Published
2025-03-15
Section
Review Article
License
Copyright (c) 2025 Yetunde Rukayat Adesiyan, Peter Adeniyi Alaba

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Critical review of data-driven breeding and selection on field-grown switchgrass (Panicum virgatum L.) as a bioenergy feedstock
Yetunde Rukayat Adesiyan
Department of Environmental and Geosciences, Sam Houston State University 1905 University Avenue, TX 77340, Huntsville
Peter Adeniyi Alaba
Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia. Premium Edible Oil Product Limited, Alomaja Junction off Ibadan-Ijebu Ode Road, Idi-Ayunre, Oyo State, 200256 Ibadan, Nigeria
DOI: https://doi.org/10.59429/ace.v8i1.5596
Abstract
Switchgrass is a highly promising bioenergy feedstock due to high biomass yield and ability to thrive on marginal lands. Enhancing switchgrass for biofuel production through data-driven breeding and selection is essential to meeting the growing need for sustainable and renewable energy sources. This review critically analyses current approaches and future directions in identifying key phenotypic traits, exploring genetic diversity, and developing predictive models to improve switchgrass. It underscores the importance of high-throughput phenotyping technologies and standardized protocols in pinpointing traits that enhance biofuel yield and conversion efficiency. The review discusses the necessity of comprehensive genotyping and sequencing to understand genetic diversity better and utilize beneficial traits in breeding programs. Moreover, the study highlights the potential of advanced machine learning algorithms and multi-dimensional data integration in creating strong predictive models for breeding decisions. This review provides a roadmap for future research and practical breeding strategies to optimize switchgrass as a bioenergy feedstock.
References
[1]. R.M. Happs, R.J. Hanes, A.W. Bartling, J.L. Field, A.E. Harman-Ware, R.J. Clark, T.H. Pendergast IV, K.M. Devos, E.G. Webb, A. Missaoui, Economic and Sustainability Impacts of Yield and Composition Variation in Bioenergy Crops: Switchgrass (Panicum virgatum L.). ACS Sustainable Chemistry & Engineering 2024, 12 (5), 1897-1910.
[2]. M. Mazarei, H.L. Baxter, A. Srivastava, G. Li, H. Xie, A. Dumitrache, M. Rodriguez Jr, J.M. Natzke, J.-Y. Zhang, G.B. Turner, Silencing folylpolyglutamate synthetase1 (FPGS1) in switchgrass (Panicum virgatum L.) improves lignocellulosic biofuel production. Frontiers in Plant Science 2020, 11, 843.
[3]. D. Xu, Y. Wang, H. Hu, D. Yellezuome, F. He, J. Cai, Energy consumption balance and environmental benefits from the pyrolysis of switchgrass cultivated on marginal lands with biochar application to soil in China. Industrial Crops and Products 2024, 219, 119148.
[4]. Y. Sher, N.R. Baker, D. Herman, C. Fossum, L. Hale, X. Zhang, E. Nuccio, M. Saha, J. Zhou, J. Pett-Ridge, Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass (Panicum virgatum) root biomass and soil water potential. Soil Biology and Biochemistry 2020, 143, 107742.
[5]. J. Fike, V. Owens, D. Parrish, R. Genedy, Sustainable use of switchgrass for biofuel, Achieving carbon negative bioenergy systems from plant materials, Burleigh Dodds Science Publishing2020, pp. 275-304.
[6]. F. Li, C. Piasecki, R.J. Millwood, B. Wolfe, M. Mazarei, C.N. Stewart Jr, High-throughput switchgrass phenotyping and biomass modeling by UAV. Frontiers in Plant Science 2020, 11, 574073.
[7]. S. Nayak, Genetic Variation for Biomass Yield and Identification of Genomic Regions Associated with Regrowth Vigor and Salinity Tolerance in Lowland Switchgrass (Panicum virgatum L.). 2020.
[8]. J.T. Lovell, A.H. MacQueen, S. Mamidi, J. Bonnette, J. Jenkins, J.D. Napier, A. Sreedasyam, A. Healey, A. Session, S. Shu, Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 2021, 590 (7846), 438-444.
[9]. K. Ahmad, R. Ming, Harnessing Genetic Tools for Sustainable Bioenergy: A Review of Sugarcane Biotechnology in Biofuel Production. Agriculture 2024, 14 (8), 1312.
[10]. L. Zhang, A. MacQueen, X. Weng, K.D. Behrman, J. Bonnette, J.L. Reilley, F.M. Rouquette Jr, P.A. Fay, Y. Wu, F.B. Fritschi, The genetic basis for panicle trait variation in switchgrass (Panicum virgatum). Theoretical and Applied Genetics 2022, 135 (8), 2577-2592.
[11]. P. Chen, J. Chen, M. Sun, H. Yan, G. Feng, B. Wu, X. Zhang, X. Wang, L. Huang, Comparative transcriptome study of switchgrass (Panicum virgatum L.) homologous autopolyploid and its parental amphidiploid responding to consistent drought stress. Biotechnology for biofuels 2020, 13, 1-18.
[12]. Y. Xu, V. Shrestha, C. Piasecki, B. Wolfe, L. Hamilton, R.J. Millwood, M. Mazarei, C.N. Stewart, Sustainability trait modeling of field-grown switchgrass (Panicum virgatum) using UAV-based imagery. Plants 2021, 10 (12), 2726.
[13]. O. Akande, Challenges and Opportunities in Machine Learning for Bioenergy Crop Yield Prediction: A Review. Available at SSRN 4898518 2024.
[14]. T. Gill, S.K. Gill, D.K. Saini, Y. Chopra, J.P. de Koff, K.S. Sandhu, A comprehensive review of high throughput phenotyping and machine learning for plant stress phenotyping. Phenomics 2022, 2 (3), 156-183.
[15]. K.A. Stahlheber, J. Lindquist, P.D. Drogosh, D. Pennington, K.L. Gross, Predicting productivity: A trait-based analysis of variability in biomass yield among switchgrass feedstock cultivars. Agriculture, Ecosystems & Environment 2020, 300, 106980.
[16]. J.D. Fiedler, C. Lanzatella, S.J. Edmé, N.A. Palmer, G. Sarath, R. Mitchell, C.M. Tobias, Genomic prediction accuracy for switchgrass traits related to bioenergy within differentiated populations. BMC Plant Biology 2018, 18, 1-16.
[17]. Q. Xiao, X. Bai, C. Zhang, Y. He, Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. Journal of advanced research 2022, 35, 215-230.
[18]. P.A.A. Yetunde Rukayat Adesiyan, FieldGrown Switchgrass (Panicum virgatum L.) as a Bioenergy Feedstock: A Review of Phenotype Data Collection and Analysis. Journal of Biotechnology & Bioresearch 2024, 5 (4), 762-776.
[19]. S. He, X. Li, M. Chen, X. Xu, F. Tang, T. Gong, M. Xu, W. Yang, W. Liu, Crop HTP Technologies: Applications and Prospects. Agriculture 2024, 14 (5), 723.
[20]. B. Matin, J. Leto, A. Antonović, I. Brandić, V. Jurišić, A. Matin, T. Krička, M. Grubor, M. Kontek, N. Bilandžija, Energetic properties and biomass productivity of switchgrass (Panicum virgatum L.) under agroecological conditions in Northwestern Croatia. Agronomy 2023, 13 (4), 1161.
[21]. R.R. Bakker, H.W. Elbersen, Managing ash content and quality in herbaceous biomass: an analysis from plant to product, 14th European biomass conference, 2005, pp. 21.
[22]. I. Gravalos, P. Xyradakis, D. Kateris, T. Gialamas, D. Bartzialis, K. Giannoulis, An experimental determination of gross calorific value of different agroforestry species and bio-based industry residues. Natural Resources 2016, 7 (1), 57-68.
[23]. J.S. Tumuluru, Comparison of chemical composition and energy property of torrefied switchgrass and corn stover. Front. Energy Res. 2015, 3, 46.
[24]. W. Scott, Pros and Cons of Switchgrass as a Biomass for Fuel, 2024.
[25]. L.M. Griffel, A.-L. Toba, R. Paudel, Y. Lin, D.S. Hartley, M. Langholtz, A multi-criteria land suitability assessment of field allocation decisions for switchgrass. Ecological Indicators 2022, 136, 108617.
[26]. Q. Feng, I. Chaubey, R. Cibin, B. Engel, K. Sudheer, J. Volenec, N. Omani, Perennial biomass production from marginal land in the Upper Mississippi River Basin. Land degradation & development 2018, 29 (6), 1748-1755.
[27]. Y. Wu, Switchgrass: Environmental Impacts, Department of Plant and Soil Sciences, Oklahoma State University, 2024.
[28]. R.P. Udawatta, H.E. Garrett, S. Jose, S.T. Lovell, Water quality and quantity benefits of agroforestry and processes: Long-term case studies from Missouri, USA. Agroforestry and ecosystem services 2021, 113-139.
[29]. D. Hancock, Switchgrass: Forage or Fuel, The University of Georgia, 2009.
[30]. R. Mitchell, K.P. Vogel, D.R. Uden, The feasibility of switchgrass for biofuel production. Biofuels 2012, 3 (1), 47-59.
[31]. F. Gagné-Bourque, Bacillus subtilis B26, a Plant Growth Promoter and Drought Protector of Grasses, McGill University (Canada)2015.
[32]. P. Kumar, M. Hashemi, S.J. Herbert, E. Jahanzad, H. Safari-Katesari, M. Battaglia, O.R. Zandvakili, A. Sadeghpour, Integrated management practices for establishing upland switchgrass varieties. Agronomy 2021, 11 (7), 1400.
[33]. C.W. Edmunds, E.A. Reyes Molina, N. André, C. Hamilton, S. Park, O. Fasina, S. Adhikari, S.S. Kelley, J.S. Tumuluru, T.G. Rials, Blended feedstocks for thermochemical conversion: biomass characterization and bio-oil production from switchgrass-pine residues blends. Front. Energy Res. 2018, 6, 79.
[34]. P. Wright L.L., R.D., Switchgrass Production in the USA, Oak Ridge National Laboratory, 2012.
[35]. M.A. Sanderson, P.R. Adler, A.A. Boateng, M.D. Casler, G. Sarath, Switchgrass as a biofuels feedstock in the USA. Canadian journal of plant science 2006, 86 (Special Issue), 1315-1325.
[36]. AgMRC, Switchgrass, Agricultural Marketing Summit, Iowa State University, 2023.
[37]. S. Sokhansanj, S. Mani, A. Turhollow, A. Kumar, D. Bransby, L. Lynd, M. Laser, Large‐scale production, harvest and logistics of switchgrass (Panicum virgatum L.)–current technology and envisioning a mature technology. Biofuels, Bioproducts and Biorefining 2009, 3 (2), 124-141.
[38]. K.D. Behrman, J.R. Kiniry, M. Winchell, T.E. Juenger, T.H. Keitt, Spatial forecasting of switchgrass productivity under current and future climate change scenarios. Ecological Applications 2013, 23 (1), 73-85.
[39]. A. VanWallendael, J. Bonnette, T.E. Juenger, F.B. Fritschi, P.A. Fay, R.B. Mitchell, J. Lloyd‐Reilley, F.M. Rouquette Jr, G.C. Bergstrom, D.B. Lowry, Geographic variation in the genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass (Panicum virgatum). New Phytologist 2020, 227 (6), 1696-1708.
[40]. W. Anderson, L. Baxter, D. Hancock, R. Gates, E.F. Rios, Moving warm-season forage bermudagrass (Cynodon sp.) into temperate regions of North America. 2021.
[41]. X. Li, R.H. Petipas, A.A. Antoch, Y. Liu, H.V. Stel, L. Bell‐Dereske, D.N. Smercina, C. Bekkering, S.E. Evans, L.K. Tiemann, Switchgrass cropping systems affect soil carbon and nitrogen and microbial diversity and activity on marginal lands. GCB Bioenergy 2022, 14 (8), 918-940.
[42]. C. Hawkes, J. Kiniry, Legacies in switchgrass resistance to and recovery from drought suggest that good years can sustain plants through bad years. Bioenergy Research 2018, 11, 86-94.
[43]. M.D. Casler, S. Sosa, L. Hoffman, H. Mayton, C. Ernst, P.R. Adler, A.R. Boe, S.A. Bonos, Biomass yield of switchgrass cultivars under high‐versus low‐input conditions. Crop Science 2017, 57 (2), 821-832.
[44]. P.D. Keyser, A.J. Ashworth, F.L. Allen, G.E. Bates, Dormant‐season planting and seed‐dormancy impacts on switchgrass establishment and yield. Crop Science 2016, 56 (1), 474-483.
[45]. A.R. McGowan, D.H. Min, J.R. Williams, C.W. Rice, Impact of nitrogen application rate on switchgrass yield, production costs, and nitrous oxide emissions. Journal of Environmental Quality 2018, 47 (2), 228-237.
[46]. I. Gazoulis, P. Kanatas, P. Papastylianou, A. Tataridas, E. Alexopoulou, I. Travlos, Weed management practices to improve establishment of selected lignocellulosic crops. Energies 2021, 14 (9), 2478.
[47]. M.J. Serapiglia, A.A. Boateng, D. Lee, M.D. Casler, Switchgrass harvest time management can impact biomass yield and nutrient content. Crop Science 2016, 56 (4), 1970-1980.
[48]. D. Li, C. Quan, Z. Song, X. Li, G. Yu, C. Li, A. Muhammad, High-throughput plant phenotyping platform (HT3P) as a novel tool for estimating agronomic traits from the lab to the field. Frontiers in Bioengineering and Biotechnology 2021, 8, 623705.
[49]. F. Pancaldi, L.M. Trindade, Marginal lands to grow novel bio-based crops: a plant breeding perspective. Frontiers in Plant Science 2020, 11, 227.
[50]. S. Kim, S. Kim, J. Cho, S. Park, F.X. Jarrín Perez, J.R. Kiniry, Simulated biomass, climate change impacts, and nitrogen management to achieve switchgrass biofuel production at diverse sites in US. Agronomy 2020, 10 (4), 503.
[51]. M. Li, S.M. Marek, J. Peng, Z. Liu, M.R. Wilkins, Effect of moisture content and inoculum size on cell wall composition and ethanol yield from switchgrass after solid-state Pleurotus ostreatus treatment. Transactions of the ASABE 2018, 61 (6), 1997-2006.
[52]. R.G. Ong, A. Higbee, S. Bottoms, Q. Dickinson, D. Xie, S.A. Smith, J. Serate, E. Pohlmann, A.D. Jones, J.J. Coon, Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate. Biotechnology for Biofuels 2016, 9, 1-14.
[53]. M.D. Casler, Selection for flowering time as a mechanism to increase biomass yield of upland switchgrass. BioEnergy Research 2020, 13 (1), 100-108.
[54]. B. Basyal, S.M. Emery, An arbuscular mycorrhizal fungus alters switchgrass growth, root architecture, and cell wall chemistry across a soil moisture gradient. Mycorrhiza 2021, 31 (2), 251-258.
[55]. S. Li, G. Courbet, A. Ourry, E.A. Ainsworth, Elevated ozone concentration reduces photosynthetic carbon gain but does not alter leaf structural traits, nutrient composition or biomass in switchgrass. Plants 2019, 8 (4), 85.
[56]. A. Hammel, F. Sommer, D. Zimmer, M. Stitt, T. Mühlhaus, M. Schroda, Overexpression of sedoheptulose-1, 7-bisphosphatase enhances photosynthesis in Chlamydomonas reinhardtii and has no effect on the abundance of other Calvin-Benson cycle enzymes. Frontiers in plant science 2020, 11, 868.
[57]. X. Cui, D. Zhou, H. Liu, H. Wang, T. Wang, X. Li, J. Jiang, Y. Zhang, PvMYB106 increases switchgrass biomass via activating photosystem II subunit protein PvPsbP and carbonic anhydrase PvCA expression. Industrial Crops and Products 2024, 216, 118721.
[58]. C. Zhao, Y. Yue, J. Wu, J. Scullion, Q. Guo, Q. Wang, C. Li, X. Wan, X. Hou, X. Fan, Panicle removal delays plant senescence and enhances vegetative growth improving biomass production in switchgrass. Biomass and Bioenergy 2023, 174, 106809.
[59]. L.M. York, J.R. Cumming, A. Trusiak, G. Bonito, A.C. von Haden, U.C. Kalluri, L.K. Tiemann, P.F. Andeer, E. Blanc‐Betes, J.H. Diab, Bioenergy Underground: Challenges and opportunities for phenotyping roots and the microbiome for sustainable bioenergy crop production. The Plant Phenome Journal 2022, 5 (1), e20028.
[60]. CIAS, Switchgrass production for biomass, Center for Integrated Agricultural Systems, University of Wisconsin-Madison, 2001.
[61]. D. Wasonga, C. Jang, J.W. Lee, K. Vittore, M.U. Arshad, N. Namoi, C. Zumpf, D. Lee, Estimating Switchgrass Biomass Yield and Lignocellulose Composition from UAV-Based Indices. Crops 2025, 5 (1), 3.
[62]. O. Onu Olughu, L.G. Tabil, T. Dumonceaux, E. Mupondwa, D. Cree, Optimization of solid-state fermentation of switchgrass using white-rot fungi for biofuel production. Fuels 2022, 3 (4), 730-752.
[63]. A.S. Pazhany, R.J. Henry, Genetic modification of biomass to alter lignin content and structure. Industrial & Engineering Chemistry Research 2019, 58 (35), 16190-16203.
[64]. X. Rao, X. Chen, H. Shen, Q. Ma, G. Li, Y. Tang, M. Pena, W. York, T.P. Frazier, S. Lenaghan, Gene regulatory networks for lignin biosynthesis in switchgrass (Panicum virgatum). Plant Biotechnology Journal 2019, 17 (3), 580-593.
[65]. D.G. Mann, N. Labbé, R.W. Sykes, K. Gracom, L. Kline, I.M. Swamidoss, J.N. Burris, M. Davis, C.N. Stewart, Rapid assessment of lignin content and structure in switchgrass (Panicum virgatum L.) grown under different environmental conditions. BioEnergy Research 2009, 2, 246-256.
[66]. Y. Yuan, B. Jiang, H. Chen, W. Wu, S. Wu, Y. Jin, H. Xiao, Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnology for Biofuels 2021, 14, 1-20.
[67]. Celignis, Background on Switchgrass, Celignis Analytical, 2025.
[68]. R. Rashmi, T. Tripathi, S. Pandey, S. Kumar, Transforming lignocellulosic biomass into biofuels: Recent innovations in pretreatment and bioconversion techniques. Int. J. Res. Appl. Sci. Eng. Technol 2024, 12, 1079-1089.
[69]. E. Kocaturk, T. Salan, O. Ozcelik, M.H. Alma, Z. Candan, Recent advances in lignin-based biofuel production. Energies 2023, 16 (8), 3382.
[70]. A.H. MacQueen, L. Zhang, J. Bonnette, A.R. Boe, P.A. Fay, F.B. Fritschi, D.B. Lowry, R.B. Mitchell, F.M. Rouquette Jr, Y. Wu, Mapping of genotype-by-environment interactions in phenology identifies two cues for flowering in switchgrass (Panicum virgatum). BioRxiv 2021, 2021.2008. 2019.456975.
[71]. S. Nayak, H. Bhandari, M.C. Saha, S. Ali, C. Sams, V. Pantalone, Identification of QTL associated with regrowth vigor using the nested association mapping population in switchgrass. Plants 2022, 11 (4), 566.
[72]. L.M. Cortese, J. Honig, C. Miller, S.A. Bonos, Genetic diversity of twelve switchgrass populations using molecular and morphological markers. Bioenergy Research 2010, 3, 262-271.
[73]. E. Alexopoulou, F. Zanetti, E.G. Papazoglou, K. Iordanoglou, A. Monti, Long-term productivity of thirteen lowland and upland switchgrass ecotypes in the Mediterranean region. Agronomy 2020, 10 (7), 923.
[74]. S. Verma, A. Gupta, S. Yalla, Shreya, P.J. Patel, R. Sharma, A. A. V, A. Donga, Integrating Marker-Assisted (MAS) and Genomic Selection (GS) for Plant Functional Trait Improvement, Plant Functional Traits for Improving Productivity, Springer2024, pp. 203-215.
[75]. J.D. Napier, P.P. Grabowski, J.T. Lovell, J. Bonnette, S. Mamidi, M.J. Gomez-Hughes, A. VanWallendael, X. Weng, L.H. Handley, M.K. Kim, A generalist–specialist trade-off between switchgrass cytotypes impacts climate adaptation and geographic range. Proceedings of the National Academy of Sciences 2022, 119 (15), e2118879119.
[76]. K. Shinozaki, K. Yamaguchi-Shinozaki, Gene networks involved in drought stress response and tolerance. Journal of experimental botany 2007, 58 (2), 221-227.
[77]. Z. Khan, D. Shahwar, Role of heat shock proteins (HSPs) and heat stress tolerance in crop plants. Sustainable agriculture in the era of climate change 2020, 211-234.
[78]. G.R. Rout, S.K. Senapati, Stress Tolerance in Plants: A Proteomics Approach, Molecular Stress Physiology of Plants, Springer2013, pp. 359-386.
[79]. A. Batool, N. Zahra, R. Naseer, S. Shahzad, S. Iqbal, A. Kausar, A. Raza, Harnessing the role of genes involved in plant architectural changes. Plant Growth Regulation 2023, 101 (1), 15-34.
[80]. W. Wang, W. Zhang, M. Jamil, J. Tu, L. Huang, Molecular and genetic mechanisms of plant architecture regulation. Frontiers in Plant Science 2024, 15, 1421197.
[81]. F. Martini, G. Beghini, L. Zanin, Z. Varanini, A. Zamboni, M. Ballottari, The potential use of Chlamydomonas reinhardtii and Chlorella sorokiniana as biostimulants on maize plants. Algal research 2021, 60, 102515.
[82]. R.B. Calderon, S.R. Dangi, Arbuscular mycorrhizal fungi and rhizobium improve nutrient uptake and microbial diversity relative to dryland site-specific soil conditions. Microorganisms 2024, 12 (4), 667.
[83]. M. Bortolot, B. Buffoni, S. Mazzarino, G. Hoff, E. Martino, V. Fiorilli, A. Salvioli Di Fossalunga, The Importance of Mycorrhizal Fungi and Their Associated Bacteria in Promoting Crops’ Performance: An Applicative Perspective. Horticulturae 2024, 10 (12), 1-12.
[84]. L. Merrick, K. Meade, A. Campbell, D. Muenchrath, W. Beavis, Population genetics. Crop Genetics 2023.
[85]. A. Singh, A.A. Mahama, Refresher on Population and Quantitative Genetics. Crop Improvement 2023.
[86]. M. De Vicente, C. Lopez, T. Fulton, Genetic diversity analysis with molecular marker data: learning module. International Plant Genetic Resources Institute (IPGRI) 2004.
[87]. J. Clifton‐Brown, A. Harfouche, M.D. Casler, H. Dylan Jones, W.J. Macalpine, D. Murphy‐Bokern, L.B. Smart, A. Adler, C. Ashman, D. Awty‐Carroll, Breeding progress and preparedness for mass‐scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. Gcb Bioenergy 2019, 11 (1), 118-151.
[88]. S.J. Edmé, G. Sarath, N. Palmer, S. Tatineni, R. Mitchell, G. Yuen, Genetics and Genomics of Pathogen Resistance in Switchgrass, US Dept. of Agriculture (USDA), Lincoln, NE (United States), 2023.
[89]. N.W. Tilhou, J. Bonnette, A.R. Boe, P.A. Fay, F.B. Fritschi, R.B. Mitchell, F.M. Rouquette Jr, Y. Wu, J.D. Jastrow, M. Ricketts, Genomic prediction of regional-scale performance in switchgrass (Panicum virgatum) by accounting for genotype-by-environment variation and yield surrogate traits. G3: Genes, Genomes, Genetics 2024, 14 (10), jkae159.
[90]. K.A. Devi, K.U. Rani, Exploring Machine Learning Algorithms in Soil Management and Precision Agriculture—A Survey. Int. J. Eng. Res 2024, 13.
[91]. A.E. Lipka, F. Lu, J.H. Cherney, E.S. Buckler, M.D. Casler, D.E. Costich, Accelerating the switchgrass (Panicum virgatum L.) breeding cycle using genomic selection approaches. PloS one 2014, 9 (11), e112227.
[92]. S. Ali, D.D. Serba, J. Jenkins, S. Kwon, J. Schmutz, M.C. Saha, High‐density linkage map reveals QTL underlying growth traits in AP13× VS16 biparental population of switchgrass. GCB Bioenergy 2019, 11 (5), 672-690.
[93]. H.P. Poudel, M.D. Sanciangco, S.M. Kaeppler, C.R. Buell, M.D. Casler, Genomic prediction for winter survival of lowland switchgrass in the northern USA. G3: Genes, Genomes, Genetics 2019, 9 (6), 1921-1931.
[94]. W. Peng, O. Karimi Sadaghiani, A review on the applications of machine learning and deep learning in agriculture section for the production of crop biomass raw materials. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2023, 45 (3), 9178-9201.
[95]. M. Jahufer, D. Luo, DeltaGen: A comprehensive decision support tool for plant breeders. Crop Science 2018, 58 (3), 1118-1131.
[96]. S. Edmé, R. Mitchell, Genetic analysis of yield and quality traits in switchgrass based on population crosses. Agronomy 2021, 11 (11), 2220.
[97]. Y. Wu, L. Xie, AI-driven multi-omics integration for multi-scale predictive modeling of causal genotype-environment-phenotype relationships. arXiv preprint arXiv:2407.06405 2024.
[98]. T.M. Sirangelo, R.A. Ludlow, T. Chenet, L. Pasti, N.D. Spadafora, Multi-Omics and genome editing studies on plant cell walls to improve biomass quality. Agriculture 2023, 13 (4), 752.
[99]. P. Zhang, T. Duo, F. Wang, X. Zhang, Z. Yang, G. Hu, De novo transcriptome in roots of switchgrass (Panicum virgatum L.) reveals gene expression dynamic and act network under alkaline salt stress. BMC genomics 2021, 22, 1-14.
[100]. Y. Liu, A. Hastings, S. Chen, A. Faaij, The development of a new crop growth model SwitchFor for yield mapping of switchgrass. GCB Bioenergy 2022, 14 (12), 1281-1302.
[101]. G. Dida, Biotechnology towards energy crops. CABI Agriculture and Bioscience 2024, 5 (1), 45.
[102]. J.L. Dayil, O. Akande, D.A.E.D. Mahmoud, R. Kimera, O. Omole, Challenges and Opportunities in Machine Learning for Bioenergy Crop Yield Prediction: A Review. Available at SSRN 4901497 2024.
[103]. A.A. Belal, H. El-Ramady, M. Jalhoum, A. Gad, E.S. Mohamed, Precision farming technologies to increase soil and crop productivity. Agro-Environmental Sustainability in MENA Regions 2021, 117-154.
[104]. C. Zheng, Y. Iqbal, N. Labonte, G. Sun, H. Feng, Z. Yi, L. Xiao, Performance of switchgrass and Miscanthus genotypes on marginal land in the Yellow River Delta. Industrial Crops and Products 2019, 141, 111773.
[105]. G. Impollonia, M. Croci, A. Ferrarini, J. Brook, E. Martani, H. Blandinières, A. Marcone, D. Awty-Carroll, C. Ashman, J. Kam, UAV remote sensing for high-throughput phenotyping and for yield prediction of miscanthus by machine learning techniques. Remote Sensing 2022, 14 (12), 2927.
[106]. E.A. Kirkby, M. Nikolic, P.J. White, G. Xu, Mineral nutrition, yield, and source–sink relationships, Marschner's mineral nutrition of plants, Elsevier2023, pp. 131-200.
[107]. C. Guan, H.-F. Cen, X. Cui, D.-Y. Tian, D. Tadesse, Y.-W. Zhang, Proline improves switchgrass growth and development by reduced lignin biosynthesis. Scientific Reports 2019, 9 (1), 20117.
[108]. H. Liu, M. Lin, H. Wang, X. Li, D. Zhou, X. Bi, Y. Zhang, N6-methyladenosine analysis unveils key mechanisms underlying long-term salt stress tolerance in switchgrass (Panicum virgatum). Plant Science 2024, 342, 112023.
[109]. M.A. Nadeem, M.A. Nawaz, M.Q. Shahid, Y. Doğan, G. Comertpay, M. Yıldız, R. Hatipoğlu, F. Ahmad, A. Alsaleh, N. Labhane, DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment 2018, 32 (2), 261-285.
[110]. B. Sadia, F.S. Awan, F. Saleem, A. Razzaq, B. Irshad, Sorghum an Important Annual Feedstock for Bioenergy, Biomass for Bioenergy-Recent Trends and Future Challenges, IntechOpen2019.
[111]. N.W. Tilhou, D. Lee, G.P. Ramstein, H.P. Poudel, S.J. Edme, M.D. Casler, Empirical comparison of genomic selection to phenotypic selection for biomass yield of switchgrass. Agronomy Journal 2024.
[112]. Y. Jiang, Y. Yang, High-throughput phenotyping for plant growth and biomass yield of switchgrass under a controlled environment. Grass Research 2022, 2 (1), 1-7.
[113]. M.A. Schoonen, P. Freimuth, A. Rogers, A. Leakey, H. Mukundan, R. McGraw, D. Aylor, T. Subba, B. Stump, W. da Silva, Community Input on the Need, Scope, and Development Roadmap of a Proposed National Virtual Biosecurity for Bioenergy Crops Center (NVBBCC), Brookhaven National Laboratory (BNL), Upton, NY (United States), 2024.
[114]. N. Karannagoda, A. Spokevicius, S. Hussey, G. Bossinger, Microanalytical techniques for phenotyping secondary xylem. IAWA journal 2020, 41 (3), 356-389.
[115]. M. Taylor, C.-E. Tornqvist, X. Zhao, R. Doerge, M.D. Casler, Y. Jiang, Identification of quantitative trait loci for plant height, crown diameter, and plant biomass in a pseudo-F 2 population of switchgrass. BioEnergy Research 2019, 12, 267-274.
[116]. J. Zhou, E. Beche, C.C. Vieira, D. Yungbluth, J. Zhou, A. Scaboo, P. Chen, Improve soybean variety selection accuracy using UAV-based high-throughput phenotyping technology. Frontiers in Plant Science 2022, 12, 768742.
[117]. G.N. Nguyen, S.L. Norton, Genebank phenomics: A strategic approach to enhance value and utilization of crop germplasm. Plants 2020, 9 (7), 817.
[118]. F. Sustek-Sánchez, O.A. Rognli, N. Rostoks, M. Sõmera, K. Jaškūnė, M.R. Kovi, G. Statkevičiūtė, C. Sarmiento, Improving abiotic stress tolerance of forage grasses–prospects of using genome editing. Frontiers in Plant Science 2023, 14, 1127532.
[119]. J.I. Park, L. Liu, X.P. Ye, M.K. Jeong, Y.-S. Jeong, Improved prediction of biomass composition for switchgrass using reproducing kernel methods with wavelet compressed FT-NIR spectra. Expert Systems with Applications 2012, 39 (1), 1555-1564.
[120]. Y.R. Adesiyan, P.A. Alaba, Field-Grown Switchgrass (Panicum virgatum L.) as a Bioenergy Feedstock: A Review of Phenotype Data Collection and Analysis. 2024.
[121]. J.S. Luterbacher, J.M. Moran‐Mirabal, E.W. Burkholder, L.P. Walker, Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: pretreated biomass. Biotechnology and bioengineering 2015, 112 (1), 32-42.
[122]. B.G. Laviola, E.V. Rodrigues, P.E. Teodoro, L. de Azevedo Peixoto, L.L. Bhering, Biometric and biotechnology strategies in Jatropha genetic breeding for biodiesel production. Renewable and Sustainable Energy Reviews 2017, 76, 894-904.
[123]. C.O. Dalid, Genetic Diversity, Genetic Variation and Identification of Quantitative Trait Loci (QTL) Associated with Biomass Yield and Establishment-Related Traits in Lowland Switchgrass (Panicum virgatum L.). 2018.
[124]. A. Ameen, C. Tang, J. Liu, L. Han, G.H. Xie, Switchgrass as forage and biofuel feedstock: Effect of nitrogen fertilization rate on the quality of biomass harvested in late summer and early fall. Field Crops Research 2019, 235, 154-162.
[125]. B. Narasimhamoorthy, M. Saha, T. Swaller, J. Bouton, Genetic diversity in switchgrass collections assessed by EST-SSR markers. Bioenergy Research 2008, 1, 136-146.
[126]. N.-u.-. Ain, F.U. Haider, M. Fatima, Habiba, Y. Zhou, R. Ming, Genetic determinants of biomass in C4 crops: molecular and agronomic approaches to increase biomass for biofuels. Frontiers in plant science 2022, 13, 839588.
[127]. R.W. Heckman, C.G. Pereira, M.J. Aspinwall, T.E. Juenger, Physiological responses of C4 perennial bioenergy grasses to climate change: causes, consequences, and constraints. Annual Review of Plant Biology 2024, 75.
[128]. J. Evans, M.D. Sanciangco, K.H. Lau, E. Crisovan, K. Barry, C. Daum, H. Hundley, J. Jenkins, M. Kennedy, G. Kunde‐Ramamoorthy, Extensive genetic diversity is present within North American switchgrass germplasm. The Plant Genome 2018, 11 (1), 170055.
[129]. H. Bhandari, A. Missaoui, J. Bouton, M. Saha, Switchgrass as a bioenergy feedstock: advances in breeding and genomics research. Technology 2015, 3 (02n03), 127-140.
[130]. J. Holliday, E. Hallerman, D. Haak, Genotyping and sequencing technologies in population genetics and genomics. Population genomics: Concepts, approaches and applications 2019, 83-125.
[131]. B. Wu, J. Zhu, X. Ma, J. Jia, D. Luo, Q. Ding, X. Wang, L. Huang, Comparative analysis of switchgrass chloroplast genomes provides insights into identification, phylogenetic relationships and evolution of different ecotypes. Industrial Crops and Products 2023, 205, 117570.
[132]. B. Vandenberghe, S. Depuydt, A. Van Messem, How to make sense of 3D representations for plant phenotyping: a compendium of processing and analysis techniques. 2018.
[133]. M. Galliart, S. Sabates, H. Tetreault, A. DeLaCruz, J. Bryant, J. Alsdurf, M. Knapp, N.M. Bello, S.G. Baer, B.R. Maricle, Adaptive genetic potential and plasticity of trait variation in the foundation prairie grass Andropogon gerardii across the US Great Plains’ climate gradient: Implications for climate change and restoration. Evolutionary Applications 2020, 13 (9), 2333-2356.
[134]. B.A. Bahri, G. Daverdin, X. Xu, J.-F. Cheng, K.W. Barry, E.C. Brummer, K.M. Devos, Natural variation in genes potentially involved in plant architecture and adaptation in switchgrass (Panicum virgatum L.). BMC evolutionary biology 2018, 18, 1-20.
[135]. S.J. Lee, Uncovering the Genetic Basis for Biofuel-Related Traits in Brachypodium Distachyon. 2016.
[136]. F. Lu, A.E. Lipka, J. Glaubitz, R. Elshire, J.H. Cherney, M.D. Casler, E.S. Buckler, D.E. Costich, Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS genetics 2013, 9 (1), e1003215.
[137]. L. Arya, M. Singh, M. Verma, M. Singh, S.B. Aglawe, Molecular studies on millets and pseudocereals, Millets and Pseudo Cereals, Elsevier2021, pp. 65-117.
[138]. A.L. Smith, T.R. Hodkinson, J. Villellas, J.A. Catford, A.M. Csergő, S.P. Blomberg, E.E. Crone, J. Ehrlén, M.B. Garcia, A.-L. Laine, Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences 2020, 117 (8), 4218-4227.
[139]. G. Morota, D. Jarquin, M.T. Campbell, H. Iwata, Statistical methods for the quantitative genetic analysis of high-throughput phenotyping data, High-Throughput Plant Phenotyping: Methods and Protocols, Springer2022, pp. 269-296.
[140]. M.W. Ahmed, C.A. Esquerre, K. Eilts, D.P. Allen, S.M. McCoy, S. Varela, V. Singh, A.D. Leakey, M. Kamruzzaman, Rapid and high-throughput determination of sorghum (Sorghum bicolor) biomass composition using near infrared spectroscopy and chemometrics. Biomass and Bioenergy 2024, 186, 107276.
[141]. Y. Xu, X. Zhang, H. Li, H. Zheng, J. Zhang, M.S. Olsen, R.K. Varshney, B.M. Prasanna, Q. Qian, Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Molecular Plant 2022, 15 (11), 1664-1695.
[142]. ISAAA, Transcription Factor Genes Increase Biomass Production in Switchgrass, Biotech Updates, 2018.
[143]. Z. Wu, Y. Cao, R. Yang, T. Qi, Y. Hang, H. Lin, G. Zhou, Z.-Y. Wang, C. Fu, Switchgrass SBP-box transcription factors PvSPL1 and 2 function redundantly to initiate side tillers and affect biomass yield of energy crop. Biotechnology for Biofuels 2016, 9, 1-15.
[144]. GSP, Genomic Selection to Accelerate Switchgrass Breeding, U.S. Department of Energy Genomic Science program, 2014.
[145]. K. Baral, DEVELOPMENT OF GENOMIC TOOLS FOR ACCELERATED BREEDING OF CRESTED WHEATGRASS [Agropyron cristatum (L.) Gaertn.], University of Saskatchewan, 2019.
[146]. I. Gabur, D.P. Simioniuc, R.J. Snowdon, D. Cristea, Machine learning applied to the search for nonlinear features in breeding populations. Frontiers in Artificial Intelligence 2022, 5, 876578.
[147]. A. Atefi, Y. Ge, S. Pitla, J. Schnable, Robotic technologies for high-throughput plant phenotyping: Contemporary reviews and future perspectives. Frontiers in plant science 2021, 12, 611940.
[148]. I.C.M. Oliveira, J.H.S. Guilhen, P.C. de Oliveira Ribeiro, S.A. Gezan, R.E. Schaffert, M.L.F. Simeone, C.M.B. Damasceno, J.E. de Souza Carneiro, P.C.S. Carneiro, R.A. da Costa Parrella, Genotype-by-environment interaction and yield stability analysis of biomass sorghum hybrids using factor analytic models and environmental covariates. Field Crops Research 2020, 257, 107929.
[149]. C. Mahadevaiah, C. Appunu, K. Aitken, G.S. Suresha, P. Vignesh, H.K. Mahadeva Swamy, R. Valarmathi, G. Hemaprabha, G. Alagarasan, B. Ram, Genomic selection in sugarcane: Current status and future prospects. Frontiers in Plant Science 2021, 12, 708233.
[150]. A. Bernardeli, C.M.B. Damasceno, J.V. de Magalhães, V.F. de Souza, J. de Oliveira Melo, A.A. de Oliveira, M.L.F. Simeone, A. Borém, R.E. Schaffert, R.A. da Costa Parrella, Population genomics and molecular breeding of sorghum, Population Genomics: Crop Plants, Springer2022, pp. 289-340.
[151]. L.M. Griffel, D.S. Hartley, Y. Lin, M. Langholz, Integrated Landscape Management to Reduce Biomass Feedstock Access Costs, Idaho National Lab.(INL), Idaho Falls, ID (United States), 2021.
[152]. C. Nguyen, V. Sagan, M. Maimaitiyiming, M. Maimaitijiang, S. Bhadra, M.T. Kwasniewski, Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors 2021, 21 (3), 742.
[153]. M. Yoosefzadeh-Najafabadi, K.D. Singh, A. Pourreza, K.S. Sandhu, A. Adak, S.C. Murray, M. Eskandari, I. Rajcan, Remote and proximal sensing: How far has it come to help plant breeders? Advances in Agronomy 2023, 181, 279-315.
[154]. M. Nowatzke, L. Gao, M.C. Dorneich, E.A. Heaton, A. VanLoocke, Interviews with farmers from the US corn belt highlight opportunity for improved decision support systems and continued structural barriers to farmland diversification. Precision Agriculture 2024, 1-24.
[155]. R. Vargas-Carpintero, T. Hilger, K. Tiede, C. Callenius, J. Mössinger, R.F. Souza, J.C. Barroso Armas, F. Rasche, I. Lewandowski, A collaborative, systems approach for the development of biomass-based value webs: the case of the acrocomia palm. Land 2022, 11 (10), 1748.
[156]. D. Sinha, A.K. Maurya, G. Abdi, M. Majeed, R. Agarwal, R. Mukherjee, S. Ganguly, R. Aziz, M. Bhatia, A. Majgaonkar, Integrated genomic selection for accelerating breeding programs of climate-smart cereals. Genes 2023, 14 (7), 1484.
[157]. J. Crain, S. Mondal, J. Rutkoski, R.P. Singh, J. Poland, Combining high‐throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. The plant genome 2018, 11 (1), 170043.
[158]. D. Cembrowska-Lech, A. Krzemińska, T. Miller, A. Nowakowska, C. Adamski, M. Radaczyńska, G. Mikiciuk, M. Mikiciuk, An integrated multi-omics and artificial intelligence framework for advance plant phenotyping in horticulture. Biology 2023, 12 (10), 1298.
[159]. M. Loera-Sánchez, B. Studer, R. Kölliker, DNA-based assessment of genetic diversity in grassland plant species: Challenges, approaches, and applications. Agronomy 2019, 9 (12), 881.
[160]. N.W. Tilhou, M.D. Casler, Biomass yield improvement in switchgrass through genomic prediction of flowering time. GCB Bioenergy 2022, 14 (9), 1023-1034.
[161]. M.D. Casler, G.P. Ramstein, Breeding for biomass yield in switchgrass using surrogate measures of yield. BioEnergy Research 2018, 11 (1), 1-12.
[162]. Z. Jovovic, V. Andjelkovic, N. Przulj, D. Mandic, Untapped genetic diversity of wild relatives for crop improvement. Rediscovery of genetic and genomic resources for future food security 2020, 25-65.
[163]. E.A. Chapman, H.C. Thomsen, S. Tulloch, P.M. Correia, G. Luo, J. Najafi, L.R. DeHaan, T.E. Crews, L. Olsson, P.-O. Lundquist, Perennials as future grain crops: opportunities and challenges. Frontiers in Plant Science 2022, 13, 898769.
[164]. A.L. Vaccarino, M. Dharsee, S. Strother, D. Aldridge, S.R. Arnott, B. Behan, C. Dafnas, F. Dong, K. Edgecombe, R. El-Badrawi, Brain-CODE: a secure neuroinformatics platform for management, federation, sharing and analysis of multi-dimensional neuroscience data. Frontiers in neuroinformatics 2018, 12, 28.
[165]. W. Wattanapornprom, C. Thammarongtham, A. Hongsthong, S. Lertampaiporn, Ensemble of multiple classifiers for multilabel classification of plant protein subcellular localization. Life 2021, 11 (4), 293.
[166]. A. Lamsal, S. Welch, J. Jones, K. Boote, A. Asebedo, J. Crain, X. Wang, W. Boyer, A. Giri, E. Frink, Efficient crop model parameter estimation and site characterization using large breeding trial data sets. Agricultural systems 2017, 157, 170-184.
[167]. M. Reynolds, S. Chapman, L. Crespo-Herrera, G. Molero, S. Mondal, D.N. Pequeno, F. Pinto, F.J. Pinera-Chavez, J. Poland, C. Rivera-Amado, Breeder friendly phenotyping. Plant Science 2020, 295, 110396.
[168]. N. Santantonio, S.A. Atanda, Y. Beyene, R.K. Varshney, M. Olsen, E. Jones, M. Roorkiwal, M. Gowda, C. Bharadwaj, P.M. Gaur, Strategies for effective use of genomic information in crop breeding programs serving Africa and South Asia. Frontiers in Plant Science 2020, 11, 353.
[169]. N. Yan, G. Liu, M. Ripa, N. Wang, H. Zheng, F. Gonella, From local to national metabolism: a review and a scale-up framework. Ecosystem Health and Sustainability 2020, 6 (1), 1839358.
[170]. T. Roitsch, L. Cabrera-Bosquet, A. Fournier, K. Ghamkhar, J. Jiménez-Berni, F. Pinto, E.S. Ober, New sensors and data-driven approaches—A path to next generation phenomics. Plant Science 2019, 282, 2-10.
[171]. S. Mohapatra, S.S. Mishra, P. Bhalla, H. Thatoi, Engineering grass biomass for sustainable and enhanced bioethanol production. Planta 2019, 250, 395-412.
[172]. J.S. Sampaio Filho, T. Olivoto, M.d.S. Campos, E.J.d. Oliveira, Multi-trait selection in multi-environments for performance and stability in cassava genotypes. Frontiers in Plant Science 2023, 14, 1282221.
[173]. Y. Wang, C. Fan, H. Hu, Y. Li, D. Sun, Y. Wang, L. Peng, Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances 2016, 34 (5), 997-1017.
[174]. K. Paulpriyaa, V. Kalpanadevib, K. Rajalakshmic, M. Jeevithad, C.B. Shalinie, T. Eluvakkala, A Critical Review On Omics Technology In Plant Genetics And Breeding. Journal of Pharmaceutical Negative Results 2022, 3682-3699.
[175]. J. Wu, J. Liang, R. Lin, X. Cai, L. Zhang, X. Guo, T. Wang, H. Chen, X. Wang, Investigation of Brassica and its relative genomes in the post-genomics era. Horticulture Research 2022, 9, uhac182.
[176]. P.R. Aggarwal, L. Pramitha, P. Choudhary, R.K. Singh, P. Shukla, M. Prasad, M. Muthamilarasan, Multi-omics intervention in Setaria to dissect climate-resilient traits: Progress and prospects. Frontiers in Plant Science 2022, 13, 892736.
[177]. M.J. Thomson, S. Biswas, N. Tsakirpaloglou, E.M. Septiningsih, Functional allele validation by gene editing to leverage the wealth of genetic resources for crop improvement. International Journal of Molecular Sciences 2022, 23 (12), 6565.