Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 8 No. 2(Published) > Review Article
ACE-5647

Published

2025-06-06

Issue

Vol. 8 No. 2(Published)

Section

Review Article

License

Copyright (c) 2025 Hanan Ghadban Sha᾿aban, Firyal Wali Askar

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Sha᾿aban H. G., & Askar, F. W. (2025). A review on benzimidazoles: Synthesis, properties, and therapeutic applications in medicinal chemistry. Applied Chemical Engineering, 8(2), ACE-5647. https://doi.org/10.59429/ace.v8i2.5647
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

A review on benzimidazoles: Synthesis, properties, and therapeutic applications in medicinal chemistry

Hanan Ghadban Sha᾿aban

Chemistry Department, College of Science, Mustansiriyah University, Baghdad, 10052, Iraq

Firyal Wali Askar

Chemistry Department, College of Science, Mustansiriyah University, Baghdad, 10052, Iraq


DOI: https://doi.org/10.59429/ace.v8i2.5647


Keywords: benzimidazole; heterocyclic compounds; biological activity; antiviral agents; microwave-assisted synthesis; green chemistry


Abstract

Heterocyclic compounds, characterized by rings containing non-carbon atoms like nitrogen, oxygen, or sulfur, are fundamental in diverse fields. This review provides an overview of heterocyclic chemistry, with a focused examination of benzimidazoles. It covers their structure, chemical properties, synthetic methods (including classical and modern techniques emphasizing efficiency and sustainability), and broad therapeutic applications across various disease areas, highlighting their significance in drug development and materials science. From (2018-2024)


References

[1]. Aljamali, N. M. (2020). Survey on methods of preparation and cyclization of heterocycles. International Journal of Chemical and Molecular Engineering, 6(2), 19-36p.

[2]. Borissov, A., Maurya, Y. K., Moshniaha, L., Wong, W. S., Żyła-Karwowska, M., & Stepien, M. (2021). Recent advances in heterocyclic nanographenes and other polycyclic heteroaromatic compounds. Chemical Reviews, 122(1), 565-788.

[3]. Mermer, A., Keles, T., & Sirin, Y. (2021). Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorganic Chemistry, 114, 105076.

[4]. Belen’kii, L. I., & Evdokimenkova, Y. B. (2019). The literature of heterocyclic chemistry, part XVII, 2017. In Advances in Heterocyclic Chemistry (Vol. 129, pp. 337-418). Academic Press.

[5]. Taterao, N. P. (2023). Study of Molecular Interaction in Some Heterocyclic Organic Compounds using Dielectric Relaxation Spectroscopy.

[6]. Makhova, N. N., Belen’kii, L. I., Gazieva, G. A., Dalinger, I. L., Konstantinova, L. S., Kuznetsov, V. V., ... & Yarovenko, V. N. (2020). Progress in the chemistry of nitrogen-, oxygen-and sulfur-containing heterocyclicsystems. Russian Chemical Reviews, 89(1), 55.

[7]. Obaid, R. J., Mughal, E. U., Naeem, N., Al-Rooqi, M. M., Sadiq, A., Jassas, R. S., ... & Ahmed, S. A . (2022). Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochemistry, 120, 250-259.

[8]. Demingos, P. G., Balzaretti, N. M., & Muniz, A. R. (2021). First-principles study of carbon nanothreads derived from five-membered heterocyclic rings: thiophene, furan and pyrrole. Physical Chemistry, Chemical Physics, 23(3), 2055-2062.

[9]. Jurczyk, J., Woo, J., Kim, S. F., Dherange, B. D., Sarpong, R., & Levin, M. D. (2022). Single-atom logic for heterocycle editing. Nature synthesis, 1(5), 352-364.

[10]. Xu, W., & Kumagai, N. (2023). A brief introduction to highly symmetric N-heteroarene-based macrocycles. Tetrahedron, 141, 133512.

[11]. Li, H., Guo, H., Fang, Z., Aida, T. M., & Smith, R. L. (2020). Cycloamination strategies for renewable N-heterocycles. Green Chemistry, 22(3), 582-611.

[12]. Daniah M. Hamid, Nadhum H. Safir, Ibtisam Jasim Sodani, Thooalnoon Younis Salih, Halah Khalid Ibrahim Al-Sammarraie, Marwa Khudair, (2023). History, Classification and Biological activity of Heterocyclic Compounds International Journal of Natural and Human Sciences Vol 4 No 2 72–80.

[13]. Kamal Rashid Hsejan Al-Jorani, (2019). Synthesis, Characterization and Preliminary Pharmacological Study of Benzimidazole Derivatives, University of Mustansiriyah College of Science, Department of Chemistry.

[14]. Lavendomme, R., & Yamashina, M. (2024). Ant aromaticity in molecular assemblies and materials. Chemical science, 15(45), 18677-18697.

[15]. Li, L., Li, Y., Jiang, W. F., & Bai, W. (2025). Recent advances in anti-aromatic metallacycles. Dalton Transactions,54,4432.

[16]. Gimferrer, M., Aldossary, A., Salvador, P., & Head-Gordon, M. (2021). Oxidation state localized orbitals: a method for assigning oxidation states using optimally fragment-localized orbitals and a fragment orbital localization index. Journal of chemical theory and computation, 18(1), 309-322.

[17]. Kaddouri, Y., Abrigach, F., Yousfi, E. B., Hammouti, B., El Kodadi, M., Alsalme, A., ... & Touzani, R. (2021). New heterocyclic compounds: synthesis, antioxidant activity and computational insights of nano-antioxidant as ascorbate peroxidase inhibitor by various cyclodextrins as drug delivery systems. Current Drug Delivery, 18(3), 334-349.

[18]. Goubet, M., Martin-Drumel, M. A., Réal, F., Vallet, V., & Pirali, O. (2020). Conformational landscape of oxygen-containing naphthalene derivatives. The Journal of Physical Chemistry A, 124(22), 4484-4495.

[19]. Kishore N Gujjar and Narasimha S MA (2023). Review: Important applications of Heterocyclic Compounds, Eur. Chem. Bull.,12(12), 625-630.

[20]. Kabir, E., & Uzzaman, M. (2022). A review on biological and medicinal impact of heterocyclic compounds. Results in Chemistry, 4, 100606.

[21]. Saleh, S. S., AL-Salihi, S. S., & Mohammed, I. A. (2019). Biological activity Study for some heterocyclic compounds and their impact on the gram positive and negative bacteria. Energy Procedia, 157,296-306.

[22]. Kalaria, P. N., Karad, S. C., & Raval, D. K. (2018). A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. European journal of medicinal chemistry, 158, 917-936.

[23]. Abdelhafez, O. M., Ahmed, E. Y., Latif, N. A. A., Arafa, R. K., Abd Elmageed, Z. Y., & Ali, H. I. (2019). Design and molecular modeling of novel P38α MAPK inhibitors targeting breast cancer, synthesized from oxygen heterocyclic natural compounds. Bioorganic & Medicinal Chemistry, 27(7), 1308-1319.

[24]. P. L. Ladda, S. S. Thorat, N. N. Khebude and S. B. Powar, (2024). heterocyclic compounds with their recent development: an integrated approach, IJPSR, 15(3): 642-655.

[25]. Mahajan, N. D., & Jain, N. (2021). Heterocyclic compounds and their applications in the field of biology: A detailed study. nveo-natural volatiles & essential oils Journal| NVEO, 13223-13229.

[26]. Goni, L. K., Jafar Mazumder, M. A., Quraishi, M. A., & Mizanur Rahman, M. (2021). Bioinspired heterocyclic compounds as corrosion inhibitors: a comprehensive review. Chemistry–An Asian Journal, 16(11), 1324-1364.

[27]. Abdella, A. M., Abdelmoniem, A. M., Abdelhamid, I. A., & Elwahy, A. H. (2020). Synthesis of heterocyclic compounds via Michael and Hantzsch reactions. Journal of Heterocyclic Chemistry, 57(4), 1476-1523.

[28]. Plewe, M. B., Gantla, V. R., Sokolova, N. V., Shin, Y. J., Naik, S., Brown, E. R., ... & McCormack, K. (2021). Discovery of a novel highly potent broad-spectrum heterocyclic chemical series of arenavirus cell entry inhibitors. Bioorganic & medicinal chemistry letters, 41, 127983.

[29]. Qadir, T., Amin, A., Sharma, P. K., Jeelani, I., & Abe, H. (2022). A review on medicinally important heterocyclic compounds. The Open Medicinal Chemistry Journal, 16(1).

[30]. Ye, Z., & Zhang, F. (2019). Recent advances in constructing nitrogen‐containing heterocycles via electrochemical dehydrogenation. Chinese Journal of Chemistry, 37(5), 513-528.

[31]. Tiwari, S., & Talreja, S. (2022). A Study on Aromatic Heterocyclic Organic Compounds., Journal of Pharmaceutical Research International34(41B): 36-40.

[32]. Irfan, A., Batool, F., Zahra Naqvi, S. A., Islam, A., Osman, S. M., Nocentini, A., ... & Supuran, C. T. (2020). Benzothiazole derivatives as anticancer agents. Journal of enzyme inhibition and medicinal chemistry, 35(1), 265-279.

[33]. Abdel-Razek, F. M., Hebishy, A., & Ali, R. H. (2022). Synthesis and biological activity evaluation of Some novel heterocyclic compounds incorporating pyridine/chromene moiety. Egyptian Journal of Chemistry, 65(12), 569-576.

[34]. Sharma, S., Sharma, K., Pathak, S., Kumar, M., & Sharma, P. K. (2020). Synthesis of medicinally importantquinazolines and their derivatives: A review. The Open Medicinal Chemistry Journal, 14(1).

[35]. Saroha, S., & Sharma, P. K. (2020, May). Study of heterocyclic ring systems: Biopharmaceutical applications of substituted 4H-1, 4-benzothiazine and piperazine. In Journal of Physics: Conference Series (Vol. 1531, No. 1, p. 012094). IOP Publishing.

[36]. Sharma, P. K., Amin, A., & Kumar, M. (2020). synthetic methods of medicinally important heterocycles-thiazines: A review. The Open Medicinal Chemistry Journal, 14(1).

[37]. Attaullah, H. M., Ejaz, S. A., Channar, P. A., Saeed, A., Ujan, R., Zargar, S., ... & Abbas, Q. (2024). Exploration of newly synthesized azo-thiohydantoins as the potential alkaline phosphatase inhibitors via advanced biochemical characterization and molecular modeling approaches. BMC chemistry, 18(1), 47.

[38]. Poyraz, S., Yıldırım, M., & Ersatir, M. (2024). Recent pharmacological insights about imidazole hybrids: a comprehensive review. Medicinal Chemistry Research, 33(6), 839-868.

[39]. Veerasamy, R., Roy, A., Karunakaran, R., & Rajak, H. (2021). Structure–activity relationship analysis of Benzimidazoles as emerging anti-inflammatory agents: An overview. Pharmaceuticals, 14(7), 663.

[40]. Manna, S. K., Das, T., & Samanta, S. (2019). Polycyclic benzimidazole: Synthesis and photophysical properties. Chemistry Select, 4(30), 8781-8790.

[41]. Patel, M., Avashthi, G., Gacem, A., Alqahtani, M. S., Park, H. K., & Jeon, B. H. (2023). A Review of Approaches to the Metallic and Non-Metallic Synthesis of Benzimidazole (BnZ) and Their Derivatives for Biological Efficacy. Molecules, 28(14), 5490.

[42]. Ralkhal, S., Shahrabi, T., Ramezanzadeh, B., & Bahlakeh, G. (2019). A combined electrochemical, molecular dynamics, quantum mechanics and XPS analysis of the mild steel surface protected by a complex film composed of neodymium (III) and benzimidazole. Applied Surface Science, 464, 178- 194.

[43]. Mohammed, H. K., & Rasheed, M. K. (2021). Synthesis of Benzimidazole and Mannich bases derivatives from 4-Methyl ortho phenylenediamine and evaluation of their biological activity. International journal Drug Delivery Technology, 11(2), 425-430.

[44]. Jovanović, I. N., Jadreško, D., Miličević, A., Hranjec, M., & Perin, N. (2019). An electrochemical study on the redox chemistry of cyclic benzimidazole derivatives with potent anticancer activity. Electrochimica Acta, 297, 452-462.

[45]. 45. Ananda Rajagopal, K., Tiwari, R. N., Bothara, K. G., Sunilson, J. J., Dineshkumar, C., & Promwichit, P. (2010). 2-Mercaptobenzimidazole derivatives: synthesis and anticonvulsant activity. Adv. Appl. Sci. Res, 1(2), 132-138.

[46]. Selvaraj, T., Rajalingam, R., & Balasubramanian, V. (2018). Impact of Zeolite-Y framework on the geometry and reactivity of Ru (III) benzimidazole complexes–A DFT study. Applied Surface Science, 434, 781-786.

[47]. Anichina, K., Mavrova, A., Yancheva, D., Tsenov, J., & Dimitrov, R. (2017). Tautomerism and isomerism in some antitrichinellosis active benzimidazoles: Morphological study in polarized light, quantum chemical computations. Journal of Molecular Structure, 1150, 179-187.

[48]. Sayali Arun Dongare, Suleman M.D. Jakhar Kasar, Mr. Yogesh Harangule. (2023), benzimidazole: A Superfluity of Biological Load, International Journal of Research Publication and Reviews, 4(6), 585- 593.

[49]. Abdulazeez, I., Khaled, M., & Al-Saadi, A. A. (2019). Impact of electron-withdrawing and electron- donating substituents on the corrosion inhibitive properties of benzimidazole derivatives: a quantum chemical study. Journal of Molecular Structure, 1196, 348-355.

[50]. Vasava, M. S., Bhoi, M. N., Rathwa, S. K., Jethava, D. J., Acharya, P. T., Patel, D. B., & Patel, H. D. (2020). Benzimidazole: A milestone in the field of medicinal chemistry. Mini reviews in medicinal chemistry, 20(7), 532-565.

[51]. Basuri, P., Gonzalez, L. E., Morato, N. M., Pradeep, T., & Cooks, R. G. (2020). Accelerated microdroplet synthesis of benzimidazoles by nucleophilic addition to protonated carboxylic acids. Chemical Science, 11(47), 12686-12694.

[52]. Marinescu, M., Cinteză, L. O., Marton, G. I., Chifiriuc, M. C., Popa, M., Stănculescu, I., ... & Stavarache, C. E. (2020). Synthesis, density functional theory study and in vitro antimicrobial evaluation of new benzimidazole Mannich bases. BMC Chemistry, 14, 1-16.

[53]. Asemanipoor, N., Mohammadi-Khanaposhtani, M., Moradi, S., Vahidi, M., Asadi, M., Faramarzi, M. A., & Hajimiri, M. H. (2020). Synthesis and biological evaluation of new benzimidazole-1, 2, 3- triazole hybrids as potential α-glucosidase inhibitors. Bioorganic chemistry, 95, 103482.

[54]. Kaushik, P., Rawat, B. S., & Kumar, R. (2023). Various approaches for the synthesis of benzimidazole derivatives and their catalytic application for organic transformation. Applied Chemical Engineering, 6(2), 2003.

[55]. Hashem, H. E., & El Bakri, Y. (2021). An overview on novel synthetic approaches and medicinal applications of benzimidazole compounds. Arabian Journal of Chemistry, 14(11), 103418.

[56]. Rithe, S. R., Jagtap, R. S., & Ubarhande, S. S. (2015). One pot synthesis of substituted benzimidazole derivatives and their characterization. Rasayan J. Chem, 8, 213-217.

[57]. Alam, S. A. M. F., Ahmad, T., Nazmuzzaman, M., Ray, S. K., Sharifuzzaman, M., Karim, M. R., ... &Ahammed, T. (2017). Synthesis of benzimidazole derivatives containing Schiff base exhibiting antimicrobial activities. Int. J. Res. Stud. Biosci, 5(7), 18-24.

[58]. Chikkula, K. V., & Sundararajan, R. (2017). Analgesic, anti-inflammatory, and antimicrobial activity of novel isoxazole/pyrimidine/pyrazole substituted benzimidazole analogs. Medicinal chemistry research, 26,3026-3037.

[59]. Mahurkar, N. D., Gawhale, N. D., Lokhande, M. N., Uke, S. J., & Kodape, M. M. (2023). Benzimidazole: A Versatile Scaffold for Drug Discovery and Beyond-A Comprehensive Review of Synthetic Approaches and Recent Advancements in Medicinal Chemistry. Results in Chemistry, 101139.

[60]. Mamedov, V. A., & Zhukova, N. A. (2021). Recent developments towards synthesis of (Het) arylbenzimidazoles. Synthesis, 53(11), 1849-1878.

[61]. Valvi, A. K., Gavit, H. J., Nayak, S. S., Shivankar, V. S., & Wadhawa, G. C. (2023). Synthesis of Benzimidazole and Benzothiazole Derivatives using Reusable Waste Stem of Trigonella Foenum- graecum Assisted Zinc Sulphide Nanoparticles: A Green and Efficient Solid Acid Catalyst. Materials Today: Proceedings, 73, 481-486.

[62]. Bagaria, S. K., Jangir, N., & Jangid, D. K. (2023). Green and eco-compatible iron nanocatalysed synthesis of benzimidazole: A review. Sustainable Chemistry and Pharmacy, 31, 100932.

[63]. Chung, N. T., Dung, V. C., & Duc, D. X. (2023). Recent achievements in the synthesis of benzimidazole derivatives. RSC advances, 13(46), 32734-32771.

[64]. Alinezhad, H., Salehian, F., & Biparva, P. (2012). Synthesis of benzimidazole derivatives using heterogeneous ZnO nanoparticles. Synthetic Communications, 42(1), 102-108.

[65]. Huynh, T. K. C., Nguyen, T. H. A., Tran, N. H. S., Nguyen, T. D., & Hoang, T. K. D. (2020). A facile and efficient synthesis of benzimidazole as potential anticancer agents. Journal of Chemical Sciences, 132, 1-9.

[66]. Kumar, M., Pandey, S. K., Chaudhary, N., Mishra, A., & Gupta, D. (2022). Highly efficient method For the synthesis of substituted benzimidazoles using sodium metabisulfite adsorbed on silica gel. Results in Chemistry, 4, 100403.

[67]. Arup Datta and Sanjay Roy, (2020). Solid Phase Synthesis of Biologically active Benzimidazole Derivatives Catalysed by CH3SO3 H-SiO2 Under Solvent Free Condition, Orient. J. Chem., 36(3), 537-543.

[68]. Deepak Kumawat, Harshal Tare, (2024). Benzimidazoles in Medicinal Chemistry: Current Trends and Future Opportunities, IJPQA, Volume 15 Issue 1.

[69]. Hashem, H. E., Amr, A. E. G. E., Nossier, E. S., Anwar, M. M., & Azmy, E. M. (2022). New benzimidazole-, 1, 2, 4-triazole-, and 1, 3, 5-triazine-based derivatives as potential EGFRWT and EGFRT790M inhibitors: microwave-assisted synthesis, anticancer evaluation, and molecular docking study. ACS omega, 7(8), 7155-7171.

[70]. Saif, M. J., Abrar, S., Hameed, A., Idrees, N., & Asif, M. (2022). Theoretical and experimental insights of benzimidazole catalyzed by the epoxy–acrylic acid reaction. Molecules, 27(22), 7900.

[71]. Pham, W. (2022). Solid-Phase Chemistry. In Principles of Molecular Probe Design and Applications (pp. 201-237). Singapore: Springer Nature Singapore.

[72]. Ebenezer, O., Oyetunde-Joshua, F., Omotoso, O. D., & Shapi, M. (2023). Benzimidazole and its derivatives: Recent Advances (2020–2022). Results in Chemistry, 5, 100925.

[73]. Paul, S. R., Saha, P., Rahman, F. I., Dhar, S., & Abdur Rahman, S. M. (2022). Preferential Synthesis and Pharmacological Evaluation of Mono‐and Di‐substituted Benzimidazole Derivatives. Chemistry Select, 7(37), e202201710.

[74]. Al-Wasidi, A. S., Refat, M. S., Naglah, A. M., & Elhenawy, A. A. (2021). Different potential biological activities of benzimidazole derivatives. Egyptian Journal of Chemistry, 64(5), 2631-2646.

[75]. Irfan, A., Batool, F., Zahra Naqvi, S. A., Islam, A., Osman, S. M., Nocentini, A., ... & Supuran, C.T. (2020). Benzothiazole derivatives as anticancer agents. Journal of enzyme inhibition and medicinal chemistry, 35(1), 265-279.

[76]. Racané, L., Zlatar, I., Perin, N., Cindrić, M., Radovanović, V., Banjanac, M., ... & Hranjec, M. (2021). Biological activity of newly synthesized benzimidazole and benzothiazole 2, 5-disubstituted furane derivatives. Molecules, 26(16), 4935.

[77]. Kore, P. S., Singh, S. K., & Mohite, S. K. (2022). Synthesis, Characterization and Pharmacological Screening of Some Novel 2-substituted and 1 (H)-substituted Benzimidazole Derivatives as potent Anti-cancer agents. Journal of University of Shanghai for Science and Technology,24(1).

[78]. Vázquez-Jiménez, L. K., Juárez-Saldivar, A., Chan-Bacab, M. J., Delgado-Maldonado, T., González- Morales, L. D., Palos, I., ... & Rivera, G. (2023). Virtual screening of benzimidazole derivatives as potential triose phosphate isomerase inhibitors with biological activity against Leishmania mexicana. Pharmaceuticals, 16(3), 390.

[79]. Brishty, S. R., Hossain, M. J., Khandaker, M. U., Faruque, M. R. I., Osman, H., & Rahman, S. A. (2021). A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives. Frontiers in pharmacology, 12, 762807.

[80]. Ashok, D., Ram Reddy, M., Nagaraju, N., Dharavath, R., Ramakrishna, K., Gundu, S., ... & Sarasija. (2020). Microwave-assisted synthesis and in vitro antiproliferative activity of some novel 1, 2, 3- triazole-based pyrazole aldehydes and their benzimidazole derivatives. Medicinal Chemistry Research, 29, 699-706.

[81]. Djemoui, A., Naouri, A., Ouahrani, M. R., Djemoui, D., Lahcene, S., Lahrech, M. B., ... & Silva, A. M. (2020). A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+. Journal of Molecular Structure, 1204, 127487.

[82]. Goud, N. S., Pooladanda, V., Chandra, K. M., Soukya, P. L., Alvala, R., Kumar, P., ... & Alvala, M. (2020). Novel benzimidazole-triazole hybrids as apoptosis inducing agents in lung cancer: Design, synthesis, 18F-radiolabeling & galectin-1 inhibition studies. Bioorganic chemistry, 102, 104125.

[83]. Alzahrani, H. A., Alam, M. M., Elhenawy, A. A., Malebari, A. M., & Nazreen, S. (2022). Synthesis, antiproliferative, docking and DFT studies of benzimidazole derivatives as EGFR inhibitors. Journal of Molecular Structure, 1253, 132265.

[84]. Mancini, R. S., Barden, C. J., Weaver, D. F., & Reed, M. A. (2021). Furazans in medicinal chemistry. Journal of Medicinal Chemistry, 64(4), 1786-1815.

[85]. Mallikanti, V., Thumma, V., Matta, R., Valluru, K. R., Konidena, L. N. S., Boddu, L. S., & Pochampally, J. (2023). Synthesis, antimicrobial activity and molecular docking of novel benzimidazole conjugated 1, 2, 3-triazole analogues. Chemical Data Collections, 45, 101034.

[86]. Guzel, E., Acar Çevik, U., Evren, A. E., Bostancı, H. E., Gul, U. D., Kayış, U., ... & Kaplancıklı, Z. A. (2023). Synthesis of benzimidazole-1, 2, 4-triazole derivatives as potential antifungal agents targeting 14α-demethylase. ACS omega, 8(4), 4369-4384.

[87]. Amit Kumar Saini, G Pavan Kumar and Gyan Singh. (2023). A review of Benzimidazole derivatives ‘potential activities, International Journal of Pharmaceutical and Clinical Research 5(1): 35-40.

[88]. R. Champa a, K.A. Vishnumurthy b, Yadav D. Bodke c, H.S. Bhojya Naik a, Itte Pushpavathi a P. Meghana d, Priya R. Kadam, (2023). Synthesis, characterization, and biological investigations of potentially bioactive heterocyclic compounds containing benzimidazole nucleus, Results in Chemistry, 6,101018.

[89]. Deswal, L.; Verma, V.; Kumar, D.; Kaushik, C.P.; Kumar, A.; Deswal, Y.; Punia, S. (2020). Synthesis and antidiabetic evaluation of benzimidazole-tethered 1,2,3-triazoles. Arch. Pharm. 353, 2000090.

[90]. Esfahan, A.N.; Iraji, A.; Alamir, A.; Moradi, S.; Sadegh Asgari, M.; Hosseini, S.; Mojtabavi, S.; Nasli-Esfahani, E.; Faramarzi, M.A.; Bandarian, F.; et al. (2022) Design and synthesis of phenoxymethybenzoimidazole incorporating different aryl thiazole-triazole acetamide derivatives as α- glycosidase inhibitors. Mol. Divers., 26, 1995–2009.

[91]. Buric, A.J.; Dickerhoff, J.; Yang, D. (2021). Novel DNA Bis-Intercalator XR5944 as a Potent Anticancer Drug—Design and Mechanism of Action. Molecules.26(14):4132.

[92]. Khadieva, A.; Mostovaya, O.; Padnya, P.; Kalinin, V.; Grishaev, D.; Tumakov, D.; Stoikov, I. Arylamine (2021). Analogs of Methylene Blue: Substituent Effect on Aggregation Behavior and DNA Binding. Int. J. Mol. Sci., 22, 5847.

[93]. Wróbel, A., Baradyn, M., Ratkiewicz, A., & Drozdowska, D. (2021). Synthesis, biological activity , and molecular dynamics study of novel series of a trimethoprim analogs as multi-targeted compounds: dihydrofolate reductase (DHFR) inhibitors and DNA-binding agents. International Journal of Molecular Sciences, 22(7), 3685.

[94]. Macan, A. M., Perin, N., Jakopec, S., Mioč, M., Stojković, M. R., Kralj, M., ... & Raić-Malić, S. (2020). Synthesis, antiproliferative activity and DNA/RNA-binding properties of mono-and bis-(1, 2, 3- triazolyl)-appended benzimidazo [1, 2-a] quinoline derivatives. European journal of medicinal chemistry, 185, 111845.

[95]. Singu, P. S., Chilakamarthi, U., Mahadik, N. S., Keerti, B., Valipenta, N., Mokale, S. N., ... & Kumbhare, R. M. (2021). Benzimidazole-1, 2, 3-triazole hybrid molecules: Synthesis and study of their interaction with G-quadruplex DNA. RSC Medicinal Chemistry, 12(3), 416-429.

[96]. Khan, S., Kale, M., Siddiqui, F., & Nema, N. (2021). Novel pyrimidine-benzimidazole hybrids with antibacterial and antifungal properties and potential inhibition of SARS-CoV-2 main protease and spike glycoprotein. Digital Chinese Medicine, 4(2), 102-119.

[97]. Khan, S. L., Sonwane, G. M., Siddiqui, F. A., Jain, S. P., Kale, M. A., & Borkar, V. S. (2020). Discovery of naturally occurring flavonoids as human cytochrome P450 (CYP3A4) inhibitors with the aid of computational chemistry. Indo Glob. J. Pharm. Sci, 10(04), 58-69.

[98]. Shntaif, A. H., Khan, S., Tapadiya, G., Chettupalli, A., Saboo, S., Shaikh, M. S., ... & Amara, R. R. (2021). Rational drug design, synthesis, and biological evaluation of novel N-(2-arylaminophenyl)-2, 3-diphenylquinoxaline-6-sulfonamides as potential antimalarial, antifungal, and antibacterial agents. Digital Chinese Medicine, 4(4), 290-304.

[99]. Siddiqui, F. A., Khan, S. L., Marathe, R. P., & Nema, N. V. (2021). Design, synthesis, and in silico studies of novel N-(2-aminophenyl)-2, 3-diphenylquinoxaline-6-sulfonamide derivatives targeting receptor-binding domain (RBD) of SARS-CoV-2 spike glycoprotein and their evaluation as antimicrobial and antimalarial agents. Letters in Drug Design & Discovery, 18(9), 915-931.

[100]. Al-Humaidi, J. Y., Shaaban, M. M., Rezki, N., Aouad, M. R., Zakaria, M., Jaremko, M., ... & Elwakil, B. H. (2022). 1, 2, 3-triazole-benzofused molecular conjugates as potential antiviral agents against SARS-CoV-2 virus variants. Life, 12(9), 1341.

[101]. Anichina, K. K., & Georgiev, N. I. (2023). Synthesis of 2-Substituted Benzimidazole Derivatives as a Platform for the Development of UV Filters and Radical Scavengers in Sunscreens. Organics, 4(4), 524-538.

[102]. Acar Cevik, U., Saglik, B. N., Levent, S., Osmaniye, D., Kaya Cavuşoglu, B., Ozkay, Y., & Kaplancikli, Z. A. (2019). Synthesis and AChE-inhibitory activity of new benzimidazole derivatives. Molecules, 24(5), 861.

[103]. Khan, Y., Rehman, W., Hussain, R., Khan, S., Malik, A., Khan, M., ... & Abdellatif, M. H. (2022). New biologically potent benzimidazole‐based‐triazole derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors along with molecular docking study. Journal of Heterocyclic Chemistry, 59(12), 2225-2239.

[104]. Marinescu, M. (2023). Benzimidazole-triazole hybrids as antimicrobial and antiviral agents: A systematic review. Antibiotics, 12(7), 1220.

[105]. Al-Wasidi, A. S., Refat, M. S., Naglah, A. M., & Elhenawy, A. A. (2021). Different potential biological activities of benzimidazole derivatives. Egyptian Journal of Chemistry, 64(5), 2631-2646.

[106]. Abdelhafiz, A. H., Serya, R. A., Lasheen, D. S., Wang, N., Sobeh, M., Wink, M., & Abouzid, K. A. (2022). Molecular design, synthesis and biological evaluation of novel 1, 2, 5-trisubstituted benzimidazole derivatives as cytotoxic agents endowed with ABCB1 inhibitory action to overcome multidrug resistance in cancer cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 2710-2724.

[107]. Hernández-López, H., Tejada-Rodríguez, C. J., & Leyva-Ramos, S. (2022). A panoramic review of benzimidazole derivatives and their potential biological activity. Mini Reviews in Medicinal Chemistry, 22(9), 1268-1280.

[108]. Brishty, S. R., Hossain, M. J., Khandaker, M. U., Faruque, M. R. I., Osman, H., & Rahman, S. A. (2021). A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives. Frontiers in pharmacology, 12, 762807.

[109]. Moghimi, S., Shafiei, M., & Foroumadi, A. (2022). Drug design strategies for the treatment azole- resistant candidiasis. Expert Opinion on Drug Discovery, 17(8), 879-895.

[110]. Tajane, P. S., & Sawant, R. L. (2022). An updated review on benzimidazole derivatives as potential antihypertensive agents. Int. J. Health Sci, 6, 7169-7179.

[111]. Rodenes, M., Gonell, F., Martín, S., Corma, A., & Sorribes, I. (2022). Molecularly engineering Defective basal planes in molybdenum sulfide for the direct synthesis of benzimidazoles by reductive coupling of dinitro arenes with aldehydes. JACS Au, 2(3), 601-612.

[112]. Mahurkar, N. D., Gawhale, N. D., Lokhande, M. N., Uke, S. J., & Kodape, M. M. (2023). Benzimidazole: A Versatile Scaffold for Drug Discovery and Beyond-A Comprehensive Review of Synthetic Approaches and Recent Advance.

[113]. Banerjee, S., Mukherjee, S., Nath, P., Mukherjee, A., Mukherjee, S., Kumar, S. A., ... & Banerjee, S. (2023). A critical review of benzimidazole: Sky-high objectives towards the lead molecule to predict the future in medicinal chemistry. Results in Chemistry, 6, 101013.

[114]. Thapa, S., Biradar, M. S., Nargund, S. L., Ahmad, I., Agrawal, M., Patel, H., & Lamsal, A. (2024). Synthesis, molecular docking, molecular dynamic simulation studies, and antitubercular activity evaluation of substituted benzimidazole derivatives. Advances in Pharmacological and Pharmaceutical Sciences, 2024(1), 9986613. (2020, May). Study of heterocyclic ring systems: Biopharmaceutical applications of substituted 4H-1, 4-benzothiazine and piperazine. In Journal of Physics: Conference Series (Vol. 1531, No. 1, p. 012094). IOP Publishing.



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com