Published
2025-08-26
Issue
Section
Original Research Article
License
Copyright (c) 2025 Ismail Benchebiba, Mohamed Mostefaoui, Abdelatif Gadoum, Ahmed Nour El Islam Ayad, Djilali Benyoucef

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Numerical simulation of dielectric barrier discharge in Ar/He and Ar/O2 mixtures at atmospheric pressure
Ismail Benchebiba
LGEER Laboratory, Faculty of Technology, Hassiba Benbouali University of Chlef, 02000, Algeria
Mohamed Mostefaoui
LGEER Laboratory, Faculty of Technology, Hassiba Benbouali University of Chlef, 02000, Algeria
Abdelatif Gadoum
1 LGEER Laboratory, Faculty of Technology, Hassiba Benbouali University of Chlef, 02000, Algeria 2 Electrical Engineering Department Faculty of Applied Sciences, Kasdi Merbah University of Ouargla, 30000, Algeria 3 LRPPS Laboratory, Faculty of Mathematics and Material Sciences, Kasdi Merbah University of Ouargla, 30000, Algeria
Ahmed Nour El Islam Ayad
2 Electrical Engineering Department Faculty of Applied Sciences, Kasdi Merbah University of Ouargla, 30000, Algeria ; 4 APELEC Laboratory, Djilali Liabes University, Sidi Bel Abbes, 22000, Algeria
Djilali Benyoucef
LGEER Laboratory, Faculty of Technology, Hassiba Benbouali University of Chlef, 02000, Algeria
DOI: https://doi.org/10.59429/ace.v8i3.5673
Keywords: atmospheric pressure; dielectric barrier discharge; plasma density; permittivity; temperature; gas mixtures
Abstract
This study presents a numerical investigation of dielectrique barrier discharge (DBD) at atmospheric pressure, focusing on two gas mixture: Ar/He and Ar/O2. The objective is to analyse the impact of dielectric permittivity on the plasma behavior in the Ar/He mixture, and the influence of the gas temperature in the Ar/O2 mixture. For the Ar/He case, the relative permittivity of the dielectric is varied from 2 to 12, considering 7 species and 10 chemical reactions. In the Ar/O₂ case, the gas temperature is increased from 350 K to 600 K, with 9 species and 24 chemical reactions taken into account. Key plasma parameters such as species number densities (both neutral and charged), electron temperature, and electron density are evaluated for each scenario. Simulation results for the Ar/He mixture show that increasing dielectric permittivity does not affect the number densities of Ar, He, He⁺, or Hes, but leads to increased densities of electrons, Ars, Ar⁺, and a rise in electron temperature. For the Ar/O₂ mixture, increasing gas temperature causes a reduction in all species densities, while simultaniously increasing the electron temperature.
References
[1]. Johnson, M. J., Brown, G. H., Boris D. R., Petrova T. B., Walton, S. G. "Two Atmospheric Pressure Plasma Jets Driven by Phase-Shifted Voltages: A Method to Control Plasma Properties at the Plasma–Surface Interface," IEEE Transactions on Plasma Science,2022, 50(9),pp.2961-2971. https://doi.org/10.1109/TPS.2022.3198826
[2]. Levko D. “Runaway Electrons in Gas Discharges: Insights from the Numerical Modeling”. Plasma,2025 8(1),pp12. https://doi.org/10.3390/plasma8010012
[3]. Alexiou S. “Effects of Spiralling Trajectories on White Dwarf Spectra: Remarks on Different Calculations”. Plasma.2025, 8(1),pp2. https://doi.org/10.3390/plasma8010002 .
[4]. Vassallo E, Saleh M, Pedroni M, Cremona A, Ripamonti D. “Characterization of Tungsten Sputtering Processes in a Capacitively Coupled Argon Plasma”. Plasma,2025, 8(1), pp8. https://doi.org/10.3390/plasma8010008
[5]. Fujera J, Hoffer P, Prukner V, Šimek M. “Quantifying Plasma Dose for Barley Seed Treatment by Volume Dielectric Barrier Discharges in Atmospheric-Pressure Synthetic Air”. Plasma,2025, 8(1),pp11 https://doi.org/10.3390/plasma8010011.
[6]. Shvydyuk, K.O., Rodrigues, F.F., Nunes-Pereira, J., Páscoa J.C., Silva, A. P. “Thermal Characterization of Ceramic Composites for Optimized Surface Dielectric Barrier Discharge Plasma Actuators”. Actuators, 2025,14(3),pp.127. https://doi.org/10.3390/act14030127 . .
[7]. Xiao, Y., Tian, Y., Zhan, Y., Zhu, J. “Optimization of a Low-Cost Corona Dielectric-Barrier Discharge Plasma Wastewater Treatment System through Central Composite Design/Response Surface Methodology with Mechanistic and Efficiency Analysis” Sustainability, 2024, 16(2),pp.605. https://doi.org/10.3390/su16020605 .
[8]. Korzec, D., Freund, F., Bäuml, C,. Penzkofer, P., Beier, O., Pfuch, A., Vogelsang, K., Froehlich, F., Nettesheim, S. Hybrid Dielectric Barrier Discharge Reactor: Production of Reactive Oxygen–Nitrogen Species in Humid Air. Plasma. 2025, 8(3),pp27. https://doi.org/10.3390/plasma8030027
[9]. Liu P, Song Y, Zhang Z. “A Novel Dielectric Barrier Discharge (DBD) Reactor with Streamer and Glow Corona Discharge for Improved Ozone Generation at Atmospheric Pressure”. Micromachines. 2021; 12(11):1287. https://doi.org/10.3390/mi12111287
[10]. Wang, X., Liu Y, Tan, Z, Chang, L. "Effects of Oxygen Concentration on the Reactive Oxygen Species Density Under Different Operating Conditions in Atmospheric-Pressure Helium/Oxygen Pulsed Dielectric Barrier Discharge," IEEE Access,7,pp.69748-69757,2019. https://doi.org/10.1109/ACCESS.2019.2919098
[11]. Scaltriti, S. G. Cristofolini, A , Neretti G, "Design and characterization of an Atmospheric Pressure Dielectric Barrier Discharge Reactor for Potential Air Disinfection Applications.," in IEEEAccess,13,pp.45037-45047,2025. https://doi.org/10.1109/ACCESS.2025.3548933
[12]. Nassour, K. et al, "Comparative experimental analysis of ozone generation between surface and volume DBD generators," IEEE Transactions on Dielectrics and Electrical Insulation, 25(2), pp. 428-434, 2018. https://doi.org/10.1109/TDEI.2017.006600
[13]. Saidi, S, Loukil H, Khodja, K. Belasri, A. Caillier B , Guillot, P. "Experimental and Theoretical Investigations of Dielectric Barrier Discharge (DBD) Lamp in Ne/Xe Mixture," IEEE Transactions on PlasmaScience ,50(7),pp.2147-2155,2022. https://doi.org/10.1109/TPS.2022.3176412
[14]. Khadir, N. Khodja, K, Belasri, A. “Methan conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production” Plasma Sci. Technol. 19(9), pp.095502 ,2017. http://dx.doi.org/10.1088/2058-6272/aa6d6d
[15]. Benmoussa, A. Belasri, A. Larouci, B. Belkharroubi, F, Belmiloud, N. “Gas temperature effect in methane DBD reactor for hydrogen production” Plasma Medicine, 12(3), pp.41-58, 2022. https://doi.org/10.1615/PlasmaMed.2023047179
[16]. Zhang, Z. H., Zhong, K. X., Liu, Y., Wang, W., Wang, Y. N., Yang, D. Z. “Fluid simulation of atmospheric argon RF dielectric barrier discharges: Role of neutral gas temperature.” Physics of Plasmas, 31(5),pp.053515.,2024.https://doi.org/10.1063/5.0202078
[17]. Baeva, M., Stankov, M., Trautvetter, T., Methling, R., Hempel, F., Loffhagen, D., Foest, R. (2021). The effect of oxygen admixture on the properties of microwave generated plasma in Ar–O2: A modelling study. Journal of Physics D: Applied Physics, 54(35), pp.355205,2021.
[18]. https://doi.org/10.1088/1361-6463/ac08cc
[19]. Bera, K., Farouk, B. and Lee, Y.H., 1999. Simulation of Thin Carbon Film Deposition in a Radio‐Frequency Methane Plasma Reactor. Journal of the Electrochemical Society, 146(9), p.3264. http://dx.doi.org/10.1149/1.1392465
[20]. Nienhuis, G.J. and Goedheer, W., 1999. Modelling of a large scale reactor for plasma deposition of silicon. Plasma Sources Science and Technology, 8(2), p.295. http://dx.doi.org/10.1088/0963-0252/8/2/310
[21]. Herrebout, D., Bogaerts, A., Yan, M., Gijbels, R., Goedheer, W. Dekempeneer, E. “One-dimensional fluid model for an rf methane plasma of interest in deposition of diamond-like carbon layers”. Journal of Applied Physics,2001, 90(2), pp.570-579. http://dx.doi.org/10.1063/1.1378059
[22]. Ran S, Wang J, Lei B, et al. Numerical simulation of coaxial-coplanar dielectric barrier discharge in atmospheric helium. AIP Advances. 2022; 12(5): 055209. https://doi.org/10.1063/5.0089080
[23]. Hagelaar GJM, Pitchford LC. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma sources science and technology. 2005; 14(4): 722. https://doi.org/10.1088/0963-0252/14/4/011
[24]. Yanguas-Gil A, Cotrino J, Alves LL. An update of argon inelastic cross sections for plasma discharges. Journal of Physics D: Applied physics. 2005; 38(10): 1588. https://doi.org/10.1088/0022-3727/38/10/014
[25]. Baeva M, Hemel F, Baierl H, et al. Two-and three-dimensional simulation analysis of microwave excited plasma for deposition applications: operation with argon at atmospheric pressure. Journal of Physics D: Applied Physics. 2018; 51(38): 385202. https://doi.org/10.1088/1361-6463/aad537
[26]. Lymberpoulos DP, Economou DJ. Fluid simulation of glow discharge: Effect of metastable atoms in argon. Journal of Applied Physics 1993; 73(8): 3668-3679. https://doi.org/10.1063/1.352926
[27]. Lieberman, M. A. , Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley)
[28]. Corr C. S., Gomez, S., Graham, W. G.”Discharge kinetics of inductively coupled oxygen plasmas: experiment and model” Plasma Sources Sci. Technol. .21(5), pp.055024, 2012. https://doi.org/10.1088/0963-0252/21/5/055024
[29]. Gudmundssonn, J. T., Thorsteinsson, E. G. “Oxygen discharges diluted with argon: dissociation processes”
[30]. PlasmaSourcesSci.Technol,16(2),pp.399–412,2007. https://doi.org/10.1088/0963-0252/16/2/025
[31]. Eliasson, B., Kogelschatz U. 1986 Brown Boveri Forschungstemtrum Report KLR 86-11 C
[32]. Bogaerts, A. “Effects of oxygen addition to argon glow discharges: a hybrid Monte Carlo-fluid modeling investigation” Spectrochimca.ActaB,64,pp.1266-1279,2009 https://doi.org/10.1088/1361-6463/ac08cc
[33]. Kutasi, K., Guerra, V., Sa, P. A. “Theoretical insight into Ar-O2 surface-wave microwave discharges” J. Phys. D: Appl.Phys.43(17),pp.175201,2010. https://doi.org/10.1088/0022-3727/43/17/175201
[34]. W. Hänsch, The drift diffusion equation and its applications in MOSFET modeling. Springer Science & Business Media, 2012.
[35]. Norberg, S. A., Johnsen, E., Kushner, M. J. “Helium atmospheric pressure plasma jets touching dielectric and metal surfaces”. J. Appl. Phys. 118(1), pp.013301, 2015. https://doi.org/10.1063/1.4923345








