induction of apoptosis in human breast cancer cells by nimbolide through extrinsic and intrinsic pathway. Toxicology letters. 2012 Nov 30;215(2):131-42. doi:10.1016/j.toxlet.2012.10.008

[133]. Yun Z et al. Biosynthesis of gold nanoparticles using Vetex negundo and evaluation of pro-apoptotic effect on human gastric cancer cell lines. Journal of Photochemistry and Photobiology B: Biology. 2020 Jan 1;203:111749 doi:10.1016/j.jphotobiol.2019.111749

[134]. Venugopal K et al. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. Journal of Photochemistry and Photobiology B: Biology. 2017 Feb 1;167:282-9. doi:10.1016/j.jphotobiol.2016.12.013

[135]. Bharathi D et al. Bio-inspired synthesis of flower shaped iron oxide nanoparticles (FeONPs) using phytochemicals of Solanum lycopersicum leaf extract for biomedical applications. Biocatalysis and Agricultural Biotechnology. 2020 Aug 1;27:101698. doi:10.1016/j.bcab.2020.101698

[136]. Samrot, A.V et al. Purification and utilization of gum from Terminalia catappa L. for synthesis of curcumin loaded nanoparticle and its in vitro bioactivity studies. Journal of Cluster Science, 29, pp.989-1002. doi:10.1007/s10876-018-1412-4

[137]. Chan LL et al. A high-throughput AO/PI-based cell concentration and viability detection method using the Celigo image cytometry. Cytotechnology. 2016 Oct;68(5):2015-25. doi:10.1007/s10616-016-0015-x

[138]. Yedjou CG et al. Novel cellular staining protocol and antiproliferative effect of Vernonia amygdalina Delile on lung and prostate cancer cells. International Journal of Engineering Sciences & Research Technology. 2018 Aug;7(8):552. doi:10.5281/zenodo.1403369

[139]. Hashim F et al. In Vitro Toxicity Evaluation of Caffeine Imprinted Polymer (CAF-MIP) for Decaffeination Method on Normal Chang Liver Cells. Makara Journal of Technology. 2017;21(1):4. doi:10.7454/mst.v21i1.3075

[140]. Baharara J et al. Silver nanoparticles synthesized coating with Zataria Multiflora leaves extract induced apoptosis in Hela cells through p53 activation. Iranian journal of pharmaceutical research: IJPR. 2018;17(2):627.

[141]. Ranjitha VR et al. Potent activity of bioconjugated peptide and selenium nanoparticles against colorectal adenocarcinoma cells. Drug development and industrial pharmacy. 2019 Sep 2;45(9):1496-505. doi:10.1080/03639045.2019.1634090

[142]. Collins AR. The comet assay for DNA damage and repair. Molecular biotechnology. 2004; 26(3):249-61. doi:10.1385/MB:26:3:249

[143]. Møller P. The Comet assay: ready for 30 more years. Mutagenesis. 2018; 33(1):1-7 doi:10.1093/mutage/gex046

[144]. Collins AR et al. The comet assay: topical issues. Mutagenesis. 2008; 23(3):143-51. doi:10.1093/mutage/gem051

[145]. Glei M et al. Comet assay: an essential tool in toxicological research. Archives of Toxicology. 2016; 90(10):2315-36. doi:10.1007/s00204-016-1767-y

[146]. Koppen G et al. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop. Mutagenesis. 2017 May 1;32(3):397-408. doi:10.1093/mutage/gex002

[147]. Liao W et al.The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods. 2009 May 1;48(1):46-53. doi:10.1016/j.ymeth.2009.02.016

[148]. Tice RR et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis. 2000;35(3):206-21. doi:10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J

[149]. Speit G et al. Sensitivity of the FPG protein towards alkylation damage in the comet assay. Toxicology Letters. 2004 Jan 15;146(2):151-8. doi:10.1016/j.toxlet.2003.09.010

[150]. Kyrylkova K et al. Detection of apoptosis by TUNEL assay. In Odontogenesis 2012 (pp. 41-47). doi:10.1007/978-1-61779-860-3_5

[151]. Darzynkiewicz Z et al. Analysis of apoptosis by cytometry using TUNEL assay. Methods. 2008 Mar 1;44(3):250-4. doi:10.1016/j.ymeth.2007.11.008

[152]. Loo DT. In situ detection of apoptosis by the TUNEL assay: an overview of techniques. DNA Damage Detection In Situ, Ex Vivo, and In Vivo. 2011:3-13. doi:10.1007/978-1-60327-409-8_1

[153]. Xia N et al. Impedimetric biosensor for assay of Caspase-3 activity and evaluation of cell apoptosis using self-assembled biotin-phenylalanine network as signal enhancer. Sensors and Actuators B: Chemical. 2020 Oct 1; 320:128436. doi:10.1016/j.snb.2020.128436

[154]. Yang Y et al. Label-free and homogenous detection of Caspase-3-like proteases by disrupting homodimerization-directed bipartite tetracysteine display. Analytical chemistry. 2017 Apr 4; 89(7):4055-61. doi:10.1021/acs.analchem.6b04771

[155]. Kaufmann SH et al. Apoptosis-associated Caspase activation assays. Methods. 2008 Mar 1;44(3):262-72. doi:10.1016/j.ymeth.2007.11.005

[156]. Justin,C et al. Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS One, 13(7), p.e0200440. doi:10.1371/journal.pone.0200440



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com