Published
2025-06-25
Issue
Section
Original Research Article
License
Copyright (c) 2025 Karel Klouda, Petra Roupcová, Petra Bursíková, Romana Friedrichová, Kateřina Bátrlová, Eva Kuželová Košťáková, Zdeněk Starý, Jiří Tilhon

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
SEM, FTIR and TGA analysis of Graphitic carbon nitride (g-C3N4) and its modification as a composite material
Karel Klouda
VSB – Technical University of Ostrava, Faculty of Safety Engineering; klouda@vubp.cz; petra.roupcova@vsb.cz , Research Institute for Labour and Social Affairs; klouda@rilsa.cz; batrlova@rilsa.cz; tilhon@rilsa.cz
Petra Roupcová
VSB – Technical University of Ostrava, Faculty of Safety Engineering; klouda@vubp.cz; petra.roupcova@vsb.cz
Petra Bursíková
Technical Institute of Fire Protection, Ministry of the Interior – General Directorate of Fire Rescue Service of the Czech Republic; petra.bursikova@hzscr.cz; romana.friedrichova@hzscr.cz
Romana Friedrichová
Technical Institute of Fire Protection, Ministry of the Interior – General Directorate of Fire Rescue Service of the Czech Republic; petra.bursikova@hzscr.cz; romana.friedrichova@hzscr.cz
Kateřina Bátrlová
Research Institute for Labour and Social Affairs; klouda@rilsa.cz; batrlova@rilsa.cz; tilhon@rilsa.cz
Eva Kuželová Košťáková
Technical University of Liberec; eva.kostakova@tul.cz
Zdeněk Starý
Institute of Macromolecular Chemistry, Czech Academy of Sciences; stary@imc.cas.cz
Jiří Tilhon
Research Institute for Labour and Social Affairs; klouda@rilsa.cz; batrlova@rilsa.cz; tilhon@rilsa.cz
DOI: https://doi.org/10.59429/ace.v8i2.5630
Keywords: graphitic carbon nitride; doping of materials; melamine; polymer materials; degradation of pollutants
Abstract
This paper describes the preparation of g-C3N4 by polycondensation of melamine at 511 °C and its subsequent doping with Fe2O3, Cu, GO, rGO, DA and their combinations. Graphitic carbon nitride represents an innovative material with numerous applications, particularly within the domains of catalysis and water treatment. FTIR and thermogravimetric analysis were predominantly employed for the purpose of identification, while SEM images were captured at incremental resolutions. The subsequent section of the manuscript delineates the fabrication of composite materials within polymers, including PE-foil and PP-filaments intended for 3D printing, as well as PVB into nanofibers via electrostatic spinning techniques. The objective of this study was to examine the thermal stability of nanofibers produced from PVB in conjunction with g-C3N4 composite (18-20 %) utilizing two methodologies: EL DC spinning and EL AC spinning. The material exhibiting the most efficacious synthesis will undergo further assessment to evaluate its potential utility in the photocatalytic degradation of environmental pollutants.
References
[1]. Singh, P.; Srivastava, V. Recent advances in visible-light graphitic carbon nitride (g-C3N4) photocatalysts for chemical transformations. RSC Adv. 2022, 12, 18245–18265. doi: 10.1039/D2RA01797K.
[2]. Qamar, M.A.; Javed, M.; Shahid, S.; Shariq, M.; Fadhali, M.M.; Ali, S.K.; Khan, M.S. Synthesis and applications of graphitic carbon nitride (g-C3N4) based membranes for wastewater treatment: A critical review. Heliyon 2023, 9 (1), ISSN 2405-8440. doi:10.1016/j.heliyon.2022.e12685.
[3]. Chen, Y.; Lu, C. Graphitic carbon nitride nanomaterials for high-performance supercapacitors. Carbon Neutralization 2023, 2, 585–602. doi:10.1002/cnl2.87.
[4]. Miao, Z.; Wu, G.; Wang, Q.; Yang, J.; Wang, Z.; Yan, P.; Sun, P.; Lei, Y.; Mo, Z.; Xu, H. Recent advances in graphitic carbon nitride-based photocatalysts for solar-driven hydrogen production. Mater. Rep. Energy 2023, 3 (4), 100235. ISSN 2666-9358. doi:10.1016/j.matre.2023.100235.
[5]. Li, Y.; Zhu, S.; Liang, Y.; Li, Z.; Wu, S.; Chang, C.; Cui, Z. Synthesis of α-Fe2O3/g-C3N4 photocatalyst for high-efficiency water splitting under full light. Mater. Des. 2020, 109191. doi:10.1016/j.matdes.2020.109191.
[6]. Chen, M.M.A.; Li, M.; Qiu, X. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications. Adv. Powder Mater. 2024, 3, doi:10.1016/j.apmate.2023.100150.
[7]. Li, X.; Huang, G.; Chen, X.; Huang, J.; Li, M.; Yin, J.; Li, Y. A review on graphitic carbon nitride (g-C3N4) based hybrid membranes for water and wastewater treatment. Sci. Total Environ. 2021, 792, 148462. doi:10.1016/j.scitotenv.2021.148462-
[8]. Vasiljević, J.; Jerman, I.; Simončič, B. Graphitic carbon nitride as a new sustainable photocatalyst for textile functionalization. Polymers 2021, 13 (15), 2568. https://doi.org/10.3390/polym13152568.
[9]. Zhang, M.; Yang, Y.; An, X.; Hou, L. A critical review of g-C3N4-based photocatalytic membrane for water purification. Chem. Eng. J. 2021, 412, 128663. doi:10.1016/j.cej.2021.128663.
[10]. Oluwole, A.; Khoza, P.; Olatunji, O.S. Synthesis and characterization of g-C3N4 doped with activated carbon (AC) prepared from grape leaf litters for the photocatalytic degradation of enrofloxacin in aqueous systems. ChemistrySelect 2022, 7 (45), e202203601.
[11]. Huang, J.; Hu, J.; Shi, Y.; Zeng, G.; Cheng, W.; Yu, H.; Yi, K. Evaluation of self-cleaning and photocatalytic properties of modified g-C3N4 based PVDF membranes driven by visible light. J. Colloid Interface Sci. 2019, doi:10.1016/j.jcis.2019.01.105.
[12]. Khurram, R.; Nisa, Z.; Javed, A.; Wang, Z.; Hussien, M. Synthesis and characterization of an Fe2O3-decorated g-C3N4 heterostructure for the photocatalytic removal of MO. Molecules 2022, 27, 1–18. doi:10.3390/molecules270414428.
[13]. Manickam, R.; Kokilavani, S.; Khan, S. Recent developments in architecturing the g-C3N4 based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment. Chemosphere 2021, 291.
[14]. Rajeshwari, M.R.; Kokilavani, S.; Khan, S. Recent developments in architecturing the g-C3N4 based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment. Chemosphere 2022, 291 (Pt 1), 132735.
[15]. Zhang, S.; Gu, P.; Ma, R.; Luo, C.; Wen, T.; Zhao, G.; Wang, X. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catal. Today 2018, doi:10.1016/j.cattod.2018.09.013.
[16]. Ding, M.; Qu, Y.; Zhang, X.; Duan, L.; Li, X.; Lü, W. Reduced graphene oxide/g-C3N4 modified carbon fibers for high performance fiber supercapacitors. New J. Chem. 2021, 45 (2), 923–929. doi:10.1039/d0nj05072e.
[17]. Dong, J.; Zhang, Y.; Hussain, M.I.; Zhou, W.; Chen, Y.; Wang, L.N. g-C3N4: Properties, pore modifications, and photocatalytic applications. Nanomaterials (Basel, Switzerland) 2021, 12 (1), 121. https://doi.org/10.3390/nano12010121.
[18]. Bhanderi, D.; Lakhani, P.; Modi, C. Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: A comprehensive review. RSC Sustainability 2023, 2, 10.1039/d3su00382e.
[19]. Roupcová, P. Monitoring of the ecotoxicity of the carbon based nanoparticles. Dissertation Thesis, VSB – Technical University of Ostrava, Faculty of Safety Engineering, 2018.
[20]. Bytešníková, Z.; Birgusová, E.; Pekárková, J.; Švec, P.; Richtera, L. A novel method for modification of poly(lactic acid) filament by graphene oxide for 3D print. In Proceedings 15th International Conference on Nanomaterials - Research & Application; 2023; pp. 298–302. ISBN 978-80-88365-15-0. ISSN 2694-930X. doi: 10.37904/nanocon.2023.4799.
[21]. Vilamová, Z.; Sampaio, M.J.; Svoboda, L.; Bednář, J.; Simonova, Z.; Dvorsky, R.; Silva, C.G.; Faria, J.L. Enhancing Photocatalytic g-C3N4/PVDF membranes through new insights into the preparation methods. Polymer 2024, 307, 127238. https://doi.org/10.1016/j.polymer.2024.127238
[22]. Vilamová, Z.; Czernek, P.; Zágora, J.; Svoboda, L.; Bednář, J.; Simonova, Z.; Placha, D.; Dvorsky, R. Fibrous PVDF membranes modified by anchored g-C3N4@GO composite with enhanced photocatalytic activity. Appl. Surf. Sci. 2024, 677, 161055. doi:10.1016/j.apsusc.2024.161055.
[23]. Wang, H.; Xu, Y.; Wei, Q. Preparation of bamboo-hat-shaped deposition of a poly(ethylene terephthalate) fiber web by melt-electrospinning. Text. Res. J. 2015, 85, 1838–1848.
[24]. Reneker, D. H.; Yarin, A. L.; Zussman, E.; Xu, H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 2007, 41, 43–346.
[25]. Li, D.; Xia, Y. Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170.
[26]. Lomov, S. V.; Molnár, K. Compressibility of carbon fabrics with needleless electrospun PAN nanofibrous interleaves. Express Polym. Lett. 2015, 10, 25–35.
[27]. Nagy, Z. K.; Balogh, A.; Démuth, B.; Pataki, H.; Vigh, T.; Szabó, B.; Molnár, K.; Schmidt, B. T.; Horák, P.; Marosi, G.; Verreck, G.; Van Assche, I.; Brewster, M. E. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int. J. Pharm. 2015, 480, 137–142.
[28]. Balogh, A.; Horváthová, T.; Fülöp, Z.; Loftsson, T.; Harasztos, A. H.; Marosi, G.; Nagy, Z. K. Electroblowing and electrospinning of fibrous diclofenac sodium-cyclodextrin complex-based reconstitution injection. J. Drug Deliv. Sci. Technol. 2015, 26, 28–34.
[29]. Pokorny, P.; Kostakova, E.; Sanetrnik, F.; Mikes, P.; Chvojka, J.; Kalous, T.; Bilek, M.; Pejchar, K.; Valtera, J.; Lukas, D. Effective AC needleless and collectorless electrospinning for yarn production. Phys. Chem. Chem. Phys. 2014, 16, 26816–26822.
[30]. Lawson, C.; Stanishevsky, A.; Sivan, M.; Pokorny, P.; Lukáš, D. Rapid fabrication of poly(ε-caprolactone) nanofibers using needleless alternating current electrospinning. J. Appl. Polym. Sci. 2016, 133.
[31]. Balogh, A.; Farkas, B.; Verreck, G.; Mensch, J.; Borbás, E.; Nagy, B.; Marosi, G.; Nagy, Z. K. AC and DC electrospinning of hydroxypropylmethylcellulose with polyethylene oxides as secondary polymer for improved drug dissolution. Int. J. Pharm. 2016, 505, 159–166. doi:10.1016/j.ijpharm.2016.03.024.
[32]. Sun, B.; Long, Y. Z.; Zhang, H. D.; Li, M. M.; Duvail, J. L.; Jiang, X. Y.; Yin, H. L. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog. Polym. Sci. 2014, 39, 862–890.
[33]. Darkwah, W.K.; Oswald, K.A. Photocatalytic applications of heterostructure graphitic carbon nitride: Pollutant degradation, hydrogen gas production (water splitting), and CO2 reduction. Nanoscale Res. Lett. 2019, 14, 234. doi:10.1186/s11671-019-3070-3.








